blob: 5552cc8c8bbeb0249f9f18c5f2bd72fc27b08f25 [file] [log] [blame]
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "si_shader_internal.h"
#include "si_pipe.h"
#include "sid.h"
#include "gallivm/lp_bld_arit.h"
#include "gallivm/lp_bld_gather.h"
#include "gallivm/lp_bld_intr.h"
#include "tgsi/tgsi_build.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_util.h"
static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data);
static const struct lp_build_tgsi_action tex_action;
/**
* Given a v8i32 resource descriptor for a buffer, extract the size of the
* buffer in number of elements and return it as an i32.
*/
static LLVMValueRef get_buffer_size(
struct lp_build_tgsi_context *bld_base,
LLVMValueRef descriptor)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef size =
LLVMBuildExtractElement(builder, descriptor,
LLVMConstInt(ctx->i32, 2, 0), "");
if (ctx->screen->b.chip_class == VI) {
/* On VI, the descriptor contains the size in bytes,
* but TXQ must return the size in elements.
* The stride is always non-zero for resources using TXQ.
*/
LLVMValueRef stride =
LLVMBuildExtractElement(builder, descriptor,
ctx->i32_1, "");
stride = LLVMBuildLShr(builder, stride,
LLVMConstInt(ctx->i32, 16, 0), "");
stride = LLVMBuildAnd(builder, stride,
LLVMConstInt(ctx->i32, 0x3FFF, 0), "");
size = LLVMBuildUDiv(builder, size, stride, "");
}
return size;
}
static LLVMValueRef
shader_buffer_fetch_rsrc(struct si_shader_context *ctx,
const struct tgsi_full_src_register *reg,
bool ubo)
{
LLVMValueRef index;
if (!reg->Register.Indirect) {
index = LLVMConstInt(ctx->i32, reg->Register.Index, false);
} else {
index = si_get_indirect_index(ctx, &reg->Indirect,
1, reg->Register.Index);
}
if (ubo)
return ctx->abi.load_ubo(&ctx->abi, index);
else
return ctx->abi.load_ssbo(&ctx->abi, index, false);
}
static bool tgsi_is_array_image(unsigned target)
{
return target == TGSI_TEXTURE_3D ||
target == TGSI_TEXTURE_CUBE ||
target == TGSI_TEXTURE_1D_ARRAY ||
target == TGSI_TEXTURE_2D_ARRAY ||
target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA;
}
/**
* Given a 256-bit resource descriptor, force the DCC enable bit to off.
*
* At least on Tonga, executing image stores on images with DCC enabled and
* non-trivial can eventually lead to lockups. This can occur when an
* application binds an image as read-only but then uses a shader that writes
* to it. The OpenGL spec allows almost arbitrarily bad behavior (including
* program termination) in this case, but it doesn't cost much to be a bit
* nicer: disabling DCC in the shader still leads to undefined results but
* avoids the lockup.
*/
static LLVMValueRef force_dcc_off(struct si_shader_context *ctx,
LLVMValueRef rsrc)
{
if (ctx->screen->b.chip_class <= CIK) {
return rsrc;
} else {
LLVMValueRef i32_6 = LLVMConstInt(ctx->i32, 6, 0);
LLVMValueRef i32_C = LLVMConstInt(ctx->i32, C_008F28_COMPRESSION_EN, 0);
LLVMValueRef tmp;
tmp = LLVMBuildExtractElement(ctx->ac.builder, rsrc, i32_6, "");
tmp = LLVMBuildAnd(ctx->ac.builder, tmp, i32_C, "");
return LLVMBuildInsertElement(ctx->ac.builder, rsrc, tmp, i32_6, "");
}
}
LLVMValueRef si_load_image_desc(struct si_shader_context *ctx,
LLVMValueRef list, LLVMValueRef index,
enum ac_descriptor_type desc_type, bool dcc_off)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef rsrc;
if (desc_type == AC_DESC_BUFFER) {
index = LLVMBuildMul(builder, index,
LLVMConstInt(ctx->i32, 2, 0), "");
index = LLVMBuildAdd(builder, index,
ctx->i32_1, "");
list = LLVMBuildPointerCast(builder, list,
si_const_array(ctx->v4i32, 0), "");
} else {
assert(desc_type == AC_DESC_IMAGE);
}
rsrc = ac_build_load_to_sgpr(&ctx->ac, list, index);
if (dcc_off)
rsrc = force_dcc_off(ctx, rsrc);
return rsrc;
}
/**
* Load the resource descriptor for \p image.
