| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * \file linker.cpp |
| * GLSL linker implementation |
| * |
| * Given a set of shaders that are to be linked to generate a final program, |
| * there are three distinct stages. |
| * |
| * In the first stage shaders are partitioned into groups based on the shader |
| * type. All shaders of a particular type (e.g., vertex shaders) are linked |
| * together. |
| * |
| * - Undefined references in each shader are resolve to definitions in |
| * another shader. |
| * - Types and qualifiers of uniforms, outputs, and global variables defined |
| * in multiple shaders with the same name are verified to be the same. |
| * - Initializers for uniforms and global variables defined |
| * in multiple shaders with the same name are verified to be the same. |
| * |
| * The result, in the terminology of the GLSL spec, is a set of shader |
| * executables for each processing unit. |
| * |
| * After the first stage is complete, a series of semantic checks are performed |
| * on each of the shader executables. |
| * |
| * - Each shader executable must define a \c main function. |
| * - Each vertex shader executable must write to \c gl_Position. |
| * - Each fragment shader executable must write to either \c gl_FragData or |
| * \c gl_FragColor. |
| * |
| * In the final stage individual shader executables are linked to create a |
| * complete exectuable. |
| * |
| * - Types of uniforms defined in multiple shader stages with the same name |
| * are verified to be the same. |
| * - Initializers for uniforms defined in multiple shader stages with the |
| * same name are verified to be the same. |
| * - Types and qualifiers of outputs defined in one stage are verified to |
| * be the same as the types and qualifiers of inputs defined with the same |
| * name in a later stage. |
| * |
| * \author Ian Romanick <ian.d.romanick@intel.com> |
| */ |
| |
| #include "main/core.h" |
| #include "glsl_symbol_table.h" |
| #include "glsl_parser_extras.h" |
| #include "ir.h" |
| #include "program.h" |
| #include "program/hash_table.h" |
| #include "linker.h" |
| #include "link_varyings.h" |
| #include "ir_optimization.h" |
| #include "ir_rvalue_visitor.h" |
| #include "ir_uniform.h" |
| |
| extern "C" { |
| #include "main/shaderobj.h" |
| #include "main/enums.h" |
| } |
| |
| void linker_error(gl_shader_program *, const char *, ...); |
| |
| namespace { |
| |
| /** |
| * Visitor that determines whether or not a variable is ever written. |
| */ |
| class find_assignment_visitor : public ir_hierarchical_visitor { |
| public: |
| find_assignment_visitor(const char *name) |
| : name(name), found(false) |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit_enter(ir_assignment *ir) |
| { |
| ir_variable *const var = ir->lhs->variable_referenced(); |
| |
| if (strcmp(name, var->name) == 0) { |
| found = true; |
| return visit_stop; |
| } |
| |
| return visit_continue_with_parent; |
| } |
| |
| virtual ir_visitor_status visit_enter(ir_call *ir) |
| { |
| foreach_two_lists(formal_node, &ir->callee->parameters, |
| actual_node, &ir->actual_parameters) { |
| ir_rvalue *param_rval = (ir_rvalue *) actual_node; |
| ir_variable *sig_param = (ir_variable *) formal_node; |
| |
| if (sig_param->data.mode == ir_var_function_out || |
| sig_param->data.mode == ir_var_function_inout) { |
| ir_variable *var = param_rval->variable_referenced(); |
| if (var && strcmp(name, var->name) == 0) { |
| found = true; |
| return visit_stop; |
| } |
| } |
| } |
| |
| if (ir->return_deref != NULL) { |
| ir_variable *const var = ir->return_deref->variable_referenced(); |
| |
| if (strcmp(name, var->name) == 0) { |
| found = true; |
| return visit_stop; |
| } |
| } |
| |
| return visit_continue_with_parent; |
| } |
| |
| bool variable_found() |
| { |
| return found; |
| } |
| |
| private: |
| const char *name; /**< Find writes to a variable with this name. */ |
| bool found; /**< Was a write to the variable found? */ |
| }; |
| |
| |
| /** |
| * Visitor that determines whether or not a variable is ever read. |
| */ |
| class find_deref_visitor : public ir_hierarchical_visitor { |
| public: |
| find_deref_visitor(const char *name) |
| : name(name), found(false) |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| if (strcmp(this->name, ir->var->name) == 0) { |
| this->found = true; |
| return visit_stop; |
| } |
| |
| return visit_continue; |
| } |
| |
| bool variable_found() const |
| { |
| return this->found; |
| } |
| |
| private: |
| const char *name; /**< Find writes to a variable with this name. */ |
| bool found; /**< Was a write to the variable found? */ |
| }; |
| |
| |
| class geom_array_resize_visitor : public ir_hierarchical_visitor { |
| public: |
| unsigned num_vertices; |
| gl_shader_program *prog; |
| |
| geom_array_resize_visitor(unsigned num_vertices, gl_shader_program *prog) |
| { |
| this->num_vertices = num_vertices; |
| this->prog = prog; |
| } |
| |
| virtual ~geom_array_resize_visitor() |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit(ir_variable *var) |
| { |
| if (!var->type->is_array() || var->data.mode != ir_var_shader_in) |
| return visit_continue; |
| |
| unsigned size = var->type->length; |
| |
| /* Generate a link error if the shader has declared this array with an |
| * incorrect size. |
| */ |
| if (size && size != this->num_vertices) { |
| linker_error(this->prog, "size of array %s declared as %u, " |
| "but number of input vertices is %u\n", |
| var->name, size, this->num_vertices); |
| return visit_continue; |
| } |
| |
| /* Generate a link error if the shader attempts to access an input |
| * array using an index too large for its actual size assigned at link |
| * time. |
| */ |
| if (var->data.max_array_access >= this->num_vertices) { |
| linker_error(this->prog, "geometry shader accesses element %i of " |
| "%s, but only %i input vertices\n", |
| var->data.max_array_access, var->name, this->num_vertices); |
| return visit_continue; |
| } |
| |
| var->type = glsl_type::get_array_instance(var->type->element_type(), |
| this->num_vertices); |
| var->data.max_array_access = this->num_vertices - 1; |
| |
| return visit_continue; |
| } |
| |
| /* Dereferences of input variables need to be updated so that their type |
| * matches the newly assigned type of the variable they are accessing. */ |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| ir->type = ir->var->type; |
| return visit_continue; |
| } |
| |
| /* Dereferences of 2D input arrays need to be updated so that their type |
| * matches the newly assigned type of the array they are accessing. */ |
| virtual ir_visitor_status visit_leave(ir_dereference_array *ir) |
| { |
| const glsl_type *const vt = ir->array->type; |
| if (vt->is_array()) |
| ir->type = vt->element_type(); |
| return visit_continue; |
| } |
| }; |
| |
| /** |
| * Visitor that determines the highest stream id to which a (geometry) shader |
| * emits vertices. It also checks whether End{Stream}Primitive is ever called. |
| */ |
| class find_emit_vertex_visitor : public ir_hierarchical_visitor { |
| public: |
| find_emit_vertex_visitor(int max_allowed) |
| : max_stream_allowed(max_allowed), |
| invalid_stream_id(0), |
| invalid_stream_id_from_emit_vertex(false), |
| end_primitive_found(false), |
| uses_non_zero_stream(false) |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit_leave(ir_emit_vertex *ir) |
| { |
| int stream_id = ir->stream_id(); |
| |
| if (stream_id < 0) { |
| invalid_stream_id = stream_id; |
| invalid_stream_id_from_emit_vertex = true; |
| return visit_stop; |
| } |
| |
| if (stream_id > max_stream_allowed) { |
| invalid_stream_id = stream_id; |
| invalid_stream_id_from_emit_vertex = true; |
| return visit_stop; |
| } |
| |
| if (stream_id != 0) |
| uses_non_zero_stream = true; |
| |
| return visit_continue; |
| } |
| |
| virtual ir_visitor_status visit_leave(ir_end_primitive *ir) |
| { |
| end_primitive_found = true; |
| |
| int stream_id = ir->stream_id(); |
| |
| if (stream_id < 0) { |
| invalid_stream_id = stream_id; |
| invalid_stream_id_from_emit_vertex = false; |
| return visit_stop; |
| } |
| |
| if (stream_id > max_stream_allowed) { |
| invalid_stream_id = stream_id; |
| invalid_stream_id_from_emit_vertex = false; |
| return visit_stop; |
| } |
| |
| if (stream_id != 0) |
| uses_non_zero_stream = true; |
| |
| return visit_continue; |
| } |
| |
| bool error() |
| { |
| return invalid_stream_id != 0; |
| } |
| |
| const char *error_func() |
| { |
| return invalid_stream_id_from_emit_vertex ? |
| "EmitStreamVertex" : "EndStreamPrimitive"; |
| } |
| |
| int error_stream() |
| { |
| return invalid_stream_id; |
| } |
| |
| bool uses_streams() |
| { |
| return uses_non_zero_stream; |
| } |
| |
| bool uses_end_primitive() |
| { |
| return end_primitive_found; |
| } |
| |
| private: |
| int max_stream_allowed; |
| int invalid_stream_id; |
| bool invalid_stream_id_from_emit_vertex; |
| bool end_primitive_found; |
| bool uses_non_zero_stream; |
| }; |
| |
| } /* anonymous namespace */ |
| |
| void |
| linker_error(gl_shader_program *prog, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| ralloc_strcat(&prog->InfoLog, "error: "); |
| va_start(ap, fmt); |
| ralloc_vasprintf_append(&prog->InfoLog, fmt, ap); |
| va_end(ap); |
| |
| prog->LinkStatus = false; |
| } |
| |
| |
| void |
| linker_warning(gl_shader_program *prog, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| ralloc_strcat(&prog->InfoLog, "warning: "); |
| va_start(ap, fmt); |
| ralloc_vasprintf_append(&prog->InfoLog, fmt, ap); |
| va_end(ap); |
| |
| } |
| |
| |
| /** |
| * Given a string identifying a program resource, break it into a base name |
| * and an optional array index in square brackets. |
| * |
| * If an array index is present, \c out_base_name_end is set to point to the |
| * "[" that precedes the array index, and the array index itself is returned |
| * as a long. |
| * |
| * If no array index is present (or if the array index is negative or |
| * mal-formed), \c out_base_name_end, is set to point to the null terminator |
| * at the end of the input string, and -1 is returned. |
| * |
| * Only the final array index is parsed; if the string contains other array |
| * indices (or structure field accesses), they are left in the base name. |
| * |
| * No attempt is made to check that the base name is properly formed; |
| * typically the caller will look up the base name in a hash table, so |
| * ill-formed base names simply turn into hash table lookup failures. |
| */ |
| long |
| parse_program_resource_name(const GLchar *name, |
| const GLchar **out_base_name_end) |
| { |
| /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says: |
| * |
| * "When an integer array element or block instance number is part of |
| * the name string, it will be specified in decimal form without a "+" |
| * or "-" sign or any extra leading zeroes. Additionally, the name |
| * string will not include white space anywhere in the string." |
| */ |
| |
| const size_t len = strlen(name); |
| *out_base_name_end = name + len; |
| |
| if (len == 0 || name[len-1] != ']') |
| return -1; |
| |
| /* Walk backwards over the string looking for a non-digit character. This |
| * had better be the opening bracket for an array index. |
| * |
| * Initially, i specifies the location of the ']'. Since the string may |
| * contain only the ']' charcater, walk backwards very carefully. |
| */ |
