blob: d9f707d9c9a1f9bdafec9d8ef813ec07795b6610 [file] [log] [blame]
/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
/*
* Copyright (C) 2012 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#include "pipe/p_state.h"
#include "util/u_string.h"
#include "util/u_memory.h"
#include "util/u_inlines.h"
#include "util/u_format.h"
#include "freedreno_gmem.h"
#include "freedreno_context.h"
#include "freedreno_fence.h"
#include "freedreno_resource.h"
#include "freedreno_query_hw.h"
#include "freedreno_util.h"
/*
* GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer
* inside the GPU. All rendering happens to GMEM. Larger render targets
* are split into tiles that are small enough for the color (and depth and/or
* stencil, if enabled) buffers to fit within GMEM. Before rendering a tile,
* if there was not a clear invalidating the previous tile contents, we need
* to restore the previous tiles contents (system mem -> GMEM), and after all
* the draw calls, before moving to the next tile, we need to save the tile
* contents (GMEM -> system mem).
*
* The code in this file handles dealing with GMEM and tiling.
*
* The structure of the ringbuffer ends up being:
*
* +--<---<-- IB ---<---+---<---+---<---<---<--+
* | | | |
* v ^ ^ ^
* ------------------------------------------------------
* | clear/draw cmds | Tile0 | Tile1 | .... | TileN |
* ------------------------------------------------------
* ^
* |
* address submitted in issueibcmds
*
* Where the per-tile section handles scissor setup, mem2gmem restore (if
* needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem
* resolve.
*/
static uint32_t bin_width(struct fd_screen *screen)
{
if (is_a4xx(screen) || is_a5xx(screen))
return 1024;
if (is_a3xx(screen))
return 992;
return 512;
}
static uint32_t
total_size(uint8_t cbuf_cpp[], uint8_t zsbuf_cpp[2],
uint32_t bin_w, uint32_t bin_h, struct fd_gmem_stateobj *gmem)
{
uint32_t total = 0, i;
for (i = 0; i < MAX_RENDER_TARGETS; i++) {
if (cbuf_cpp[i]) {
gmem->cbuf_base[i] = align(total, 0x4000);
total = gmem->cbuf_base[i] + cbuf_cpp[i] * bin_w * bin_h;
}
}
if (zsbuf_cpp[0]) {
gmem->zsbuf_base[0] = align(total, 0x4000);
total = gmem->zsbuf_base[0] + zsbuf_cpp[0] * bin_w * bin_h;
}
if (zsbuf_cpp[1]) {
gmem->zsbuf_base[1] = align(total, 0x4000);
total = gmem->zsbuf_base[1] + zsbuf_cpp[1] * bin_w * bin_h;
}
return total;
}
static void
calculate_tiles(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
struct fd_gmem_stateobj *gmem = &ctx->gmem;
struct pipe_scissor_state *scissor = &batch->max_scissor;
struct pipe_framebuffer_state *pfb = &batch->framebuffer;
const uint32_t gmem_alignw = ctx->screen->gmem_alignw;
const uint32_t gmem_alignh = ctx->screen->gmem_alignh;
const uint32_t gmem_size = ctx->screen->gmemsize_bytes;
uint32_t minx, miny, width, height;
uint32_t nbins_x = 1, nbins_y = 1;
uint32_t bin_w, bin_h;
uint32_t max_width = bin_width(ctx->screen);
uint8_t cbuf_cpp[MAX_RENDER_TARGETS] = {0}, zsbuf_cpp[2] = {0};
uint32_t i, j, t, xoff, yoff;
uint32_t tpp_x, tpp_y;
bool has_zs = !!(batch->resolve & (FD_BUFFER_DEPTH | FD_BUFFER_STENCIL));
int tile_n[ARRAY_SIZE(ctx->pipe)];
if (has_zs) {
struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture);
zsbuf_cpp[0] = rsc->cpp;
if (rsc->stencil)
zsbuf_cpp[1] = rsc->stencil->cpp;
}
for (i = 0; i < pfb->nr_cbufs; i++) {
if (pfb->cbufs[i])
cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format);
else
cbuf_cpp[i] = 4;
}
if (!memcmp(gmem->zsbuf_cpp, zsbuf_cpp, sizeof(zsbuf_cpp)) &&
!memcmp(gmem->cbuf_cpp, cbuf_cpp, sizeof(cbuf_cpp)) &&
!memcmp(&gmem->scissor, scissor, sizeof(gmem->scissor))) {
/* everything is up-to-date */
return;
}
if (fd_mesa_debug & FD_DBG_NOSCIS) {
minx = 0;
miny = 0;
width = pfb->width;
height = pfb->height;
} else {
/* round down to multiple of alignment: */
minx = scissor->minx & ~(gmem_alignw - 1);