*/
static void
image_fetch_rsrc(
struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_src_register *image,
bool is_store, unsigned target,
LLVMValueRef *rsrc)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
ctx->param_samplers_and_images);
LLVMValueRef index;
bool dcc_off = is_store;
if (!image->Register.Indirect) {
const struct tgsi_shader_info *info = bld_base->info;
unsigned images_writemask = info->images_store |
info->images_atomic;
index = LLVMConstInt(ctx->i32,
si_get_image_slot(image->Register.Index), 0);
if (images_writemask & (1 << image->Register.Index))
dcc_off = true;
} else {
/* From the GL_ARB_shader_image_load_store extension spec:
*
* If a shader performs an image load, store, or atomic
* operation using an image variable declared as an array,
* and if the index used to select an individual element is
* negative or greater than or equal to the size of the
* array, the results of the operation are undefined but may
* not lead to termination.
*/
index = si_get_bounded_indirect_index(ctx, &image->Indirect,
image->Register.Index,
ctx->num_images);
index = LLVMBuildSub(ctx->ac.builder,
LLVMConstInt(ctx->i32, SI_NUM_IMAGES - 1, 0),
index, "");
}
if (image->Register.File != TGSI_FILE_IMAGE) {
/* Bindless descriptors are accessible from a different pair of
* user SGPR indices.
*/
rsrc_ptr = LLVMGetParam(ctx->main_fn,
ctx->param_bindless_samplers_and_images);
index = lp_build_emit_fetch_src(bld_base, image,
TGSI_TYPE_UNSIGNED, 0);
/* For simplicity, bindless image descriptors use fixed
* 16-dword slots for now.
*/
index = LLVMBuildMul(ctx->ac.builder, index,
LLVMConstInt(ctx->i32, 2, 0), "");
}
*rsrc = si_load_image_desc(ctx, rsrc_ptr, index,
target == TGSI_TEXTURE_BUFFER ? AC_DESC_BUFFER : AC_DESC_IMAGE,
dcc_off);
}
static LLVMValueRef image_fetch_coords(
struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_instruction *inst,
unsigned src, LLVMValueRef desc)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
unsigned target = inst->Memory.Texture;
unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
LLVMValueRef coords[4];
LLVMValueRef tmp;
int chan;
for (chan = 0; chan < num_coords; ++chan) {
tmp = lp_build_emit_fetch(bld_base, inst, src, chan);
tmp = ac_to_integer(&ctx->ac, tmp);
coords[chan] = tmp;
}
if (ctx->screen->b.chip_class >= GFX9) {
/* 1D textures are allocated and used as 2D on GFX9. */
if (target == TGSI_TEXTURE_1D) {
coords[1] = ctx->i32_0;
num_coords++;
} else if (target == TGSI_TEXTURE_1D_ARRAY) {
coords[2] = coords[1];
coords[1] = ctx->i32_0;
num_coords++;
} else if (target == TGSI_TEXTURE_2D) {
/* The hw can't bind a slice of a 3D image as a 2D
* image, because it ignores BASE_ARRAY if the target
* is 3D. The workaround is to read BASE_ARRAY and set
* it as the 3rd address operand for all 2D images.