| unsigned i; |
| for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i) |
| /* empty */ ; |
| |
| if ((i == 0) || name[i-1] != '[') |
| return -1; |
| |
| long array_index = strtol(&name[i], NULL, 10); |
| if (array_index < 0) |
| return -1; |
| |
| *out_base_name_end = name + (i - 1); |
| return array_index; |
| } |
| |
| |
| void |
| link_invalidate_variable_locations(exec_list *ir) |
| { |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL) |
| continue; |
| |
| /* Only assign locations for variables that lack an explicit location. |
| * Explicit locations are set for all built-in variables, generic vertex |
| * shader inputs (via layout(location=...)), and generic fragment shader |
| * outputs (also via layout(location=...)). |
| */ |
| if (!var->data.explicit_location) { |
| var->data.location = -1; |
| var->data.location_frac = 0; |
| } |
| |
| /* ir_variable::is_unmatched_generic_inout is used by the linker while |
| * connecting outputs from one stage to inputs of the next stage. |
| * |
| * There are two implicit assumptions here. First, we assume that any |
| * built-in variable (i.e., non-generic in or out) will have |
| * explicit_location set. Second, we assume that any generic in or out |
| * will not have explicit_location set. |
| * |
| * This second assumption will only be valid until |
| * GL_ARB_separate_shader_objects is supported. When that extension is |
| * implemented, this function will need some modifications. |
| */ |
| if (!var->data.explicit_location) { |
| var->data.is_unmatched_generic_inout = 1; |
| } else { |
| var->data.is_unmatched_generic_inout = 0; |
| } |
| } |
| } |
| |
| |
| /** |
| * Set UsesClipDistance and ClipDistanceArraySize based on the given shader. |
| * |
| * Also check for errors based on incorrect usage of gl_ClipVertex and |
| * gl_ClipDistance. |
| * |
| * Return false if an error was reported. |
| */ |
| static void |
| analyze_clip_usage(struct gl_shader_program *prog, |
| struct gl_shader *shader, GLboolean *UsesClipDistance, |
| GLuint *ClipDistanceArraySize) |
| { |
| *ClipDistanceArraySize = 0; |
| |
| if (!prog->IsES && prog->Version >= 130) { |
| /* From section 7.1 (Vertex Shader Special Variables) of the |
| * GLSL 1.30 spec: |
| * |
| * "It is an error for a shader to statically write both |
| * gl_ClipVertex and gl_ClipDistance." |
| * |
| * This does not apply to GLSL ES shaders, since GLSL ES defines neither |
| * gl_ClipVertex nor gl_ClipDistance. |
| */ |
| find_assignment_visitor clip_vertex("gl_ClipVertex"); |
| find_assignment_visitor clip_distance("gl_ClipDistance"); |
| |
| clip_vertex.run(shader->ir); |
| clip_distance.run(shader->ir); |
| if (clip_vertex.variable_found() && clip_distance.variable_found()) { |
| linker_error(prog, "%s shader writes to both `gl_ClipVertex' " |
| "and `gl_ClipDistance'\n", |
| _mesa_shader_stage_to_string(shader->Stage)); |
| return; |
| } |
| *UsesClipDistance = clip_distance.variable_found(); |
| ir_variable *clip_distance_var = |
| shader->symbols->get_variable("gl_ClipDistance"); |
| if (clip_distance_var) |
| *ClipDistanceArraySize = clip_distance_var->type->length; |
| } else { |
| *UsesClipDistance = false; |
| } |
| } |
| |
| |
| /** |
| * Verify that a vertex shader executable meets all semantic requirements. |
| * |
| * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize |
| * as a side effect. |
| * |
| * \param shader Vertex shader executable to be verified |
| */ |
| void |
| validate_vertex_shader_executable(struct gl_shader_program *prog, |
| struct gl_shader *shader) |
| { |
| if (shader == NULL) |
| return; |
| |
| /* From the GLSL 1.10 spec, page 48: |
| * |
| * "The variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. All executions of a well-formed vertex shader |
| * executable must write a value into this variable. [...] The |
| * variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. All executions of a well-formed vertex shader |
| * executable must write a value into this variable." |
| * |
| * while in GLSL 1.40 this text is changed to: |
| * |
| * "The variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. It can be written at any time during shader |
| * execution. It may also be read back by a vertex shader |
| * after being written. This value will be used by primitive |
| * assembly, clipping, culling, and other fixed functionality |
| * operations, if present, that operate on primitives after |
| * vertex processing has occurred. Its value is undefined if |
| * the vertex shader executable does not write gl_Position." |
| * |
| * All GLSL ES Versions are similar to GLSL 1.40--failing to write to |
| * gl_Position is not an error. |
| */ |
| if (prog->Version < (prog->IsES ? 300 : 140)) { |
| find_assignment_visitor find("gl_Position"); |
| find.run(shader->ir); |
| if (!find.variable_found()) { |
| if (prog->IsES) { |
| linker_warning(prog, |
| "vertex shader does not write to `gl_Position'." |
| "It's value is undefined. \n"); |
| } else { |
| linker_error(prog, |
| "vertex shader does not write to `gl_Position'. \n"); |
| } |
| return; |
| } |
| } |
| |
| analyze_clip_usage(prog, shader, &prog->Vert.UsesClipDistance, |
| &prog->Vert.ClipDistanceArraySize); |
| } |
| |
| |
| /** |
| * Verify that a fragment shader executable meets all semantic requirements |
| * |
| * \param shader Fragment shader executable to be verified |
| */ |
| void |
| validate_fragment_shader_executable(struct gl_shader_program *prog, |
| struct gl_shader *shader) |
| { |
| if (shader == NULL) |
| return; |
| |
| find_assignment_visitor frag_color("gl_FragColor"); |
| find_assignment_visitor frag_data("gl_FragData"); |
| |
| frag_color.run(shader->ir); |
| frag_data.run(shader->ir); |
| |
| if (frag_color.variable_found() && frag_data.variable_found()) { |
| linker_error(prog, "fragment shader writes to both " |
| "`gl_FragColor' and `gl_FragData'\n"); |
| } |
| } |
| |
| /** |
| * Verify that a geometry shader executable meets all semantic requirements |
| * |
| * Also sets prog->Geom.VerticesIn, prog->Geom.UsesClipDistance, and |
| * prog->Geom.ClipDistanceArraySize as a side effect. |
| * |
| * \param shader Geometry shader executable to be verified |
| */ |
| void |
| validate_geometry_shader_executable(struct gl_shader_program *prog, |
| struct gl_shader *shader) |
| { |
| if (shader == NULL) |
| return; |
| |
| unsigned num_vertices = vertices_per_prim(prog->Geom.InputType); |
| prog->Geom.VerticesIn = num_vertices; |
| |
| analyze_clip_usage(prog, shader, &prog->Geom.UsesClipDistance, |
| &prog->Geom.ClipDistanceArraySize); |
| } |
| |
| /** |
| * Check if geometry shaders emit to non-zero streams and do corresponding |
| * validations. |
| */ |
| static void |
| validate_geometry_shader_emissions(struct gl_context *ctx, |
| struct gl_shader_program *prog) |
| { |
| if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) { |
| find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1); |
| emit_vertex.run(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir); |
| if (emit_vertex.error()) { |
| linker_error(prog, "Invalid call %s(%d). Accepted values for the " |
| "stream parameter are in the range [0, %d].", |
| emit_vertex.error_func(), |
| emit_vertex.error_stream(), |
| ctx->Const.MaxVertexStreams - 1); |
| } |
| prog->Geom.UsesStreams = emit_vertex.uses_streams(); |
| prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive(); |
| |
| /* From the ARB_gpu_shader5 spec: |
| * |
| * "Multiple vertex streams are supported only if the output primitive |
| * type is declared to be "points". A program will fail to link if it |
| * contains a geometry shader calling EmitStreamVertex() or |
| * EndStreamPrimitive() if its output primitive type is not "points". |
| * |
| * However, in the same spec: |
| * |
| * "The function EmitVertex() is equivalent to calling EmitStreamVertex() |
| * with <stream> set to zero." |
| * |
| * And: |
| * |
| * "The function EndPrimitive() is equivalent to calling |
| * EndStreamPrimitive() with <stream> set to zero." |
| * |
| * Since we can call EmitVertex() and EndPrimitive() when we output |
| * primitives other than points, calling EmitStreamVertex(0) or |
| * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia |
| * does. Currently we only set prog->Geom.UsesStreams to TRUE when |
| * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero |
| * stream. |
| */ |
| if (prog->Geom.UsesStreams && prog->Geom.OutputType != GL_POINTS) { |
| linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) " |
| "with n>0 requires point output"); |
| } |
| } |
| } |
| |
| |
| /** |
| * Perform validation of global variables used across multiple shaders |
| */ |
| void |
| cross_validate_globals(struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders, |
| bool uniforms_only) |
| { |
| /* Examine all of the uniforms in all of the shaders and cross validate |
| * them. |
| */ |
| glsl_symbol_table variables; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i] == NULL) |
| continue; |
| |
| foreach_in_list(ir_instruction, node, shader_list[i]->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL) |
| continue; |
| |
| if (uniforms_only && (var->data.mode != ir_var_uniform)) |
| continue; |
| |
| /* Don't cross validate temporaries that are at global scope. These |
| * will eventually get pulled into the shaders 'main'. |
| */ |
| if (var->data.mode == ir_var_temporary) |
| continue; |
| |
| /* If a global with this name has already been seen, verify that the |
| * new instance has the same type. In addition, if the globals have |
| * initializers, the values of the initializers must be the same. |
| */ |
| ir_variable *const existing = variables.get_variable(var->name); |
| if (existing != NULL) { |
| if (var->type != existing->type) { |
| /* Consider the types to be "the same" if both types are arrays |
| * of the same type and one of the arrays is implicitly sized. |
| * In addition, set the type of the linked variable to the |
| * explicitly sized array. |
| */ |
| if (var->type->is_array() |
| && existing->type->is_array() |
| && (var->type->fields.array == existing->type->fields.array) |
| && ((var->type->length == 0) |
| || (existing->type->length == 0))) { |
| if (var->type->length != 0) { |
| existing->type = var->type; |
| } |
| } else if (var->type->is_record() |
| && existing->type->is_record() |
| && existing->type->record_compare(var->type)) { |
| existing->type = var->type; |
| } else { |
| linker_error(prog, "%s `%s' declared as type " |
| "`%s' and type `%s'\n", |
| mode_string(var), |
| var->name, var->type->name, |
| existing->type->name); |
| return; |
| } |
| } |
| |
| if (var->data.explicit_location) { |
| if (existing->data.explicit_location |
| && (var->data.location != existing->data.location)) { |
| linker_error(prog, "explicit locations for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return; |
| } |
| |
| existing->data.location = var->data.location; |
| existing->data.explicit_location = true; |
| } |
| |
| /* From the GLSL 4.20 specification: |
| * "A link error will result if two compilation units in a program |
| * specify different integer-constant bindings for the same |
| * opaque-uniform name. However, it is not an error to specify a |
| * binding on some but not all declarations for the same name" |
| */ |
| if (var->data.explicit_binding) { |
| if (existing->data.explicit_binding && |
