| /* $Id: m_eval.c,v 1.2 2001/03/07 05:06:12 brianp Exp $ */ |
| |
| /* |
| * Mesa 3-D graphics library |
| * Version: 3.5 |
| * |
| * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
| * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| |
| /* |
| * eval.c was written by |
| * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and |
| * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de). |
| * |
| * My original implementation of evaluators was simplistic and didn't |
| * compute surface normal vectors properly. Bernd and Volker applied |
| * used more sophisticated methods to get better results. |
| * |
| * Thanks guys! |
| */ |
| |
| |
| #include "glheader.h" |
| #include "config.h" |
| #include "m_eval.h" |
| |
| static GLfloat inv_tab[MAX_EVAL_ORDER]; |
| |
| |
| |
| /* |
| * Horner scheme for Bezier curves |
| * |
| * Bezier curves can be computed via a Horner scheme. |
| * Horner is numerically less stable than the de Casteljau |
| * algorithm, but it is faster. For curves of degree n |
| * the complexity of Horner is O(n) and de Casteljau is O(n^2). |
| * Since stability is not important for displaying curve |
| * points I decided to use the Horner scheme. |
| * |
| * A cubic Bezier curve with control points b0, b1, b2, b3 can be |
| * written as |
| * |
| * (([3] [3] ) [3] ) [3] |
| * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3 |
| * |
| * [n] |
| * where s=1-t and the binomial coefficients [i]. These can |
| * be computed iteratively using the identity: |
| * |
| * [n] [n ] [n] |
| * [i] = (n-i+1)/i * [i-1] and [0] = 1 |
| */ |
| |
| |
| void |
| _math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, |
| GLuint dim, GLuint order) |
| { |
| GLfloat s, powert; |
| GLuint i, k, bincoeff; |
| |
| if(order >= 2) |
| { |
| bincoeff = order-1; |
| s = 1.0-t; |
| |
| for(k=0; k<dim; k++) |
| out[k] = s*cp[k] + bincoeff*t*cp[dim+k]; |
| |
| for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim) |
| { |
| bincoeff *= order-i; |
| bincoeff *= (GLuint) inv_tab[i]; |
| |
| for(k=0; k<dim; k++) |
| out[k] = s*out[k] + bincoeff*powert*cp[k]; |
| } |
| } |
| else /* order=1 -> constant curve */ |
| { |
| for(k=0; k<dim; k++) |
| out[k] = cp[k]; |
| } |
| } |
| |
| /* |
| * Tensor product Bezier surfaces |
| * |
| * Again the Horner scheme is used to compute a point on a |
| * TP Bezier surface. First a control polygon for a curve |
| * on the surface in one parameter direction is computed, |
| * then the point on the curve for the other parameter |
| * direction is evaluated. |
| * |
| * To store the curve control polygon additional storage |
| * for max(uorder,vorder) points is needed in the |
| * control net cn. |
| */ |
| |
| void |
| _math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, |
| GLuint dim, GLuint uorder, GLuint vorder) |
| { |
| GLfloat *cp = cn + uorder*vorder*dim; |
| GLuint i, uinc = vorder*dim; |
| |
| if(vorder > uorder) |
| { |
| if(uorder >= 2) |
| { |
| GLfloat s, poweru; |
| GLuint j, k, bincoeff; |
| |
| /* Compute the control polygon for the surface-curve in u-direction */ |
| for(j=0; j<vorder; j++) |
| { |
| GLfloat *ucp = &cn[j*dim]; |
| |
| /* Each control point is the point for parameter u on a */ |
| /* curve defined by the control polygons in u-direction */ |
| bincoeff = uorder-1; |
| s = 1.0-u; |
| |
| for(k=0; k<dim; k++) |
| cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k]; |
| |
| for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder; |
| i++, poweru*=u, ucp +=uinc) |
| { |
| bincoeff *= uorder-i; |
| bincoeff *= (GLuint) inv_tab[i]; |
| |
| for(k=0; k<dim; k++) |
| cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k]; |
| } |
| } |
| |
| /* Evaluate curve point in v */ |
| _math_horner_bezier_curve(cp, out, v, dim, vorder); |
| } |
| else /* uorder=1 -> cn defines a curve in v */ |
| _math_horner_bezier_curve(cn, out, v, dim, vorder); |
| } |
| else /* vorder <= uorder */ |
| { |
| if(vorder > 1) |
| { |
| GLuint i; |
| |
| /* Compute the control polygon for the surface-curve in u-direction */ |
| for(i=0; i<uorder; i++, cn += uinc) |
| { |
| /* For constant i all cn[i][j] (j=0..vorder) are located */ |
| /* on consecutive memory locations, so we can use */ |
| /* horner_bezier_curve to compute the control points */ |
| |
| _math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder); |
| } |
| |
| /* Evaluate curve point in u */ |
| _math_horner_bezier_curve(cp, out, u, dim, uorder); |
| } |
| else /* vorder=1 -> cn defines a curve in u */ |
| _math_horner_bezier_curve(cn, out, u, dim, uorder); |
| } |
| } |
| |
| /* |