*/
LLVMValueRef first_layer, const5, mask;
const5 = LLVMConstInt(ctx->i32, 5, 0);
mask = LLVMConstInt(ctx->i32, S_008F24_BASE_ARRAY(~0), 0);
first_layer = LLVMBuildExtractElement(builder, desc, const5, "");
first_layer = LLVMBuildAnd(builder, first_layer, mask, "");
coords[2] = first_layer;
num_coords++;
}
}
if (num_coords == 1)
return coords[0];
if (num_coords == 3) {
/* LLVM has difficulties lowering 3-element vectors. */
coords[3] = bld_base->uint_bld.undef;
num_coords = 4;
}
return lp_build_gather_values(&ctx->gallivm, coords, num_coords);
}
/**
* Append the extra mode bits that are used by image load and store.
*/
static void image_append_args(
struct si_shader_context *ctx,
struct lp_build_emit_data * emit_data,
unsigned target,
bool atomic,
bool force_glc)
{
const struct tgsi_full_instruction *inst = emit_data->inst;
LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
LLVMValueRef r128 = i1false;
LLVMValueRef da = tgsi_is_array_image(target) ? i1true : i1false;
LLVMValueRef glc =
force_glc ||
inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
i1true : i1false;
LLVMValueRef slc = i1false;
LLVMValueRef lwe = i1false;
if (atomic || (HAVE_LLVM <= 0x0309)) {
emit_data->args[emit_data->arg_count++] = r128;
emit_data->args[emit_data->arg_count++] = da;
if (!atomic) {
emit_data->args[emit_data->arg_count++] = glc;
}
emit_data->args[emit_data->arg_count++] = slc;
return;
}
/* HAVE_LLVM >= 0x0400 */
emit_data->args[emit_data->arg_count++] = glc;
emit_data->args[emit_data->arg_count++] = slc;
emit_data->args[emit_data->arg_count++] = lwe;
emit_data->args[emit_data->arg_count++] = da;
}
/**
* Append the resource and indexing arguments for buffer intrinsics.
*
* \param rsrc the v4i32 buffer resource
* \param index index into the buffer (stride-based)
* \param offset byte offset into the buffer
*/
static void buffer_append_args(
struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data,
LLVMValueRef rsrc,
LLVMValueRef index,
LLVMValueRef offset,
bool atomic,
bool force_glc)
{
const struct tgsi_full_instruction *inst = emit_data->inst;
LLVMValueRef i1false = LLVMConstInt(ctx->i1, 0, 0);
LLVMValueRef i1true = LLVMConstInt(ctx->i1, 1, 0);
emit_data->args[emit_data->arg_count++] = rsrc;
emit_data->args[emit_data->arg_count++] = index; /* vindex */
emit_data->args[emit_data->arg_count++] = offset; /* voffset */
if (!atomic) {
emit_data->args[emit_data->arg_count++] =
force_glc ||
inst->Memory.Qualifier & (TGSI_MEMORY_COHERENT | TGSI_MEMORY_VOLATILE) ?
i1true : i1false; /* glc */
}
emit_data->args[emit_data->arg_count++] = i1false; /* slc */
}
static void load_fetch_args(
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction * inst = emit_data->inst;
unsigned target = inst->Memory.Texture;
LLVMValueRef rsrc;
emit_data->dst_type = ctx->v4f32;
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
inst->Src[0].Register.File == TGSI_FILE_CONSTBUF) {
LLVMValueRef offset;
LLVMValueRef tmp;
bool ubo = inst->Src[0].Register.File == TGSI_FILE_CONSTBUF;
rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0], ubo);
tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
offset = ac_to_integer(&ctx->ac, tmp);
buffer_append_args(ctx, emit_data, rsrc, ctx->i32_0,
offset, false, false);
} else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE ||
tgsi_is_bindless_image_file(inst->Src[0].Register.File)) {
LLVMValueRef coords;
image_fetch_rsrc(bld_base, &inst->Src[0], false, target, &rsrc);
coords = image_fetch_coords(bld_base, inst, 1, rsrc);
if (target == TGSI_TEXTURE_BUFFER) {
buffer_append_args(ctx, emit_data, rsrc, coords,
ctx->i32_0, false, false);
} else {
emit_data->args[0] = coords;
emit_data->args[1] = rsrc;
emit_data->args[2] = LLVMConstInt(ctx->i32, 15, 0); /* dmask */
emit_data->arg_count = 3;
image_append_args(ctx, emit_data, target, false, false);
}
}
}
static unsigned get_load_intr_attribs(bool can_speculate)
{
/* READNONE means writes can't affect it, while READONLY means that
* writes can affect it. */
return can_speculate && HAVE_LLVM >= 0x0400 ?