| var->data.binding != existing->data.binding) { |
| linker_error(prog, "explicit bindings for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return; |
| } |
| |
| existing->data.binding = var->data.binding; |
| existing->data.explicit_binding = true; |
| } |
| |
| if (var->type->contains_atomic() && |
| var->data.atomic.offset != existing->data.atomic.offset) { |
| linker_error(prog, "offset specifications for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return; |
| } |
| |
| /* Validate layout qualifiers for gl_FragDepth. |
| * |
| * From the AMD/ARB_conservative_depth specs: |
| * |
| * "If gl_FragDepth is redeclared in any fragment shader in a |
| * program, it must be redeclared in all fragment shaders in |
| * that program that have static assignments to |
| * gl_FragDepth. All redeclarations of gl_FragDepth in all |
| * fragment shaders in a single program must have the same set |
| * of qualifiers." |
| */ |
| if (strcmp(var->name, "gl_FragDepth") == 0) { |
| bool layout_declared = var->data.depth_layout != ir_depth_layout_none; |
| bool layout_differs = |
| var->data.depth_layout != existing->data.depth_layout; |
| |
| if (layout_declared && layout_differs) { |
| linker_error(prog, |
| "All redeclarations of gl_FragDepth in all " |
| "fragment shaders in a single program must have " |
| "the same set of qualifiers."); |
| } |
| |
| if (var->data.used && layout_differs) { |
| linker_error(prog, |
| "If gl_FragDepth is redeclared with a layout " |
| "qualifier in any fragment shader, it must be " |
| "redeclared with the same layout qualifier in " |
| "all fragment shaders that have assignments to " |
| "gl_FragDepth"); |
| } |
| } |
| |
| /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says: |
| * |
| * "If a shared global has multiple initializers, the |
| * initializers must all be constant expressions, and they |
| * must all have the same value. Otherwise, a link error will |
| * result. (A shared global having only one initializer does |
| * not require that initializer to be a constant expression.)" |
| * |
| * Previous to 4.20 the GLSL spec simply said that initializers |
| * must have the same value. In this case of non-constant |
| * initializers, this was impossible to determine. As a result, |
| * no vendor actually implemented that behavior. The 4.20 |
| * behavior matches the implemented behavior of at least one other |
| * vendor, so we'll implement that for all GLSL versions. |
| */ |
| if (var->constant_initializer != NULL) { |
| if (existing->constant_initializer != NULL) { |
| if (!var->constant_initializer->has_value(existing->constant_initializer)) { |
| linker_error(prog, "initializers for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return; |
| } |
| } else { |
| /* If the first-seen instance of a particular uniform did not |
| * have an initializer but a later instance does, copy the |
| * initializer to the version stored in the symbol table. |
| */ |
| /* FINISHME: This is wrong. The constant_value field should |
| * FINISHME: not be modified! Imagine a case where a shader |
| * FINISHME: without an initializer is linked in two different |
| * FINISHME: programs with shaders that have differing |
| * FINISHME: initializers. Linking with the first will |
| * FINISHME: modify the shader, and linking with the second |
| * FINISHME: will fail. |
| */ |
| existing->constant_initializer = |
| var->constant_initializer->clone(ralloc_parent(existing), |
| NULL); |
| } |
| } |
| |
| if (var->data.has_initializer) { |
| if (existing->data.has_initializer |
| && (var->constant_initializer == NULL |
| || existing->constant_initializer == NULL)) { |
| linker_error(prog, |
| "shared global variable `%s' has multiple " |
| "non-constant initializers.\n", |
| var->name); |
| return; |
| } |
| |
| /* Some instance had an initializer, so keep track of that. In |
| * this location, all sorts of initializers (constant or |
| * otherwise) will propagate the existence to the variable |
| * stored in the symbol table. |
| */ |
| existing->data.has_initializer = true; |
| } |
| |
| if (existing->data.invariant != var->data.invariant) { |
| linker_error(prog, "declarations for %s `%s' have " |
| "mismatching invariant qualifiers\n", |
| mode_string(var), var->name); |
| return; |
| } |
| if (existing->data.centroid != var->data.centroid) { |
| linker_error(prog, "declarations for %s `%s' have " |
| "mismatching centroid qualifiers\n", |
| mode_string(var), var->name); |
| return; |
| } |
| if (existing->data.sample != var->data.sample) { |
| linker_error(prog, "declarations for %s `%s` have " |
| "mismatching sample qualifiers\n", |
| mode_string(var), var->name); |
| return; |
| } |
| } else |
| variables.add_variable(var); |
| } |
| } |
| } |
| |
| |
| /** |
| * Perform validation of uniforms used across multiple shader stages |
| */ |
| void |
| cross_validate_uniforms(struct gl_shader_program *prog) |
| { |
| cross_validate_globals(prog, prog->_LinkedShaders, |
| MESA_SHADER_STAGES, true); |
| } |
| |
| /** |
| * Accumulates the array of prog->UniformBlocks and checks that all |
| * definitons of blocks agree on their contents. |
| */ |
| static bool |
| interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog) |
| { |
| unsigned max_num_uniform_blocks = 0; |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i]) |
| max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks; |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| struct gl_shader *sh = prog->_LinkedShaders[i]; |
| |
| prog->UniformBlockStageIndex[i] = ralloc_array(prog, int, |
| max_num_uniform_blocks); |
| for (unsigned int j = 0; j < max_num_uniform_blocks; j++) |
| prog->UniformBlockStageIndex[i][j] = -1; |
| |
| if (sh == NULL) |
| continue; |
| |
| for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) { |
| int index = link_cross_validate_uniform_block(prog, |
| &prog->UniformBlocks, |
| &prog->NumUniformBlocks, |
| &sh->UniformBlocks[j]); |
| |
| if (index == -1) { |
| linker_error(prog, "uniform block `%s' has mismatching definitions", |
| sh->UniformBlocks[j].Name); |
| return false; |
| } |
| |
| prog->UniformBlockStageIndex[i][index] = j; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Populates a shaders symbol table with all global declarations |
| */ |
| static void |
| populate_symbol_table(gl_shader *sh) |
| { |
| sh->symbols = new(sh) glsl_symbol_table; |
| |
| foreach_in_list(ir_instruction, inst, sh->ir) { |
| ir_variable *var; |
| ir_function *func; |
| |
| if ((func = inst->as_function()) != NULL) { |
| sh->symbols->add_function(func); |
| } else if ((var = inst->as_variable()) != NULL) { |
| if (var->data.mode != ir_var_temporary) |
| sh->symbols->add_variable(var); |
| } |
| } |
| } |
| |
| |
| /** |
| * Remap variables referenced in an instruction tree |
| * |
| * This is used when instruction trees are cloned from one shader and placed in |
| * another. These trees will contain references to \c ir_variable nodes that |
| * do not exist in the target shader. This function finds these \c ir_variable |
| * references and replaces the references with matching variables in the target |
| * shader. |
| * |
| * If there is no matching variable in the target shader, a clone of the |
| * \c ir_variable is made and added to the target shader. The new variable is |
| * added to \b both the instruction stream and the symbol table. |
| * |
| * \param inst IR tree that is to be processed. |
| * \param symbols Symbol table containing global scope symbols in the |
| * linked shader. |
| * \param instructions Instruction stream where new variable declarations |
| * should be added. |
| */ |
| void |
| remap_variables(ir_instruction *inst, struct gl_shader *target, |
| hash_table *temps) |
| { |
| class remap_visitor : public ir_hierarchical_visitor { |
| public: |
| remap_visitor(struct gl_shader *target, |
| hash_table *temps) |
| { |
| this->target = target; |
| this->symbols = target->symbols; |
| this->instructions = target->ir; |
| this->temps = temps; |
| } |
| |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| if (ir->var->data.mode == ir_var_temporary) { |
| ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var); |
| |
| assert(var != NULL); |
| ir->var = var; |
| return visit_continue; |
| } |
| |
| ir_variable *const existing = |
| this->symbols->get_variable(ir->var->name); |
| if (existing != NULL) |
| ir->var = existing; |
| else { |
| ir_variable *copy = ir->var->clone(this->target, NULL); |
| |
| this->symbols->add_variable(copy); |
| this->instructions->push_head(copy); |
| ir->var = copy; |
| } |
| |
| return visit_continue; |
| } |
| |
| private: |
| struct gl_shader *target; |
| glsl_symbol_table *symbols; |
| exec_list *instructions; |
| hash_table *temps; |
| }; |
| |
| remap_visitor v(target, temps); |
| |
| inst->accept(&v); |
| } |
| |
| |
| /** |
| * Move non-declarations from one instruction stream to another |
| * |
| * The intended usage pattern of this function is to pass the pointer to the |
| * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node |
| * pointer) for \c last and \c false for \c make_copies on the first |
| * call. Successive calls pass the return value of the previous call for |
| * \c last and \c true for \c make_copies. |
| * |
| * \param instructions Source instruction stream |
| * \param last Instruction after which new instructions should be |
| * inserted in the target instruction stream |
| * \param make_copies Flag selecting whether instructions in \c instructions |
| * should be copied (via \c ir_instruction::clone) into the |
| * target list or moved. |
| * |
| * \return |
| * The new "last" instruction in the target instruction stream. This pointer |
| * is suitable for use as the \c last parameter of a later call to this |
| * function. |
| */ |
| exec_node * |
| move_non_declarations(exec_list *instructions, exec_node *last, |
| bool make_copies, gl_shader *target) |
| { |
| hash_table *temps = NULL; |
| |
| if (make_copies) |
| temps = hash_table_ctor(0, hash_table_pointer_hash, |
| hash_table_pointer_compare); |
| |
| foreach_in_list_safe(ir_instruction, inst, instructions) { |
| if (inst->as_function()) |
| continue; |
| |
| ir_variable *var = inst->as_variable(); |
| if ((var != NULL) && (var->data.mode != ir_var_temporary)) |
| continue; |
| |
| assert(inst->as_assignment() |
| || inst->as_call() |
| || inst->as_if() /* for initializers with the ?: operator */ |
| || ((var != NULL) && (var->data.mode == ir_var_temporary))); |
| |
| if (make_copies) { |
| inst = inst->clone(target, NULL); |
| |
| if (var != NULL) |
| hash_table_insert(temps, inst, var); |
| else |
| remap_variables(inst, target, temps); |
| } else { |
| inst->remove(); |
| } |
| |
| last->insert_after(inst); |
| last = inst; |
| } |
| |
| if (make_copies) |
| hash_table_dtor(temps); |
| |
| return last; |
| } |
| |
| /** |
| * Get the function signature for main from a shader |
| */ |
| ir_function_signature * |
| link_get_main_function_signature(gl_shader *sh) |
| { |
| ir_function *const f = sh->symbols->get_function("main"); |
| if (f != NULL) { |
| exec_list void_parameters; |
| |
| /* Look for the 'void main()' signature and ensure that it's defined. |
| * This keeps the linker from accidentally pick a shader that just |
| * contains a prototype for main. |
| * |
| * We don't have to check for multiple definitions of main (in multiple |