| * The direct de Casteljau algorithm is used when a point on the |
| * surface and the tangent directions spanning the tangent plane |
| * should be computed (this is needed to compute normals to the |
| * surface). In this case the de Casteljau algorithm approach is |
| * nicer because a point and the partial derivatives can be computed |
| * at the same time. To get the correct tangent length du and dv |
| * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. |
| * Since only the directions are needed, this scaling step is omitted. |
| * |
| * De Casteljau needs additional storage for uorder*vorder |
| * values in the control net cn. |
| */ |
| |
| void |
| _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, |
| GLfloat u, GLfloat v, GLuint dim, |
| GLuint uorder, GLuint vorder) |
| { |
| GLfloat *dcn = cn + uorder*vorder*dim; |
| GLfloat us = 1.0-u, vs = 1.0-v; |
| GLuint h, i, j, k; |
| GLuint minorder = uorder < vorder ? uorder : vorder; |
| GLuint uinc = vorder*dim; |
| GLuint dcuinc = vorder; |
| |
| /* Each component is evaluated separately to save buffer space */ |
| /* This does not drasticaly decrease the performance of the */ |
| /* algorithm. If additional storage for (uorder-1)*(vorder-1) */ |
| /* points would be available, the components could be accessed */ |
| /* in the innermost loop which could lead to less cache misses. */ |
| |
| #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] |
| #define DCN(I, J) dcn[(I)*dcuinc+(J)] |
| if(minorder < 3) |
| { |
| if(uorder==vorder) |
| { |
| for(k=0; k<dim; k++) |
| { |
| /* Derivative direction in u */ |
| du[k] = vs*(CN(1,0,k) - CN(0,0,k)) + |
| v*(CN(1,1,k) - CN(0,1,k)); |
| |
| /* Derivative direction in v */ |
| dv[k] = us*(CN(0,1,k) - CN(0,0,k)) + |
| u*(CN(1,1,k) - CN(1,0,k)); |
| |
| /* bilinear de Casteljau step */ |
| out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) + |
| u*(vs*CN(1,0,k) + v*CN(1,1,k)); |
| } |
| } |
| else if(minorder == uorder) |
| { |
| for(k=0; k<dim; k++) |
| { |
| /* bilinear de Casteljau step */ |
| DCN(1,0) = CN(1,0,k) - CN(0,0,k); |
| DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k); |
| |
| for(j=0; j<vorder-1; j++) |
| { |
| /* for the derivative in u */ |
| DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k); |
| DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); |
| |
| /* for the `point' */ |
| DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k); |
| DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
| } |
| |
| /* remaining linear de Casteljau steps until the second last step */ |
| for(h=minorder; h<vorder-1; h++) |
| for(j=0; j<vorder-h; j++) |
| { |
| /* for the derivative in u */ |
| DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); |
| |
| /* for the `point' */ |
| DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
| } |
| |
| /* derivative direction in v */ |
| dv[k] = DCN(0,1) - DCN(0,0); |
| |
| /* derivative direction in u */ |
| du[k] = vs*DCN(1,0) + v*DCN(1,1); |
| |
| /* last linear de Casteljau step */ |
| out[k] = vs*DCN(0,0) + v*DCN(0,1); |
| } |
| } |
| else /* minorder == vorder */ |
| { |
| for(k=0; k<dim; k++) |
| { |
| /* bilinear de Casteljau step */ |
| DCN(0,1) = CN(0,1,k) - CN(0,0,k); |
| DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k); |
| for(i=0; i<uorder-1; i++) |
| { |
| /* for the derivative in v */ |
| DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k); |
| DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); |
| |
| /* for the `point' */ |
| DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k); |
| DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| } |
| |
| /* remaining linear de Casteljau steps until the second last step */ |
| for(h=minorder; h<uorder-1; h++) |
| for(i=0; i<uorder-h; i++) |
| { |
| /* for the derivative in v */ |
| DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); |
| |
| /* for the `point' */ |
| DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| } |
| |
| /* derivative direction in u */ |
| du[k] = DCN(1,0) - DCN(0,0); |
| |
| /* derivative direction in v */ |
| dv[k] = us*DCN(0,1) + u*DCN(1,1); |
| |
| /* last linear de Casteljau step */ |
| out[k] = us*DCN(0,0) + u*DCN(1,0); |
| } |
| } |
| } |
| else if(uorder == vorder) |
| { |
| for(k=0; k<dim; k++) |
| { |
| /* first bilinear de Casteljau step */ |
| for(i=0; i<uorder-1; i++) |
| { |
| DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
| for(j=0; j<vorder-1; j++) |
| { |
| DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
| DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| } |
| } |
| |