LP_FUNC_ATTR_READNONE :
LP_FUNC_ATTR_READONLY;
}
static unsigned get_store_intr_attribs(bool writeonly_memory)
{
return writeonly_memory && HAVE_LLVM >= 0x0400 ?
LP_FUNC_ATTR_INACCESSIBLE_MEM_ONLY :
LP_FUNC_ATTR_WRITEONLY;
}
static void load_emit_buffer(struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data,
bool can_speculate, bool allow_smem)
{
const struct tgsi_full_instruction *inst = emit_data->inst;
uint writemask = inst->Dst[0].Register.WriteMask;
uint count = util_last_bit(writemask);
LLVMValueRef *args = emit_data->args;
/* Don't use SMEM for shader buffer loads, because LLVM doesn't
* select SMEM for SI.load.const with a non-constant offset, and
* constant offsets practically don't exist with shader buffers.
*
* Also, SI.load.const doesn't use inst_offset when it's lowered
* to VMEM, so we just end up with more VALU instructions in the end
* and no benefit.
*
* TODO: Remove this line once LLVM can select SMEM with a non-constant
* offset, and can derive inst_offset when VMEM is selected.
* After that, si_memory_barrier should invalidate sL1 for shader
* buffers.
*/
assert(LLVMConstIntGetZExtValue(args[1]) == 0); /* vindex */
emit_data->output[emit_data->chan] =
ac_build_buffer_load(&ctx->ac, args[0], count, NULL,
args[2], NULL, 0,
LLVMConstIntGetZExtValue(args[3]),
LLVMConstIntGetZExtValue(args[4]),
can_speculate, allow_smem);
}
static LLVMValueRef get_memory_ptr(struct si_shader_context *ctx,
const struct tgsi_full_instruction *inst,
LLVMTypeRef type, int arg)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef offset, ptr;
int addr_space;
offset = lp_build_emit_fetch(&ctx->bld_base, inst, arg, 0);
offset = ac_to_integer(&ctx->ac, offset);
ptr = ctx->ac.lds;
ptr = LLVMBuildGEP(builder, ptr, &offset, 1, "");
addr_space = LLVMGetPointerAddressSpace(LLVMTypeOf(ptr));
ptr = LLVMBuildBitCast(builder, ptr, LLVMPointerType(type, addr_space), "");
return ptr;
}
static void load_emit_memory(
struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data)
{
const struct tgsi_full_instruction *inst = emit_data->inst;
unsigned writemask = inst->Dst[0].Register.WriteMask;
LLVMValueRef channels[4], ptr, derived_ptr, index;
int chan;
ptr = get_memory_ptr(ctx, inst, ctx->f32, 1);
for (chan = 0; chan < 4; ++chan) {
if (!(writemask & (1 << chan))) {
channels[chan] = LLVMGetUndef(ctx->f32);
continue;
}
index = LLVMConstInt(ctx->i32, chan, 0);
derived_ptr = LLVMBuildGEP(ctx->ac.builder, ptr, &index, 1, "");
channels[chan] = LLVMBuildLoad(ctx->ac.builder, derived_ptr, "");
}
emit_data->output[emit_data->chan] = lp_build_gather_values(&ctx->gallivm, channels, 4);
}
/**
* Return true if the memory accessed by a LOAD or STORE instruction is
* read-only or write-only, respectively.
*
* \param shader_buffers_reverse_access_mask
* For LOAD, set this to (store | atomic) slot usage in the shader.
* For STORE, set this to (load | atomic) slot usage in the shader.
* \param images_reverse_access_mask Same as above, but for images.
*/
static bool is_oneway_access_only(const struct tgsi_full_instruction *inst,
const struct tgsi_shader_info *info,
unsigned shader_buffers_reverse_access_mask,
unsigned images_reverse_access_mask)
{
/* RESTRICT means NOALIAS.