| * shaders) because that would have already been caught above. |
| */ |
| ir_function_signature *sig = |
| f->matching_signature(NULL, &void_parameters, false); |
| if ((sig != NULL) && sig->is_defined) { |
| return sig; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| /** |
| * This class is only used in link_intrastage_shaders() below but declaring |
| * it inside that function leads to compiler warnings with some versions of |
| * gcc. |
| */ |
| class array_sizing_visitor : public ir_hierarchical_visitor { |
| public: |
| array_sizing_visitor() |
| : mem_ctx(ralloc_context(NULL)), |
| unnamed_interfaces(hash_table_ctor(0, hash_table_pointer_hash, |
| hash_table_pointer_compare)) |
| { |
| } |
| |
| ~array_sizing_visitor() |
| { |
| hash_table_dtor(this->unnamed_interfaces); |
| ralloc_free(this->mem_ctx); |
| } |
| |
| virtual ir_visitor_status visit(ir_variable *var) |
| { |
| fixup_type(&var->type, var->data.max_array_access); |
| if (var->type->is_interface()) { |
| if (interface_contains_unsized_arrays(var->type)) { |
| const glsl_type *new_type = |
| resize_interface_members(var->type, |
| var->get_max_ifc_array_access()); |
| var->type = new_type; |
| var->change_interface_type(new_type); |
| } |
| } else if (var->type->is_array() && |
| var->type->fields.array->is_interface()) { |
| if (interface_contains_unsized_arrays(var->type->fields.array)) { |
| const glsl_type *new_type = |
| resize_interface_members(var->type->fields.array, |
| var->get_max_ifc_array_access()); |
| var->change_interface_type(new_type); |
| var->type = |
| glsl_type::get_array_instance(new_type, var->type->length); |
| } |
| } else if (const glsl_type *ifc_type = var->get_interface_type()) { |
| /* Store a pointer to the variable in the unnamed_interfaces |
| * hashtable. |
| */ |
| ir_variable **interface_vars = (ir_variable **) |
| hash_table_find(this->unnamed_interfaces, ifc_type); |
| if (interface_vars == NULL) { |
| interface_vars = rzalloc_array(mem_ctx, ir_variable *, |
| ifc_type->length); |
| hash_table_insert(this->unnamed_interfaces, interface_vars, |
| ifc_type); |
| } |
| unsigned index = ifc_type->field_index(var->name); |
| assert(index < ifc_type->length); |
| assert(interface_vars[index] == NULL); |
| interface_vars[index] = var; |
| } |
| return visit_continue; |
| } |
| |
| /** |
| * For each unnamed interface block that was discovered while running the |
| * visitor, adjust the interface type to reflect the newly assigned array |
| * sizes, and fix up the ir_variable nodes to point to the new interface |
| * type. |
| */ |
| void fixup_unnamed_interface_types() |
| { |
| hash_table_call_foreach(this->unnamed_interfaces, |
| fixup_unnamed_interface_type, NULL); |
| } |
| |
| private: |
| /** |
| * If the type pointed to by \c type represents an unsized array, replace |
| * it with a sized array whose size is determined by max_array_access. |
| */ |
| static void fixup_type(const glsl_type **type, unsigned max_array_access) |
| { |
| if ((*type)->is_unsized_array()) { |
| *type = glsl_type::get_array_instance((*type)->fields.array, |
| max_array_access + 1); |
| assert(*type != NULL); |
| } |
| } |
| |
| /** |
| * Determine whether the given interface type contains unsized arrays (if |
| * it doesn't, array_sizing_visitor doesn't need to process it). |
| */ |
| static bool interface_contains_unsized_arrays(const glsl_type *type) |
| { |
| for (unsigned i = 0; i < type->length; i++) { |
| const glsl_type *elem_type = type->fields.structure[i].type; |
| if (elem_type->is_unsized_array()) |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * Create a new interface type based on the given type, with unsized arrays |
| * replaced by sized arrays whose size is determined by |
| * max_ifc_array_access. |
| */ |
| static const glsl_type * |
| resize_interface_members(const glsl_type *type, |
| const unsigned *max_ifc_array_access) |
| { |
| unsigned num_fields = type->length; |
| glsl_struct_field *fields = new glsl_struct_field[num_fields]; |
| memcpy(fields, type->fields.structure, |
| num_fields * sizeof(*fields)); |
| for (unsigned i = 0; i < num_fields; i++) { |
| fixup_type(&fields[i].type, max_ifc_array_access[i]); |
| } |
| glsl_interface_packing packing = |
| (glsl_interface_packing) type->interface_packing; |
| const glsl_type *new_ifc_type = |
| glsl_type::get_interface_instance(fields, num_fields, |
| packing, type->name); |
| delete [] fields; |
| return new_ifc_type; |
| } |
| |
| static void fixup_unnamed_interface_type(const void *key, void *data, |
| void *) |
| { |
| const glsl_type *ifc_type = (const glsl_type *) key; |
| ir_variable **interface_vars = (ir_variable **) data; |
| unsigned num_fields = ifc_type->length; |
| glsl_struct_field *fields = new glsl_struct_field[num_fields]; |
| memcpy(fields, ifc_type->fields.structure, |
| num_fields * sizeof(*fields)); |
| bool interface_type_changed = false; |
| for (unsigned i = 0; i < num_fields; i++) { |
| if (interface_vars[i] != NULL && |
| fields[i].type != interface_vars[i]->type) { |
| fields[i].type = interface_vars[i]->type; |
| interface_type_changed = true; |
| } |
| } |
| if (!interface_type_changed) { |
| delete [] fields; |
| return; |
| } |
| glsl_interface_packing packing = |
| (glsl_interface_packing) ifc_type->interface_packing; |
| const glsl_type *new_ifc_type = |
| glsl_type::get_interface_instance(fields, num_fields, packing, |
| ifc_type->name); |
| delete [] fields; |
| for (unsigned i = 0; i < num_fields; i++) { |
| if (interface_vars[i] != NULL) |
| interface_vars[i]->change_interface_type(new_ifc_type); |
| } |
| } |
| |
| /** |
| * Memory context used to allocate the data in \c unnamed_interfaces. |
| */ |
| void *mem_ctx; |
| |
| /** |
| * Hash table from const glsl_type * to an array of ir_variable *'s |
| * pointing to the ir_variables constituting each unnamed interface block. |
| */ |
| hash_table *unnamed_interfaces; |
| }; |
| |
| /** |
| * Performs the cross-validation of layout qualifiers specified in |
| * redeclaration of gl_FragCoord for the attached fragment shaders, |
| * and propagates them to the linked FS and linked shader program. |
| */ |
| static void |
| link_fs_input_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_shader *linked_shader, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| linked_shader->redeclares_gl_fragcoord = false; |
| linked_shader->uses_gl_fragcoord = false; |
| linked_shader->origin_upper_left = false; |
| linked_shader->pixel_center_integer = false; |
| |
| if (linked_shader->Stage != MESA_SHADER_FRAGMENT || |
| (prog->Version < 150 && !prog->ARB_fragment_coord_conventions_enable)) |
| return; |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| struct gl_shader *shader = shader_list[i]; |
| /* From the GLSL 1.50 spec, page 39: |
| * |
| * "If gl_FragCoord is redeclared in any fragment shader in a program, |
| * it must be redeclared in all the fragment shaders in that program |
| * that have a static use gl_FragCoord." |
| * |
| * Exclude the case when one of the 'linked_shader' or 'shader' redeclares |
| * gl_FragCoord with no layout qualifiers but the other one doesn't |
| * redeclare it. If we strictly follow GLSL 1.50 spec's language, it |
| * should be a link error. But, generating link error for this case will |
| * be a wrong behaviour which spec didn't intend to do and it could also |
| * break some applications. |
| */ |
| if ((linked_shader->redeclares_gl_fragcoord |
| && !shader->redeclares_gl_fragcoord |
| && shader->uses_gl_fragcoord |
| && (linked_shader->origin_upper_left |
| || linked_shader->pixel_center_integer)) |
| || (shader->redeclares_gl_fragcoord |
| && !linked_shader->redeclares_gl_fragcoord |
| && linked_shader->uses_gl_fragcoord |
| && (shader->origin_upper_left |
| || shader->pixel_center_integer))) { |
| linker_error(prog, "fragment shader defined with conflicting " |
| "layout qualifiers for gl_FragCoord\n"); |
| } |
| |
| /* From the GLSL 1.50 spec, page 39: |
| * |
| * "All redeclarations of gl_FragCoord in all fragment shaders in a |
| * single program must have the same set of qualifiers." |
| */ |
| if (linked_shader->redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord |
| && (shader->origin_upper_left != linked_shader->origin_upper_left |
| || shader->pixel_center_integer != linked_shader->pixel_center_integer)) { |
| linker_error(prog, "fragment shader defined with conflicting " |
| "layout qualifiers for gl_FragCoord\n"); |
| } |
| |
| /* Update the linked shader state. Note that uses_gl_fragcoord should |
| * accumulate the results. The other values should replace. If there |
| * are multiple redeclarations, all the fields except uses_gl_fragcoord |
| * are already known to be the same. |
| */ |
| if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) { |
| linked_shader->redeclares_gl_fragcoord = |
| shader->redeclares_gl_fragcoord; |
| linked_shader->uses_gl_fragcoord = linked_shader->uses_gl_fragcoord |
| || shader->uses_gl_fragcoord; |
| linked_shader->origin_upper_left = shader->origin_upper_left; |
| linked_shader->pixel_center_integer = shader->pixel_center_integer; |
| } |
| } |
| } |
| |
| /** |
| * Performs the cross-validation of geometry shader max_vertices and |
| * primitive type layout qualifiers for the attached geometry shaders, |
| * and propagates them to the linked GS and linked shader program. |
| */ |
| static void |
| link_gs_inout_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_shader *linked_shader, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| linked_shader->Geom.VerticesOut = 0; |
| linked_shader->Geom.Invocations = 0; |
| linked_shader->Geom.InputType = PRIM_UNKNOWN; |
| linked_shader->Geom.OutputType = PRIM_UNKNOWN; |
| |
| /* No in/out qualifiers defined for anything but GLSL 1.50+ |
| * geometry shaders so far. |
| */ |
| if (linked_shader->Stage != MESA_SHADER_GEOMETRY || prog->Version < 150) |
| return; |
| |
| /* From the GLSL 1.50 spec, page 46: |
| * |
| * "All geometry shader output layout declarations in a program |
| * must declare the same layout and same value for |
| * max_vertices. There must be at least one geometry output |
| * layout declaration somewhere in a program, but not all |
| * geometry shaders (compilation units) are required to |
| * declare it." |
| */ |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| struct gl_shader *shader = shader_list[i]; |
| |
| if (shader->Geom.InputType != PRIM_UNKNOWN) { |
| if (linked_shader->Geom.InputType != PRIM_UNKNOWN && |
| linked_shader->Geom.InputType != shader->Geom.InputType) { |
| linker_error(prog, "geometry shader defined with conflicting " |
| "input types\n"); |
| return; |
| } |
| linked_shader->Geom.InputType = shader->Geom.InputType; |
| } |
| |
| if (shader->Geom.OutputType != PRIM_UNKNOWN) { |
| if (linked_shader->Geom.OutputType != PRIM_UNKNOWN && |
| linked_shader->Geom.OutputType != shader->Geom.OutputType) { |
| linker_error(prog, "geometry shader defined with conflicting " |
| "output types\n"); |
| return; |
| } |
| linked_shader->Geom.OutputType = shader->Geom.OutputType; |
| } |
| |
| if (shader->Geom.VerticesOut != 0) { |
| if (linked_shader->Geom.VerticesOut != 0 && |
| linked_shader->Geom.VerticesOut != shader->Geom.VerticesOut) { |
| linker_error(prog, "geometry shader defined with conflicting " |
| "output vertex count (%d and %d)\n", |