| /* remaining bilinear de Casteljau steps until the second last step */ |
| for(h=2; h<minorder-1; h++) |
| for(i=0; i<uorder-h; i++) |
| { |
| DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| for(j=0; j<vorder-h; j++) |
| { |
| DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
| DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| } |
| } |
| |
| /* derivative direction in u */ |
| du[k] = vs*(DCN(1,0) - DCN(0,0)) + |
| v*(DCN(1,1) - DCN(0,1)); |
| |
| /* derivative direction in v */ |
| dv[k] = us*(DCN(0,1) - DCN(0,0)) + |
| u*(DCN(1,1) - DCN(1,0)); |
| |
| /* last bilinear de Casteljau step */ |
| out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) + |
| u*(vs*DCN(1,0) + v*DCN(1,1)); |
| } |
| } |
| else if(minorder == uorder) |
| { |
| for(k=0; k<dim; k++) |
| { |
| /* first bilinear de Casteljau step */ |
| for(i=0; i<uorder-1; i++) |
| { |
| DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
| for(j=0; j<vorder-1; j++) |
| { |
| DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
| DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| } |
| } |
| |
| /* remaining bilinear de Casteljau steps until the second last step */ |
| for(h=2; h<minorder-1; h++) |
| for(i=0; i<uorder-h; i++) |
| { |
| DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| for(j=0; j<vorder-h; j++) |
| { |
| DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
| DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| } |
| } |
| |
| /* last bilinear de Casteljau step */ |
| DCN(2,0) = DCN(1,0) - DCN(0,0); |
| DCN(0,0) = us*DCN(0,0) + u*DCN(1,0); |
| for(j=0; j<vorder-1; j++) |
| { |
| /* for the derivative in u */ |
| DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1); |
| DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); |
| |
| /* for the `point' */ |
| DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1); |
| DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
| } |
| |
| /* remaining linear de Casteljau steps until the second last step */ |
| for(h=minorder; h<vorder-1; h++) |
| for(j=0; j<vorder-h; j++) |
| { |
| /* for the derivative in u */ |
| DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); |
| |
| /* for the `point' */ |
| DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
| } |
| |
| /* derivative direction in v */ |
| dv[k] = DCN(0,1) - DCN(0,0); |
| |
| /* derivative direction in u */ |
| du[k] = vs*DCN(2,0) + v*DCN(2,1); |
| |
| /* last linear de Casteljau step */ |
| out[k] = vs*DCN(0,0) + v*DCN(0,1); |
| } |
| } |
| else /* minorder == vorder */ |
| { |
| for(k=0; k<dim; k++) |
| { |
| /* first bilinear de Casteljau step */ |
| for(i=0; i<uorder-1; i++) |
| { |
| DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
| for(j=0; j<vorder-1; j++) |
| { |
| DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
| DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| } |
| } |
| |
| /* remaining bilinear de Casteljau steps until the second last step */ |
| for(h=2; h<minorder-1; h++) |
| for(i=0; i<uorder-h; i++) |
| { |
| DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| for(j=0; j<vorder-h; j++) |
| { |
| DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
| DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| } |
| } |
| |
| /* last bilinear de Casteljau step */ |
| DCN(0,2) = DCN(0,1) - DCN(0,0); |
| DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1); |
| for(i=0; i<uorder-1; i++) |
| { |
| /* for the derivative in v */ |
| DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0); |
| DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); |
| |
| /* for the `point' */ |
| DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1); |
| DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| } |
| |
| /* remaining linear de Casteljau steps until the second last step */ |
| for(h=minorder; h<uorder-1; h++) |
| for(i=0; i<uorder-h; i++) |
| { |
| /* for the derivative in v */ |
| DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); |
| |
| /* for the `point' */ |
| DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| } |
| |
| /* derivative direction in u */ |
| du[k] = DCN(1,0) - DCN(0,0); |
| |
| /* derivative direction in v */ |
| dv[k] = us*DCN(0,2) + u*DCN(1,2); |
| |
| /* last linear de Casteljau step */ |
| out[k] = us*DCN(0,0) + u*DCN(1,0); |
| } |
| } |
| #undef DCN |
| #undef CN |
| } |
| |
| |
| /* |
| * Do one-time initialization for evaluators. |
| */ |
| void _math_init_eval( void ) |
| { |
| GLuint i; |
| |
| /* KW: precompute 1/x for useful x. |
| */ |
| for (i = 1 ; i < MAX_EVAL_ORDER ; i++) |
| inv_tab[i] = 1.0 / i; |
| } |
| |