* If there are no writes, we can assume the accessed memory is read-only.
* If there are no reads, we can assume the accessed memory is write-only.
*/
if (inst->Memory.Qualifier & TGSI_MEMORY_RESTRICT) {
unsigned reverse_access_mask;
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
reverse_access_mask = shader_buffers_reverse_access_mask;
} else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
reverse_access_mask = info->images_buffers &
images_reverse_access_mask;
} else {
reverse_access_mask = ~info->images_buffers &
images_reverse_access_mask;
}
if (inst->Src[0].Register.Indirect) {
if (!reverse_access_mask)
return true;
} else {
if (!(reverse_access_mask &
(1u << inst->Src[0].Register.Index)))
return true;
}
}
/* If there are no buffer writes (for both shader buffers & image
* buffers), it implies that buffer memory is read-only.
* If there are no buffer reads (for both shader buffers & image
* buffers), it implies that buffer memory is write-only.
*
* Same for the case when there are no writes/reads for non-buffer
* images.
*/
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
(inst->Memory.Texture == TGSI_TEXTURE_BUFFER &&
(inst->Src[0].Register.File == TGSI_FILE_IMAGE ||
tgsi_is_bindless_image_file(inst->Src[0].Register.File)))) {
if (!shader_buffers_reverse_access_mask &&
!(info->images_buffers & images_reverse_access_mask))
return true;
} else {
if (!(~info->images_buffers & images_reverse_access_mask))
return true;
}
return false;
}
static void load_emit(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
const struct tgsi_full_instruction * inst = emit_data->inst;
const struct tgsi_shader_info *info = &ctx->shader->selector->info;
char intrinsic_name[64];
bool can_speculate = false;
if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
load_emit_memory(ctx, emit_data);
return;
}
if (inst->Src[0].Register.File == TGSI_FILE_CONSTBUF) {
load_emit_buffer(ctx, emit_data, true, true);
return;
}
if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
si_emit_waitcnt(ctx, VM_CNT);
can_speculate = !(inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE) &&
is_oneway_access_only(inst, info,
info->shader_buffers_store |
info->shader_buffers_atomic,
info->images_store |
info->images_atomic);
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
load_emit_buffer(ctx, emit_data, can_speculate, false);
return;
}
if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
emit_data->output[emit_data->chan] =
lp_build_intrinsic(
builder, "llvm.amdgcn.buffer.load.format.v4f32", emit_data->dst_type,
emit_data->args, emit_data->arg_count,
get_load_intr_attribs(can_speculate));
} else {
ac_get_image_intr_name("llvm.amdgcn.image.load",
emit_data->dst_type, /* vdata */
LLVMTypeOf(emit_data->args[0]), /* coords */
LLVMTypeOf(emit_data->args[1]), /* rsrc */
intrinsic_name, sizeof(intrinsic_name));
emit_data->output[emit_data->chan] =
lp_build_intrinsic(
builder, intrinsic_name, emit_data->dst_type,
emit_data->args, emit_data->arg_count,
get_load_intr_attribs(can_speculate));
}
}
static void store_fetch_args(
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction * inst = emit_data->inst;
struct tgsi_full_src_register memory;
LLVMValueRef chans[4];
LLVMValueRef data;
LLVMValueRef rsrc;
unsigned chan;
emit_data->dst_type = ctx->voidt;
for (chan = 0; chan < 4; ++chan) {
chans[chan] = lp_build_emit_fetch(bld_base, inst, 1, chan);
}
data = lp_build_gather_values(&ctx->gallivm, chans, 4);
emit_data->args[emit_data->arg_count++] = data;
memory = tgsi_full_src_register_from_dst(&inst->Dst[0]);
if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
LLVMValueRef offset;
LLVMValueRef tmp;
rsrc = shader_buffer_fetch_rsrc(ctx, &memory, false);
tmp = lp_build_emit_fetch(bld_base, inst, 0, 0);
offset = ac_to_integer(&ctx->ac, tmp);
buffer_append_args(ctx, emit_data, rsrc, ctx->i32_0,
offset, false, false);
} else if (inst->Dst[0].Register.File == TGSI_FILE_IMAGE ||
tgsi_is_bindless_image_file(inst->Dst[0].Register.File)) {
unsigned target = inst->Memory.Texture;
LLVMValueRef coords;
/* 8bit/16bit TC L1 write corruption bug on SI.