| linked_shader->Geom.VerticesOut, |
| shader->Geom.VerticesOut); |
| return; |
| } |
| linked_shader->Geom.VerticesOut = shader->Geom.VerticesOut; |
| } |
| |
| if (shader->Geom.Invocations != 0) { |
| if (linked_shader->Geom.Invocations != 0 && |
| linked_shader->Geom.Invocations != shader->Geom.Invocations) { |
| linker_error(prog, "geometry shader defined with conflicting " |
| "invocation count (%d and %d)\n", |
| linked_shader->Geom.Invocations, |
| shader->Geom.Invocations); |
| return; |
| } |
| linked_shader->Geom.Invocations = shader->Geom.Invocations; |
| } |
| } |
| |
| /* Just do the intrastage -> interstage propagation right now, |
| * since we already know we're in the right type of shader program |
| * for doing it. |
| */ |
| if (linked_shader->Geom.InputType == PRIM_UNKNOWN) { |
| linker_error(prog, |
| "geometry shader didn't declare primitive input type\n"); |
| return; |
| } |
| prog->Geom.InputType = linked_shader->Geom.InputType; |
| |
| if (linked_shader->Geom.OutputType == PRIM_UNKNOWN) { |
| linker_error(prog, |
| "geometry shader didn't declare primitive output type\n"); |
| return; |
| } |
| prog->Geom.OutputType = linked_shader->Geom.OutputType; |
| |
| if (linked_shader->Geom.VerticesOut == 0) { |
| linker_error(prog, |
| "geometry shader didn't declare max_vertices\n"); |
| return; |
| } |
| prog->Geom.VerticesOut = linked_shader->Geom.VerticesOut; |
| |
| if (linked_shader->Geom.Invocations == 0) |
| linked_shader->Geom.Invocations = 1; |
| |
| prog->Geom.Invocations = linked_shader->Geom.Invocations; |
| } |
| |
| |
| /** |
| * Perform cross-validation of compute shader local_size_{x,y,z} layout |
| * qualifiers for the attached compute shaders, and propagate them to the |
| * linked CS and linked shader program. |
| */ |
| static void |
| link_cs_input_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_shader *linked_shader, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| for (int i = 0; i < 3; i++) |
| linked_shader->Comp.LocalSize[i] = 0; |
| |
| /* This function is called for all shader stages, but it only has an effect |
| * for compute shaders. |
| */ |
| if (linked_shader->Stage != MESA_SHADER_COMPUTE) |
| return; |
| |
| /* From the ARB_compute_shader spec, in the section describing local size |
| * declarations: |
| * |
| * If multiple compute shaders attached to a single program object |
| * declare local work-group size, the declarations must be identical; |
| * otherwise a link-time error results. Furthermore, if a program |
| * object contains any compute shaders, at least one must contain an |
| * input layout qualifier specifying the local work sizes of the |
| * program, or a link-time error will occur. |
| */ |
| for (unsigned sh = 0; sh < num_shaders; sh++) { |
| struct gl_shader *shader = shader_list[sh]; |
| |
| if (shader->Comp.LocalSize[0] != 0) { |
| if (linked_shader->Comp.LocalSize[0] != 0) { |
| for (int i = 0; i < 3; i++) { |
| if (linked_shader->Comp.LocalSize[i] != |
| shader->Comp.LocalSize[i]) { |
| linker_error(prog, "compute shader defined with conflicting " |
| "local sizes\n"); |
| return; |
| } |
| } |
| } |
| for (int i = 0; i < 3; i++) |
| linked_shader->Comp.LocalSize[i] = shader->Comp.LocalSize[i]; |
| } |
| } |
| |
| /* Just do the intrastage -> interstage propagation right now, |
| * since we already know we're in the right type of shader program |
| * for doing it. |
| */ |
| if (linked_shader->Comp.LocalSize[0] == 0) { |
| linker_error(prog, "compute shader didn't declare local size\n"); |
| return; |
| } |
| for (int i = 0; i < 3; i++) |
| prog->Comp.LocalSize[i] = linked_shader->Comp.LocalSize[i]; |
| } |
| |
| |
| /** |
| * Combine a group of shaders for a single stage to generate a linked shader |
| * |
| * \note |
| * If this function is supplied a single shader, it is cloned, and the new |
| * shader is returned. |
| */ |
| static struct gl_shader * |
| link_intrastage_shaders(void *mem_ctx, |
| struct gl_context *ctx, |
| struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| struct gl_uniform_block *uniform_blocks = NULL; |
| |
| /* Check that global variables defined in multiple shaders are consistent. |
| */ |
| cross_validate_globals(prog, shader_list, num_shaders, false); |
| if (!prog->LinkStatus) |
| return NULL; |
| |
| /* Check that interface blocks defined in multiple shaders are consistent. |
| */ |
| validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list, |
| num_shaders); |
| if (!prog->LinkStatus) |
| return NULL; |
| |
| /* Link up uniform blocks defined within this stage. */ |
| const unsigned num_uniform_blocks = |
| link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders, |
| &uniform_blocks); |
| if (!prog->LinkStatus) |
| return NULL; |
| |
| /* Check that there is only a single definition of each function signature |
| * across all shaders. |
| */ |
| for (unsigned i = 0; i < (num_shaders - 1); i++) { |
| foreach_in_list(ir_instruction, node, shader_list[i]->ir) { |
| ir_function *const f = node->as_function(); |
| |
| if (f == NULL) |
| continue; |
| |
| for (unsigned j = i + 1; j < num_shaders; j++) { |
| ir_function *const other = |
| shader_list[j]->symbols->get_function(f->name); |
| |
| /* If the other shader has no function (and therefore no function |
| * signatures) with the same name, skip to the next shader. |
| */ |
| if (other == NULL) |
| continue; |
| |
| foreach_in_list(ir_function_signature, sig, &f->signatures) { |
| if (!sig->is_defined || sig->is_builtin()) |
| continue; |
| |
| ir_function_signature *other_sig = |
| other->exact_matching_signature(NULL, &sig->parameters); |
| |
| if ((other_sig != NULL) && other_sig->is_defined |
| && !other_sig->is_builtin()) { |
| linker_error(prog, "function `%s' is multiply defined", |
| f->name); |
| return NULL; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Find the shader that defines main, and make a clone of it. |
| * |
| * Starting with the clone, search for undefined references. If one is |
| * found, find the shader that defines it. Clone the reference and add |
| * it to the shader. Repeat until there are no undefined references or |
| * until a reference cannot be resolved. |
| */ |
| gl_shader *main = NULL; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (link_get_main_function_signature(shader_list[i]) != NULL) { |
| main = shader_list[i]; |
| break; |
| } |
| } |
| |
| if (main == NULL) { |
| linker_error(prog, "%s shader lacks `main'\n", |
| _mesa_shader_stage_to_string(shader_list[0]->Stage)); |
| return NULL; |
| } |
| |
| gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type); |
| linked->ir = new(linked) exec_list; |
| clone_ir_list(mem_ctx, linked->ir, main->ir); |
| |
| linked->UniformBlocks = uniform_blocks; |
| linked->NumUniformBlocks = num_uniform_blocks; |
| ralloc_steal(linked, linked->UniformBlocks); |
| |
| link_fs_input_layout_qualifiers(prog, linked, shader_list, num_shaders); |
| link_gs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders); |
| link_cs_input_layout_qualifiers(prog, linked, shader_list, num_shaders); |
| |
| populate_symbol_table(linked); |
| |
| /* The pointer to the main function in the final linked shader (i.e., the |
| * copy of the original shader that contained the main function). |
| */ |
| ir_function_signature *const main_sig = |
| link_get_main_function_signature(linked); |
| |
| /* Move any instructions other than variable declarations or function |
| * declarations into main. |
| */ |
| exec_node *insertion_point = |
| move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, |
| linked); |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i] == main) |
| continue; |
| |
| insertion_point = move_non_declarations(shader_list[i]->ir, |
| insertion_point, true, linked); |
| } |
| |
| /* Check if any shader needs built-in functions. */ |
| bool need_builtins = false; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i]->uses_builtin_functions) { |
| need_builtins = true; |
| break; |
| } |
| } |
| |
| bool ok; |
| if (need_builtins) { |
| /* Make a temporary array one larger than shader_list, which will hold |
| * the built-in function shader as well. |
| */ |
| gl_shader **linking_shaders = (gl_shader **) |
| calloc(num_shaders + 1, sizeof(gl_shader *)); |
| |
| ok = linking_shaders != NULL; |
| |
| if (ok) { |
| memcpy(linking_shaders, shader_list, num_shaders * sizeof(gl_shader *)); |
| linking_shaders[num_shaders] = _mesa_glsl_get_builtin_function_shader(); |
| |
| ok = link_function_calls(prog, linked, linking_shaders, num_shaders + 1); |
| |
| free(linking_shaders); |
| } else { |
| _mesa_error_no_memory(__func__); |
| } |
| } else { |
| ok = link_function_calls(prog, linked, shader_list, num_shaders); |
| } |
| |
| |
| if (!ok) { |
| ctx->Driver.DeleteShader(ctx, linked); |
| return NULL; |
| } |
| |
| /* At this point linked should contain all of the linked IR, so |
| * validate it to make sure nothing went wrong. |
| */ |
| validate_ir_tree(linked->ir); |
| |
| /* Set the size of geometry shader input arrays */ |
| if (linked->Stage == MESA_SHADER_GEOMETRY) { |
| unsigned num_vertices = vertices_per_prim(prog->Geom.InputType); |
| geom_array_resize_visitor input_resize_visitor(num_vertices, prog); |
| foreach_in_list(ir_instruction, ir, linked->ir) { |
| ir->accept(&input_resize_visitor); |
| } |
| } |
| |
| if (ctx->Const.VertexID_is_zero_based) |
| lower_vertex_id(linked); |
| |
| /* Make a pass over all variable declarations to ensure that arrays with |
| * unspecified sizes have a size specified. The size is inferred from the |
| * max_array_access field. |
| */ |
| array_sizing_visitor v; |
| v.run(linked->ir); |
| v.fixup_unnamed_interface_types(); |
| |
| return linked; |
| } |
| |
| /** |
| * Update the sizes of linked shader uniform arrays to the maximum |
| * array index used. |
| * |
| * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec: |
| * |
| * If one or more elements of an array are active, |
| * GetActiveUniform will return the name of the array in name, |
| * subject to the restrictions listed above. The type of the array |
| * is returned in type. The size parameter contains the highest |
| * array element index used, plus one. The compiler or linker |
| * determines the highest index used. There will be only one |
| * active uniform reported by the GL per uniform array. |
| |
| */ |
| static void |
| update_array_sizes(struct gl_shader_program *prog) |
| { |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if ((var == NULL) || (var->data.mode != ir_var_uniform) || |
| !var->type->is_array()) |
| continue; |
| |
| /* GL_ARB_uniform_buffer_object says that std140 uniforms |
| * will not be eliminated. Since we always do std140, just |
| * don't resize arrays in UBOs. |
| * |
| * Atomic counters are supposed to get deterministic |
| * locations assigned based on the declaration ordering and |
| * sizes, array compaction would mess that up. |
| */ |
| if (var->is_in_uniform_block() || var->type->contains_atomic()) |
| continue; |
| |
| unsigned int size = var->data.max_array_access; |
| for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) { |
| if (prog->_LinkedShaders[j] == NULL) |
| continue; |
| |
| foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) { |
| ir_variable *other_var = node2->as_variable(); |
| if (!other_var) |
| continue; |
| |
| if (strcmp(var->name, other_var->name) == 0 && |