miny = scissor->miny & ~(gmem_alignh - 1);
width = scissor->maxx - minx;
height = scissor->maxy - miny;
}
bin_w = align(width, gmem_alignw);
bin_h = align(height, gmem_alignh);
/* first, find a bin width that satisfies the maximum width
* restrictions:
*/
while (bin_w > max_width) {
nbins_x++;
bin_w = align(width / nbins_x, gmem_alignw);
}
if (fd_mesa_debug & FD_DBG_MSGS) {
debug_printf("binning input: cbuf cpp:");
for (i = 0; i < pfb->nr_cbufs; i++)
debug_printf(" %d", cbuf_cpp[i]);
debug_printf(", zsbuf cpp: %d; %dx%d\n",
zsbuf_cpp[0], width, height);
}
/* then find a bin width/height that satisfies the memory
* constraints:
*/
while (total_size(cbuf_cpp, zsbuf_cpp, bin_w, bin_h, gmem) > gmem_size) {
if (bin_w > bin_h) {
nbins_x++;
bin_w = align(width / nbins_x, gmem_alignw);
} else {
nbins_y++;
bin_h = align(height / nbins_y, gmem_alignh);
}
}
DBG("using %d bins of size %dx%d", nbins_x*nbins_y, bin_w, bin_h);
gmem->scissor = *scissor;
memcpy(gmem->cbuf_cpp, cbuf_cpp, sizeof(cbuf_cpp));
memcpy(gmem->zsbuf_cpp, zsbuf_cpp, sizeof(zsbuf_cpp));
gmem->bin_h = bin_h;
gmem->bin_w = bin_w;
gmem->nbins_x = nbins_x;
gmem->nbins_y = nbins_y;
gmem->minx = minx;
gmem->miny = miny;
gmem->width = width;
gmem->height = height;
/*
* Assign tiles and pipes:
*
* At some point it might be worth playing with different
* strategies and seeing if that makes much impact on
* performance.
*/
#define div_round_up(v, a) (((v) + (a) - 1) / (a))
/* figure out number of tiles per pipe: */
tpp_x = tpp_y = 1;
while (div_round_up(nbins_y, tpp_y) > 8)
tpp_y += 2;
while ((div_round_up(nbins_y, tpp_y) *
div_round_up(nbins_x, tpp_x)) > 8)
tpp_x += 1;
/* configure pipes: */
xoff = yoff = 0;
for (i = 0; i < ARRAY_SIZE(ctx->pipe); i++) {
struct fd_vsc_pipe *pipe = &ctx->pipe[i];
if (xoff >= nbins_x) {
xoff = 0;
yoff += tpp_y;
}
if (yoff >= nbins_y) {
break;
}
pipe->x = xoff;
pipe->y = yoff;
pipe->w = MIN2(tpp_x, nbins_x - xoff);
pipe->h = MIN2(tpp_y, nbins_y - yoff);
xoff += tpp_x;
}
for (; i < ARRAY_SIZE(ctx->pipe); i++) {
struct fd_vsc_pipe *pipe = &ctx->pipe[i];
pipe->x = pipe->y = pipe->w = pipe->h = 0;
}
#if 0 /* debug */
printf("%dx%d ... tpp=%dx%d\n", nbins_x, nbins_y, tpp_x, tpp_y);
for (i = 0; i < 8; i++) {
struct fd_vsc_pipe *pipe = &ctx->pipe[i];
printf("pipe[%d]: %ux%u @ %u,%u\n", i,
pipe->w, pipe->h, pipe->x, pipe->y);
}
#endif
/* configure tiles: */
t = 0;
yoff = miny;
memset(tile_n, 0, sizeof(tile_n));
for (i = 0; i < nbins_y; i++) {
uint32_t bw, bh;
xoff = minx;
/* clip bin height: */
bh = MIN2(bin_h, miny + height - yoff);
for (j = 0; j < nbins_x; j++) {
struct fd_tile *tile = &ctx->tile[t];
uint32_t p;
assert(t < ARRAY_SIZE(ctx->tile));
/* pipe number: */
p = ((i / tpp_y) * div_round_up(nbins_x, tpp_x)) + (j / tpp_x);
/* clip bin width: */
bw = MIN2(bin_w, minx + width - xoff);
tile->n = tile_n[p]++;
tile->p = p;
tile->bin_w = bw;
tile->bin_h = bh;
tile->xoff = xoff;
tile->yoff = yoff;
t++;
xoff += bw;
}
yoff += bh;
}
#if 0 /* debug */
t = 0;
for (i = 0; i < nbins_y; i++) {
for (j = 0; j < nbins_x; j++) {
struct fd_tile *tile = &ctx->tile[t++];
printf("|p:%u n:%u|", tile->p, tile->n);
}
printf("\n");
}
#endif
}
static void
render_tiles(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
struct fd_gmem_stateobj *gmem = &ctx->gmem;
int i;
ctx->emit_tile_init(batch);
if (batch->restore)
ctx->stats.batch_restore++;
for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) {
struct fd_tile *tile = &ctx->tile[i];
DBG("bin_h=%d, yoff=%d, bin_w=%d, xoff=%d",
tile->bin_h, tile->yoff, tile->bin_w, tile->xoff);
ctx->emit_tile_prep(batch, tile);
if (batch->restore) {
ctx->emit_tile_mem2gmem(batch, tile);
}
ctx->emit_tile_renderprep(batch, tile);
fd_hw_query_prepare_tile(batch, i, batch->gmem);
/* emit IB to drawcmds: */
ctx->emit_ib(batch->gmem, batch->draw);