* All store opcodes not aligned to a dword are affected.
*
* The only way to get unaligned stores in radeonsi is through
* shader images.
*/
bool force_glc = ctx->screen->b.chip_class == SI;
image_fetch_rsrc(bld_base, &memory, true, target, &rsrc);
coords = image_fetch_coords(bld_base, inst, 0, rsrc);
if (target == TGSI_TEXTURE_BUFFER) {
buffer_append_args(ctx, emit_data, rsrc, coords,
ctx->i32_0, false, force_glc);
} else {
emit_data->args[1] = coords;
emit_data->args[2] = rsrc;
emit_data->args[3] = LLVMConstInt(ctx->i32, 15, 0); /* dmask */
emit_data->arg_count = 4;
image_append_args(ctx, emit_data, target, false, force_glc);
}
}
}
static void store_emit_buffer(
struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data,
bool writeonly_memory)
{
const struct tgsi_full_instruction *inst = emit_data->inst;
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef base_data = emit_data->args[0];
LLVMValueRef base_offset = emit_data->args[3];
unsigned writemask = inst->Dst[0].Register.WriteMask;
while (writemask) {
int start, count;
const char *intrinsic_name;
LLVMValueRef data;
LLVMValueRef offset;
LLVMValueRef tmp;
u_bit_scan_consecutive_range(&writemask, &start, &count);
/* Due to an LLVM limitation, split 3-element writes
* into a 2-element and a 1-element write. */
if (count == 3) {
writemask |= 1 << (start + 2);
count = 2;
}
if (count == 4) {
data = base_data;
intrinsic_name = "llvm.amdgcn.buffer.store.v4f32";
} else if (count == 2) {
LLVMTypeRef v2f32 = LLVMVectorType(ctx->f32, 2);
tmp = LLVMBuildExtractElement(
builder, base_data,
LLVMConstInt(ctx->i32, start, 0), "");
data = LLVMBuildInsertElement(
builder, LLVMGetUndef(v2f32), tmp,
ctx->i32_0, "");
tmp = LLVMBuildExtractElement(
builder, base_data,
LLVMConstInt(ctx->i32, start + 1, 0), "");
data = LLVMBuildInsertElement(
builder, data, tmp, ctx->i32_1, "");
intrinsic_name = "llvm.amdgcn.buffer.store.v2f32";
} else {
assert(count == 1);
data = LLVMBuildExtractElement(
builder, base_data,
LLVMConstInt(ctx->i32, start, 0), "");
intrinsic_name = "llvm.amdgcn.buffer.store.f32";
}
offset = base_offset;
if (start != 0) {
offset = LLVMBuildAdd(
builder, offset,
LLVMConstInt(ctx->i32, start * 4, 0), "");
}
emit_data->args[0] = data;
emit_data->args[3] = offset;
lp_build_intrinsic(
builder, intrinsic_name, emit_data->dst_type,
emit_data->args, emit_data->arg_count,
get_store_intr_attribs(writeonly_memory));
}
}
static void store_emit_memory(
struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data)
{
const struct tgsi_full_instruction *inst = emit_data->inst;
LLVMBuilderRef builder = ctx->ac.builder;
unsigned writemask = inst->Dst[0].Register.WriteMask;
LLVMValueRef ptr, derived_ptr, data, index;
int chan;
ptr = get_memory_ptr(ctx, inst, ctx->f32, 0);
for (chan = 0; chan < 4; ++chan) {
if (!(writemask & (1 << chan))) {
continue;
}
data = lp_build_emit_fetch(&ctx->bld_base, inst, 1, chan);
index = LLVMConstInt(ctx->i32, chan, 0);
derived_ptr = LLVMBuildGEP(builder, ptr, &index, 1, "");
LLVMBuildStore(builder, data, derived_ptr);
}
}
static void store_emit(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