| other_var->data.max_array_access > size) { |
| size = other_var->data.max_array_access; |
| } |
| } |
| } |
| |
| if (size + 1 != var->type->length) { |
| /* If this is a built-in uniform (i.e., it's backed by some |
| * fixed-function state), adjust the number of state slots to |
| * match the new array size. The number of slots per array entry |
| * is not known. It seems safe to assume that the total number of |
| * slots is an integer multiple of the number of array elements. |
| * Determine the number of slots per array element by dividing by |
| * the old (total) size. |
| */ |
| const unsigned num_slots = var->get_num_state_slots(); |
| if (num_slots > 0) { |
| var->set_num_state_slots((size + 1) |
| * (num_slots / var->type->length)); |
| } |
| |
| var->type = glsl_type::get_array_instance(var->type->fields.array, |
| size + 1); |
| /* FINISHME: We should update the types of array |
| * dereferences of this variable now. |
| */ |
| } |
| } |
| } |
| } |
| |
| /** |
| * Find a contiguous set of available bits in a bitmask. |
| * |
| * \param used_mask Bits representing used (1) and unused (0) locations |
| * \param needed_count Number of contiguous bits needed. |
| * |
| * \return |
| * Base location of the available bits on success or -1 on failure. |
| */ |
| int |
| find_available_slots(unsigned used_mask, unsigned needed_count) |
| { |
| unsigned needed_mask = (1 << needed_count) - 1; |
| const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; |
| |
| /* The comparison to 32 is redundant, but without it GCC emits "warning: |
| * cannot optimize possibly infinite loops" for the loop below. |
| */ |
| if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) |
| return -1; |
| |
| for (int i = 0; i <= max_bit_to_test; i++) { |
| if ((needed_mask & ~used_mask) == needed_mask) |
| return i; |
| |
| needed_mask <<= 1; |
| } |
| |
| return -1; |
| } |
| |
| |
| /** |
| * Assign locations for either VS inputs or FS outputs |
| * |
| * \param prog Shader program whose variables need locations assigned |
| * \param target_index Selector for the program target to receive location |
| * assignmnets. Must be either \c MESA_SHADER_VERTEX or |
| * \c MESA_SHADER_FRAGMENT. |
| * \param max_index Maximum number of generic locations. This corresponds |
| * to either the maximum number of draw buffers or the |
| * maximum number of generic attributes. |
| * |
| * \return |
| * If locations are successfully assigned, true is returned. Otherwise an |
| * error is emitted to the shader link log and false is returned. |
| */ |
| bool |
| assign_attribute_or_color_locations(gl_shader_program *prog, |
| unsigned target_index, |
| unsigned max_index) |
| { |
| /* Mark invalid locations as being used. |
| */ |
| unsigned used_locations = (max_index >= 32) |
| ? ~0 : ~((1 << max_index) - 1); |
| |
| assert((target_index == MESA_SHADER_VERTEX) |
| || (target_index == MESA_SHADER_FRAGMENT)); |
| |
| gl_shader *const sh = prog->_LinkedShaders[target_index]; |
| if (sh == NULL) |
| return true; |
| |
| /* Operate in a total of four passes. |
| * |
| * 1. Invalidate the location assignments for all vertex shader inputs. |
| * |
| * 2. Assign locations for inputs that have user-defined (via |
| * glBindVertexAttribLocation) locations and outputs that have |
| * user-defined locations (via glBindFragDataLocation). |
| * |
| * 3. Sort the attributes without assigned locations by number of slots |
| * required in decreasing order. Fragmentation caused by attribute |
| * locations assigned by the application may prevent large attributes |
| * from having enough contiguous space. |
| * |
| * 4. Assign locations to any inputs without assigned locations. |
| */ |
| |
| const int generic_base = (target_index == MESA_SHADER_VERTEX) |
| ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0; |
| |
| const enum ir_variable_mode direction = |
| (target_index == MESA_SHADER_VERTEX) |
| ? ir_var_shader_in : ir_var_shader_out; |
| |
| |
| /* Temporary storage for the set of attributes that need locations assigned. |
| */ |
| struct temp_attr { |
| unsigned slots; |
| ir_variable *var; |
| |
| /* Used below in the call to qsort. */ |
| static int compare(const void *a, const void *b) |
| { |
| const temp_attr *const l = (const temp_attr *) a; |
| const temp_attr *const r = (const temp_attr *) b; |
| |
| /* Reversed because we want a descending order sort below. */ |
| return r->slots - l->slots; |
| } |
| } to_assign[16]; |
| |
| unsigned num_attr = 0; |
| |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if ((var == NULL) || (var->data.mode != (unsigned) direction)) |
| continue; |
| |
| if (var->data.explicit_location) { |
| if ((var->data.location >= (int)(max_index + generic_base)) |
| || (var->data.location < 0)) { |
| linker_error(prog, |
| "invalid explicit location %d specified for `%s'\n", |
| (var->data.location < 0) |
| ? var->data.location |
| : var->data.location - generic_base, |
| var->name); |
| return false; |
| } |
| } else if (target_index == MESA_SHADER_VERTEX) { |
| unsigned binding; |
| |
| if (prog->AttributeBindings->get(binding, var->name)) { |
| assert(binding >= VERT_ATTRIB_GENERIC0); |
| var->data.location = binding; |
| var->data.is_unmatched_generic_inout = 0; |
| } |
| } else if (target_index == MESA_SHADER_FRAGMENT) { |
| unsigned binding; |
| unsigned index; |
| |
| if (prog->FragDataBindings->get(binding, var->name)) { |
| assert(binding >= FRAG_RESULT_DATA0); |
| var->data.location = binding; |
| var->data.is_unmatched_generic_inout = 0; |
| |
| if (prog->FragDataIndexBindings->get(index, var->name)) { |
| var->data.index = index; |
| } |
| } |
| } |
| |
| /* If the variable is not a built-in and has a location statically |
| * assigned in the shader (presumably via a layout qualifier), make sure |
| * that it doesn't collide with other assigned locations. Otherwise, |
| * add it to the list of variables that need linker-assigned locations. |
| */ |
| const unsigned slots = var->type->count_attribute_slots(); |
| if (var->data.location != -1) { |
| if (var->data.location >= generic_base && var->data.index < 1) { |
| /* From page 61 of the OpenGL 4.0 spec: |
| * |
| * "LinkProgram will fail if the attribute bindings assigned |
| * by BindAttribLocation do not leave not enough space to |
| * assign a location for an active matrix attribute or an |
| * active attribute array, both of which require multiple |
| * contiguous generic attributes." |
| * |
| * I think above text prohibits the aliasing of explicit and |
| * automatic assignments. But, aliasing is allowed in manual |
| * assignments of attribute locations. See below comments for |
| * the details. |
| * |
| * From OpenGL 4.0 spec, page 61: |
| * |
| * "It is possible for an application to bind more than one |
| * attribute name to the same location. This is referred to as |
| * aliasing. This will only work if only one of the aliased |
| * attributes is active in the executable program, or if no |
| * path through the shader consumes more than one attribute of |
| * a set of attributes aliased to the same location. A link |
| * error can occur if the linker determines that every path |
| * through the shader consumes multiple aliased attributes, |
| * but implementations are not required to generate an error |
| * in this case." |
| * |
| * From GLSL 4.30 spec, page 54: |
| * |
| * "A program will fail to link if any two non-vertex shader |
| * input variables are assigned to the same location. For |
| * vertex shaders, multiple input variables may be assigned |
| * to the same location using either layout qualifiers or via |
| * the OpenGL API. However, such aliasing is intended only to |
| * support vertex shaders where each execution path accesses |
| * at most one input per each location. Implementations are |
| * permitted, but not required, to generate link-time errors |
| * if they detect that every path through the vertex shader |
| * executable accesses multiple inputs assigned to any single |
| * location. For all shader types, a program will fail to link |
| * if explicit location assignments leave the linker unable |
| * to find space for other variables without explicit |
| * assignments." |
| * |
| * From OpenGL ES 3.0 spec, page 56: |
| * |
| * "Binding more than one attribute name to the same location |
| * is referred to as aliasing, and is not permitted in OpenGL |
| * ES Shading Language 3.00 vertex shaders. LinkProgram will |
| * fail when this condition exists. However, aliasing is |
| * possible in OpenGL ES Shading Language 1.00 vertex shaders. |
| * This will only work if only one of the aliased attributes |
| * is active in the executable program, or if no path through |
| * the shader consumes more than one attribute of a set of |
| * attributes aliased to the same location. A link error can |
| * occur if the linker determines that every path through the |
| * shader consumes multiple aliased attributes, but implemen- |
| * tations are not required to generate an error in this case." |
| * |
| * After looking at above references from OpenGL, OpenGL ES and |
| * GLSL specifications, we allow aliasing of vertex input variables |
| * in: OpenGL 2.0 (and above) and OpenGL ES 2.0. |
| * |
| * NOTE: This is not required by the spec but its worth mentioning |
| * here that we're not doing anything to make sure that no path |
| * through the vertex shader executable accesses multiple inputs |
| * assigned to any single location. |
| */ |
| |
| /* Mask representing the contiguous slots that will be used by |
| * this attribute. |
| */ |
| const unsigned attr = var->data.location - generic_base; |
| const unsigned use_mask = (1 << slots) - 1; |
| const char *const string = (target_index == MESA_SHADER_VERTEX) |
| ? "vertex shader input" : "fragment shader output"; |
| |
| /* Generate a link error if the requested locations for this |
| * attribute exceed the maximum allowed attribute location. |
| */ |
| if (attr + slots > max_index) { |
| linker_error(prog, |
| "insufficient contiguous locations " |
| "available for %s `%s' %d %d %d", string, |
| var->name, used_locations, use_mask, attr); |
| return false; |
| } |
| |
| /* Generate a link error if the set of bits requested for this |
| * attribute overlaps any previously allocated bits. |
| */ |
| if ((~(use_mask << attr) & used_locations) != used_locations) { |
| if (target_index == MESA_SHADER_FRAGMENT || |
| (prog->IsES && prog->Version >= 300)) { |
| linker_error(prog, |
| "overlapping location is assigned " |
| "to %s `%s' %d %d %d\n", string, |
| var->name, used_locations, use_mask, attr); |
| return false; |
| } else { |
| linker_warning(prog, |
| "overlapping location is assigned " |
| "to %s `%s' %d %d %d\n", string, |
| var->name, used_locations, use_mask, attr); |
| } |
| } |
| |
| used_locations |= (use_mask << attr); |
| } |
| |
| continue; |
| } |
| |
| to_assign[num_attr].slots = slots; |
| to_assign[num_attr].var = var; |
| num_attr++; |
| } |
| |
| /* If all of the attributes were assigned locations by the application (or |
| * are built-in attributes with fixed locations), return early. This should |
| * be the common case. |
| */ |
| if (num_attr == 0) |
| return true; |
| |
| qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); |
| |
| if (target_index == MESA_SHADER_VERTEX) { |
| /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can |