fd_reset_wfi(batch);
/* emit gmem2mem to transfer tile back to system memory: */
ctx->emit_tile_gmem2mem(batch, tile);
}
if (ctx->emit_tile_fini)
ctx->emit_tile_fini(batch);
}
static void
render_sysmem(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
ctx->emit_sysmem_prep(batch);
fd_hw_query_prepare_tile(batch, 0, batch->gmem);
/* emit IB to drawcmds: */
ctx->emit_ib(batch->gmem, batch->draw);
fd_reset_wfi(batch);
if (ctx->emit_sysmem_fini)
ctx->emit_sysmem_fini(batch);
}
static void
flush_ring(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
int out_fence_fd = -1;
fd_ringbuffer_flush2(batch->gmem, batch->in_fence_fd,
batch->needs_out_fence_fd ? &out_fence_fd : NULL);
fd_fence_ref(&ctx->screen->base, &ctx->last_fence, NULL);
ctx->last_fence = fd_fence_create(ctx,
fd_ringbuffer_timestamp(batch->gmem), out_fence_fd);
}
void
fd_gmem_render_tiles(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
struct pipe_framebuffer_state *pfb = &batch->framebuffer;
bool sysmem = false;
if (ctx->emit_sysmem_prep) {
if (batch->cleared || batch->gmem_reason || (batch->num_draws > 5)) {
DBG("GMEM: cleared=%x, gmem_reason=%x, num_draws=%u",
batch->cleared, batch->gmem_reason, batch->num_draws);
} else if (!(fd_mesa_debug & FD_DBG_NOBYPASS)) {
sysmem = true;
}
}
fd_reset_wfi(batch);
ctx->stats.batch_total++;
if (sysmem) {
DBG("%p: rendering sysmem %ux%u (%s/%s)",
batch, pfb->width, pfb->height,
util_format_short_name(pipe_surface_format(pfb->cbufs[0])),
util_format_short_name(pipe_surface_format(pfb->zsbuf)));
fd_hw_query_prepare(batch, 1);
render_sysmem(batch);
ctx->stats.batch_sysmem++;
} else {
struct fd_gmem_stateobj *gmem = &ctx->gmem;
calculate_tiles(batch);
DBG("%p: rendering %dx%d tiles %ux%u (%s/%s)",
batch, pfb->width, pfb->height, gmem->nbins_x, gmem->nbins_y,
util_format_short_name(pipe_surface_format(pfb->cbufs[0])),
util_format_short_name(pipe_surface_format(pfb->zsbuf)));
fd_hw_query_prepare(batch, gmem->nbins_x * gmem->nbins_y);
render_tiles(batch);
ctx->stats.batch_gmem++;
}
flush_ring(batch);
}
/* special case for when we need to create a fence but have no rendering
* to flush.. just emit a no-op string-marker packet.
*/
void
fd_gmem_render_noop(struct fd_batch *batch)
{
struct fd_context *ctx = batch->ctx;
struct pipe_context *pctx = &ctx->base;
pctx->emit_string_marker(pctx, "noop", 4);
/* emit IB to drawcmds (which contain the string marker): */
ctx->emit_ib(batch->gmem, batch->draw);
flush_ring(batch);
}
/* tile needs restore if it isn't completely contained within the
* cleared scissor:
*/
static bool
skip_restore(struct pipe_scissor_state *scissor, struct fd_tile *tile)
{
unsigned minx = tile->xoff;
unsigned maxx = tile->xoff + tile->bin_w;
unsigned miny = tile->yoff;
unsigned maxy = tile->yoff + tile->bin_h;
return (minx >= scissor->minx) && (maxx <= scissor->maxx) &&
(miny >= scissor->miny) && (maxy <= scissor->maxy);
}
/* When deciding whether a tile needs mem2gmem, we need to take into
* account the scissor rect(s) that were cleared. To simplify we only
* consider the last scissor rect for each buffer, since the common
* case would be a single clear.
*/
bool
fd_gmem_needs_restore(struct fd_batch *batch, struct fd_tile *tile,
uint32_t buffers)
{
if (!(batch->restore & buffers))
return false;
/* if buffers partially cleared, then slow-path to figure out
* if this particular tile needs restoring:
*/
if ((buffers & FD_BUFFER_COLOR) &&
(batch->partial_cleared & FD_BUFFER_COLOR) &&
skip_restore(&batch->cleared_scissor.color, tile))
return false;
if ((buffers & FD_BUFFER_DEPTH) &&
(batch->partial_cleared & FD_BUFFER_DEPTH) &&
skip_restore(&batch->cleared_scissor.depth, tile))
return false;
if ((buffers & FD_BUFFER_STENCIL) &&
(batch->partial_cleared & FD_BUFFER_STENCIL) &&
skip_restore(&batch->cleared_scissor.stencil, tile))
return false;
return true;
}