| * only be explicitly assigned by via glBindAttribLocation. Mark it as |
| * reserved to prevent it from being automatically allocated below. |
| */ |
| find_deref_visitor find("gl_Vertex"); |
| find.run(sh->ir); |
| if (find.variable_found()) |
| used_locations |= (1 << 0); |
| } |
| |
| for (unsigned i = 0; i < num_attr; i++) { |
| /* Mask representing the contiguous slots that will be used by this |
| * attribute. |
| */ |
| const unsigned use_mask = (1 << to_assign[i].slots) - 1; |
| |
| int location = find_available_slots(used_locations, to_assign[i].slots); |
| |
| if (location < 0) { |
| const char *const string = (target_index == MESA_SHADER_VERTEX) |
| ? "vertex shader input" : "fragment shader output"; |
| |
| linker_error(prog, |
| "insufficient contiguous locations " |
| "available for %s `%s'", |
| string, to_assign[i].var->name); |
| return false; |
| } |
| |
| to_assign[i].var->data.location = generic_base + location; |
| to_assign[i].var->data.is_unmatched_generic_inout = 0; |
| used_locations |= (use_mask << location); |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Demote shader inputs and outputs that are not used in other stages |
| */ |
| void |
| demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode) |
| { |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if ((var == NULL) || (var->data.mode != int(mode))) |
| continue; |
| |
| /* A shader 'in' or 'out' variable is only really an input or output if |
| * its value is used by other shader stages. This will cause the variable |
| * to have a location assigned. |
| */ |
| if (var->data.is_unmatched_generic_inout) { |
| assert(var->data.mode != ir_var_temporary); |
| var->data.mode = ir_var_auto; |
| } |
| } |
| } |
| |
| |
| /** |
| * Store the gl_FragDepth layout in the gl_shader_program struct. |
| */ |
| static void |
| store_fragdepth_layout(struct gl_shader_program *prog) |
| { |
| if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { |
| return; |
| } |
| |
| struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir; |
| |
| /* We don't look up the gl_FragDepth symbol directly because if |
| * gl_FragDepth is not used in the shader, it's removed from the IR. |
| * However, the symbol won't be removed from the symbol table. |
| * |
| * We're only interested in the cases where the variable is NOT removed |
| * from the IR. |
| */ |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL || var->data.mode != ir_var_shader_out) { |
| continue; |
| } |
| |
| if (strcmp(var->name, "gl_FragDepth") == 0) { |
| switch (var->data.depth_layout) { |
| case ir_depth_layout_none: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; |
| return; |
| case ir_depth_layout_any: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; |
| return; |
| case ir_depth_layout_greater: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; |
| return; |
| case ir_depth_layout_less: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; |
| return; |
| case ir_depth_layout_unchanged: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; |
| return; |
| default: |
| assert(0); |
| return; |
| } |
| } |
| } |
| } |
| |
| /** |
| * Validate the resources used by a program versus the implementation limits |
| */ |
| static void |
| check_resources(struct gl_context *ctx, struct gl_shader_program *prog) |
| { |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| struct gl_shader *sh = prog->_LinkedShaders[i]; |
| |
| if (sh == NULL) |
| continue; |
| |
| if (sh->num_samplers > ctx->Const.Program[i].MaxTextureImageUnits) { |
| linker_error(prog, "Too many %s shader texture samplers", |
| _mesa_shader_stage_to_string(i)); |
| } |
| |
| if (sh->num_uniform_components > |
| ctx->Const.Program[i].MaxUniformComponents) { |
| if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { |
| linker_warning(prog, "Too many %s shader default uniform block " |
| "components, but the driver will try to optimize " |
| "them out; this is non-portable out-of-spec " |
| "behavior\n", |
| _mesa_shader_stage_to_string(i)); |
| } else { |
| linker_error(prog, "Too many %s shader default uniform block " |
| "components", |
| _mesa_shader_stage_to_string(i)); |
| } |
| } |
| |
| if (sh->num_combined_uniform_components > |
| ctx->Const.Program[i].MaxCombinedUniformComponents) { |
| if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { |
| linker_warning(prog, "Too many %s shader uniform components, " |
| "but the driver will try to optimize them out; " |
| "this is non-portable out-of-spec behavior\n", |
| _mesa_shader_stage_to_string(i)); |
| } else { |
| linker_error(prog, "Too many %s shader uniform components", |
| _mesa_shader_stage_to_string(i)); |
| } |
| } |
| } |
| |
| unsigned blocks[MESA_SHADER_STAGES] = {0}; |
| unsigned total_uniform_blocks = 0; |
| |
| for (unsigned i = 0; i < prog->NumUniformBlocks; i++) { |
| for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) { |
| if (prog->UniformBlockStageIndex[j][i] != -1) { |
| blocks[j]++; |
| total_uniform_blocks++; |
| } |
| } |
| |
| if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) { |
| linker_error(prog, "Too many combined uniform blocks (%d/%d)", |
| prog->NumUniformBlocks, |
| ctx->Const.MaxCombinedUniformBlocks); |
| } else { |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| const unsigned max_uniform_blocks = |
| ctx->Const.Program[i].MaxUniformBlocks; |
| if (blocks[i] > max_uniform_blocks) { |
| linker_error(prog, "Too many %s uniform blocks (%d/%d)", |
| _mesa_shader_stage_to_string(i), |
| blocks[i], |
| max_uniform_blocks); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * Validate shader image resources. |
| */ |
| static void |
| check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog) |
| { |
| unsigned total_image_units = 0; |
| unsigned fragment_outputs = 0; |
| |
| if (!ctx->Extensions.ARB_shader_image_load_store) |
| return; |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| struct gl_shader *sh = prog->_LinkedShaders[i]; |
| |
| if (sh) { |
| if (sh->NumImages > ctx->Const.Program[i].MaxImageUniforms) |
| linker_error(prog, "Too many %s shader image uniforms", |
| _mesa_shader_stage_to_string(i)); |
| |
| total_image_units += sh->NumImages; |
| |
| if (i == MESA_SHADER_FRAGMENT) { |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *var = node->as_variable(); |
| if (var && var->data.mode == ir_var_shader_out) |
| fragment_outputs += var->type->count_attribute_slots(); |
| } |
| } |
| } |
| } |
| |
| if (total_image_units > ctx->Const.MaxCombinedImageUniforms) |
| linker_error(prog, "Too many combined image uniforms"); |
| |
| if (total_image_units + fragment_outputs > |
| ctx->Const.MaxCombinedImageUnitsAndFragmentOutputs) |
| linker_error(prog, "Too many combined image uniforms and fragment outputs"); |
| } |
| |
| |
| /** |
| * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION |
| * for a variable, checks for overlaps between other uniforms using explicit |
| * locations. |
| */ |
| static bool |
| reserve_explicit_locations(struct gl_shader_program *prog, |
| string_to_uint_map *map, ir_variable *var) |
| { |
| unsigned slots = var->type->uniform_locations(); |
| unsigned max_loc = var->data.location + slots - 1; |
| |
| /* Resize remap table if locations do not fit in the current one. */ |
| if (max_loc + 1 > prog->NumUniformRemapTable) { |
| prog->UniformRemapTable = |
| reralloc(prog, prog->UniformRemapTable, |
| gl_uniform_storage *, |
| max_loc + 1); |
| |
| if (!prog->UniformRemapTable) { |
| linker_error(prog, "Out of memory during linking."); |
| return false; |
| } |
| |
| /* Initialize allocated space. */ |
| for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++) |
| prog->UniformRemapTable[i] = NULL; |
| |
| prog->NumUniformRemapTable = max_loc + 1; |
| } |
| |
| for (unsigned i = 0; i < slots; i++) { |
| unsigned loc = var->data.location + i; |
| |
| /* Check if location is already used. */ |
| if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { |
| |
| /* Possibly same uniform from a different stage, this is ok. */ |
| unsigned hash_loc; |
| if (map->get(hash_loc, var->name) && hash_loc == loc - i) |
| continue; |
| |
| /* ARB_explicit_uniform_location specification states: |
| * |
| * "No two default-block uniform variables in the program can have |
| * the same location, even if they are unused, otherwise a compiler |
| * or linker error will be generated." |
| */ |
| linker_error(prog, |
| "location qualifier for uniform %s overlaps" |
| "previously used location", |
| var->name); |
| return false; |
| } |
| |
| /* Initialize location as inactive before optimization |
| * rounds and location assignment. |
| */ |
| prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; |
| } |
| |
| /* Note, base location used for arrays. */ |
| map->put(var->data.location, var->name); |
| |
| return true; |
| } |
| |
| /** |
| * Check and reserve all explicit uniform locations, called before |
| * any optimizations happen to handle also inactive uniforms and |
| * inactive array elements that may get trimmed away. |
| */ |
| static void |
| check_explicit_uniform_locations(struct gl_context *ctx, |
| struct gl_shader_program *prog) |
| { |
| if (!ctx->Extensions.ARB_explicit_uniform_location) |
| return; |
| |
| /* This map is used to detect if overlapping explicit locations |
| * occur with the same uniform (from different stage) or a different one. |
| */ |
| string_to_uint_map *uniform_map = new string_to_uint_map; |
| |
| if (!uniform_map) { |
| linker_error(prog, "Out of memory during linking."); |
| return; |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| struct gl_shader *sh = prog->_LinkedShaders[i]; |
| |
| if (!sh) |
| continue; |
| |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *var = node->as_variable(); |
| if ((var && var->data.mode == ir_var_uniform) && |
| var->data.explicit_location) { |
| if (!reserve_explicit_locations(prog, uniform_map, var)) { |
| delete uniform_map; |
| return; |
| } |
| } |
| } |
| } |
| |
| delete uniform_map; |
| } |
| |
| void |
| link_shaders(struct gl_context *ctx, struct gl_shader_program *prog) |
| { |
| tfeedback_decl *tfeedback_decls = NULL; |
| unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying; |
| |
| void *mem_ctx = ralloc_context(NULL); // temporary linker context |
| |
| prog->LinkStatus = true; /* All error paths will set this to false */ |
| prog->Validated = false; |
| prog->_Used = false; |
| |
| prog->ARB_fragment_coord_conventions_enable = false; |
| |
| /* Separate the shaders into groups based on their type. |
| */ |
| struct gl_shader **shader_list[MESA_SHADER_STAGES]; |
| unsigned num_shaders[MESA_SHADER_STAGES]; |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; i++) { |
| shader_list[i] = (struct gl_shader **) |
| calloc(prog->NumShaders, sizeof(struct gl_shader *)); |
| num_shaders[i] = 0; |
| } |
| |
| unsigned min_version = UINT_MAX; |
| unsigned max_version = 0; |
| const bool is_es_prog = |
| (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false; |
| for (unsigned i = 0; i < prog->NumShaders; i++) { |
| min_version = MIN2(min_version, prog->Shaders[i]->Version); |
| max_version = MAX2(max_version, prog->Shaders[i]->Version); |
| |
| if (prog->Shaders[i]->IsES != is_es_prog) { |
| linker_error(prog, "all shaders must use same shading " |
| "language version\n"); |
| goto done; |
| } |
| |
| prog->ARB_fragment_coord_conventions_enable |= |
| prog->Shaders[i]->ARB_fragment_coord_conventions_enable; |
| |
| gl_shader_stage shader_type = prog->Shaders[i]->Stage; |
| shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i]; |
| num_shaders[shader_type]++; |
| } |
| |
| /* In desktop GLSL, different shader versions may be linked together. In |
| * GLSL ES, all shader versions must be the same. |
| */ |
| if (is_es_prog && min_version != max_version) { |
| linker_error(prog, "all shaders must use same shading " |
| "language version\n"); |
| goto done; |
| } |
| |
| prog->Version = max_version; |
| prog->IsES = is_es_prog; |
| |
| /* Geometry shaders have to be linked with vertex shaders. |
| */ |
| if (num_shaders[MESA_SHADER_GEOMETRY] > 0 && |
| num_shaders[MESA_SHADER_VERTEX] == 0 && |
| !prog->SeparateShader) { |
| linker_error(prog, "Geometry shader must be linked with " |
| "vertex shader\n"); |
| goto done; |
| } |
| |
| /* Compute shaders have additional restrictions. */ |
| if (num_shaders[MESA_SHADER_COMPUTE] > 0 && |
| num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) { |
| linker_error(prog, "Compute shaders may not be linked with any other " |
| "type of shader\n"); |
| } |
| |
| for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] != NULL) |
| ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]); |
| |
| prog->_LinkedShaders[i] = NULL; |
| } |
| |
| /* Link all shaders for a particular stage and validate the result. |
| */ |
| for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) { |
| if (num_shaders[stage] > 0) { |
| gl_shader *const sh = |
| link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage], |
| num_shaders[stage]); |
| |
| if (!prog->LinkStatus) |
| goto done; |
| |
| switch (stage) { |
| case MESA_SHADER_VERTEX: |
| validate_vertex_shader_executable(prog, sh); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| validate_geometry_shader_executable(prog, sh); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| validate_fragment_shader_executable(prog, sh); |
| break; |
| } |
| if (!prog->LinkStatus) |
| goto done; |
| |
| _mesa_reference_shader(ctx, &prog->_LinkedShaders[stage], sh); |
| } |
| } |
| |
| if (num_shaders[MESA_SHADER_GEOMETRY] > 0) |
| prog->LastClipDistanceArraySize = prog->Geom.ClipDistanceArraySize; |
| else if (num_shaders[MESA_SHADER_VERTEX] > 0) |
| prog->LastClipDistanceArraySize = prog->Vert.ClipDistanceArraySize; |
| else |
| prog->LastClipDistanceArraySize = 0; /* Not used */ |
| |
| /* Here begins the inter-stage linking phase. Some initial validation is |
| * performed, then locations are assigned for uniforms, attributes, and |
| * varyings. |
| */ |
| cross_validate_uniforms(prog); |
| if (!prog->LinkStatus) |
| goto done; |
| |
| unsigned prev; |
| |
| for (prev = 0; prev <= MESA_SHADER_FRAGMENT; prev++) { |
| if (prog->_LinkedShaders[prev] != NULL) |
| break; |
| } |
| |
| check_explicit_uniform_locations(ctx, prog); |
| if (!prog->LinkStatus) |
| goto done; |
| |
| /* Validate the inputs of each stage with the output of the preceding |
| * stage. |
| */ |
| for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev], |
| prog->_LinkedShaders[i]); |
| if (!prog->LinkStatus) |
| goto done; |
| |
| cross_validate_outputs_to_inputs(prog, |
| prog->_LinkedShaders[prev], |
| prog->_LinkedShaders[i]); |
| if (!prog->LinkStatus) |
| goto done; |
| |
| prev = i; |
| } |
| |
| /* Cross-validate uniform blocks between shader stages */ |
| validate_interstage_uniform_blocks(prog, prog->_LinkedShaders, |
| MESA_SHADER_STAGES); |
| if (!prog->LinkStatus) |
| goto done; |
| |
| for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] != NULL) |
| lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]); |
| } |
| |
| /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do |
| * it before optimization because we want most of the checks to get |
| * dropped thanks to constant propagation. |
| * |
| * This rule also applies to GLSL ES 3.00. |
| */ |
| if (max_version >= (is_es_prog ? 300 : 130)) { |
| struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; |
| if (sh) { |
| lower_discard_flow(sh->ir); |
| } |
| } |
| |
| if (!interstage_cross_validate_uniform_blocks(prog)) |
| goto done; |
| |
| /* Do common optimization before assigning storage for attributes, |
| * uniforms, and varyings. Later optimization could possibly make |
| * some of that unused. |
| */ |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir); |
| if (!prog->LinkStatus) |
| goto done; |
| |
| if (ctx->Const.ShaderCompilerOptions[i].LowerClipDistance) { |
| lower_clip_distance(prog->_LinkedShaders[i]); |
| } |
| |
| while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, |
| &ctx->Const.ShaderCompilerOptions[i], |
| ctx->Const.NativeIntegers)) |
| ; |
| } |
| |
| /* Check and validate stream emissions in geometry shaders */ |
| validate_geometry_shader_emissions(ctx, prog); |
| |
| /* Mark all generic shader inputs and outputs as unpaired. */ |
| for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) { |
| if (prog->_LinkedShaders[i] != NULL) { |
| link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir); |
| } |
| } |
| |
| /* FINISHME: The value of the max_attribute_index parameter is |
| * FINISHME: implementation dependent based on the value of |
| * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be |
| * FINISHME: at least 16, so hardcode 16 for now. |
| */ |
| if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) { |
| goto done; |
| } |
| |
| if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) { |
| goto done; |
| } |
| |
| unsigned first; |
| for (first = 0; first <= MESA_SHADER_FRAGMENT; first++) { |
| if (prog->_LinkedShaders[first] != NULL) |
| break; |
| } |
| |
| if (num_tfeedback_decls != 0) { |
| /* From GL_EXT_transform_feedback: |
| * A program will fail to link if: |
| * |
| * * the <count> specified by TransformFeedbackVaryingsEXT is |
| * non-zero, but the program object has no vertex or geometry |
| * shader; |
| */ |
| if (first == MESA_SHADER_FRAGMENT) { |
| linker_error(prog, "Transform feedback varyings specified, but " |
| "no vertex or geometry shader is present."); |
| goto done; |
| } |
| |
| tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl, |
| prog->TransformFeedback.NumVarying); |
| if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls, |
| prog->TransformFeedback.VaryingNames, |
| tfeedback_decls)) |
| goto done; |
| } |
| |
| /* Linking the stages in the opposite order (from fragment to vertex) |
| * ensures that inter-shader outputs written to in an earlier stage are |
| * eliminated if they are (transitively) not used in a later stage. |
| */ |
| int last, next; |
| for (last = MESA_SHADER_FRAGMENT; last >= 0; last--) { |
| if (prog->_LinkedShaders[last] != NULL) |
| break; |
| } |
| |
| if (last >= 0 && last < MESA_SHADER_FRAGMENT) { |
| gl_shader *const sh = prog->_LinkedShaders[last]; |
| |
| if (num_tfeedback_decls != 0 || prog->SeparateShader) { |
| /* There was no fragment shader, but we still have to assign varying |
| * locations for use by transform feedback. |
| */ |
| if (!assign_varying_locations(ctx, mem_ctx, prog, |
| sh, NULL, |
| num_tfeedback_decls, tfeedback_decls, |
| 0)) |
| goto done; |
| } |
| |
| do_dead_builtin_varyings(ctx, sh, NULL, |
| num_tfeedback_decls, tfeedback_decls); |
| |
| if (!prog->SeparateShader) |
| demote_shader_inputs_and_outputs(sh, ir_var_shader_out); |
| |
| /* Eliminate code that is now dead due to unused outputs being demoted. |
| */ |
| while (do_dead_code(sh->ir, false)) |
| ; |
| } |
| else if (first == MESA_SHADER_FRAGMENT) { |
| /* If the program only contains a fragment shader... |
| */ |
| gl_shader *const sh = prog->_LinkedShaders[first]; |
| |
| do_dead_builtin_varyings(ctx, NULL, sh, |
| num_tfeedback_decls, tfeedback_decls); |
| |
| if (prog->SeparateShader) { |
| if (!assign_varying_locations(ctx, mem_ctx, prog, |
| NULL /* producer */, |
| sh /* consumer */, |
| 0 /* num_tfeedback_decls */, |
| NULL /* tfeedback_decls */, |
| 0 /* gs_input_vertices */)) |
| goto done; |
| } else |
| demote_shader_inputs_and_outputs(sh, ir_var_shader_in); |
| |
| while (do_dead_code(sh->ir, false)) |
| ; |
| } |
| |
| next = last; |
| for (int i = next - 1; i >= 0; i--) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| gl_shader *const sh_i = prog->_LinkedShaders[i]; |
| gl_shader *const sh_next = prog->_LinkedShaders[next]; |
| unsigned gs_input_vertices = |
| next == MESA_SHADER_GEOMETRY ? prog->Geom.VerticesIn : 0; |
| |
| if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next, |
| next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0, |
| tfeedback_decls, gs_input_vertices)) |
| goto done; |
| |
| do_dead_builtin_varyings(ctx, sh_i, sh_next, |
| next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0, |
| tfeedback_decls); |
| |
| demote_shader_inputs_and_outputs(sh_i, ir_var_shader_out); |
| demote_shader_inputs_and_outputs(sh_next, ir_var_shader_in); |
| |
| /* Eliminate code that is now dead due to unused outputs being demoted. |
| */ |
| while (do_dead_code(sh_i->ir, false)) |
| ; |
| while (do_dead_code(sh_next->ir, false)) |
| ; |
| |
| /* This must be done after all dead varyings are eliminated. */ |
| if (!check_against_output_limit(ctx, prog, sh_i)) |
| goto done; |
| if (!check_against_input_limit(ctx, prog, sh_next)) |
| goto done; |
| |
| next = i; |
| } |
| |
| if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls)) |
| goto done; |
| |
| update_array_sizes(prog); |
| link_assign_uniform_locations(prog, ctx->Const.UniformBooleanTrue); |
| link_assign_atomic_counter_resources(ctx, prog); |
| store_fragdepth_layout(prog); |
| |
| check_resources(ctx, prog); |
| check_image_resources(ctx, prog); |
| link_check_atomic_counter_resources(ctx, prog); |
| |
| if (!prog->LinkStatus) |
| goto done; |
| |
| /* OpenGL ES requires that a vertex shader and a fragment shader both be |
| * present in a linked program. GL_ARB_ES2_compatibility doesn't say |
| * anything about shader linking when one of the shaders (vertex or |
| * fragment shader) is absent. So, the extension shouldn't change the |
| * behavior specified in GLSL specification. |
| */ |
| if (!prog->SeparateShader && ctx->API == API_OPENGLES2) { |
| if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) { |
| linker_error(prog, "program lacks a vertex shader\n"); |
| } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { |
| linker_error(prog, "program lacks a fragment shader\n"); |
| } |
| } |
| |
| /* FINISHME: Assign fragment shader output locations. */ |
| |
| done: |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| free(shader_list[i]); |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| /* Do a final validation step to make sure that the IR wasn't |
| * invalidated by any modifications performed after intrastage linking. |
| */ |
| validate_ir_tree(prog->_LinkedShaders[i]->ir); |
| |
| /* Retain any live IR, but trash the rest. */ |
| reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir); |
| |
| /* The symbol table in the linked shaders may contain references to |
| * variables that were removed (e.g., unused uniforms). Since it may |
| * contain junk, there is no possible valid use. Delete it and set the |
| * pointer to NULL. |
| */ |
| delete prog->_LinkedShaders[i]->symbols; |
| prog->_LinkedShaders[i]->symbols = NULL; |
| } |
| |
| ralloc_free(mem_ctx); |
| } |