const struct tgsi_full_instruction * inst = emit_data->inst;
const struct tgsi_shader_info *info = &ctx->shader->selector->info;
unsigned target = inst->Memory.Texture;
char intrinsic_name[64];
bool writeonly_memory = false;
if (inst->Dst[0].Register.File == TGSI_FILE_MEMORY) {
store_emit_memory(ctx, emit_data);
return;
}
if (inst->Memory.Qualifier & TGSI_MEMORY_VOLATILE)
si_emit_waitcnt(ctx, VM_CNT);
writeonly_memory = is_oneway_access_only(inst, info,
info->shader_buffers_load |
info->shader_buffers_atomic,
info->images_load |
info->images_atomic);
if (inst->Dst[0].Register.File == TGSI_FILE_BUFFER) {
store_emit_buffer(ctx, emit_data, writeonly_memory);
return;
}
if (target == TGSI_TEXTURE_BUFFER) {
emit_data->output[emit_data->chan] = lp_build_intrinsic(
builder, "llvm.amdgcn.buffer.store.format.v4f32",
emit_data->dst_type, emit_data->args,
emit_data->arg_count,
get_store_intr_attribs(writeonly_memory));
} else {
ac_get_image_intr_name("llvm.amdgcn.image.store",
LLVMTypeOf(emit_data->args[0]), /* vdata */
LLVMTypeOf(emit_data->args[1]), /* coords */
LLVMTypeOf(emit_data->args[2]), /* rsrc */
intrinsic_name, sizeof(intrinsic_name));
emit_data->output[emit_data->chan] =
lp_build_intrinsic(
builder, intrinsic_name, emit_data->dst_type,
emit_data->args, emit_data->arg_count,
get_store_intr_attribs(writeonly_memory));
}
}
static void atomic_fetch_args(
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction * inst = emit_data->inst;
LLVMValueRef data1, data2;
LLVMValueRef rsrc;
LLVMValueRef tmp;
emit_data->dst_type = ctx->f32;
tmp = lp_build_emit_fetch(bld_base, inst, 2, 0);
data1 = ac_to_integer(&ctx->ac, tmp);
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
tmp = lp_build_emit_fetch(bld_base, inst, 3, 0);
data2 = ac_to_integer(&ctx->ac, tmp);
}
/* llvm.amdgcn.image/buffer.atomic.cmpswap reflect the hardware order
* of arguments, which is reversed relative to TGSI (and GLSL)
*/
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
emit_data->args[emit_data->arg_count++] = data2;
emit_data->args[emit_data->arg_count++] = data1;
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
LLVMValueRef offset;
rsrc = shader_buffer_fetch_rsrc(ctx, &inst->Src[0], false);
tmp = lp_build_emit_fetch(bld_base, inst, 1, 0);
offset = ac_to_integer(&ctx->ac, tmp);
buffer_append_args(ctx, emit_data, rsrc, ctx->i32_0,
offset, true, false);
} else if (inst->Src[0].Register.File == TGSI_FILE_IMAGE ||
tgsi_is_bindless_image_file(inst->Src[0].Register.File)) {
unsigned target = inst->Memory.Texture;
LLVMValueRef coords;
image_fetch_rsrc(bld_base, &inst->Src[0], true, target, &rsrc);
coords = image_fetch_coords(bld_base, inst, 1, rsrc);
if (target == TGSI_TEXTURE_BUFFER) {
buffer_append_args(ctx, emit_data, rsrc, coords,
ctx->i32_0, true, false);
} else {
emit_data->args[emit_data->arg_count++] = coords;
emit_data->args[emit_data->arg_count++] = rsrc;
image_append_args(ctx, emit_data, target, true, false);
}
}
}
static void atomic_emit_memory(struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data) {
LLVMBuilderRef builder = ctx->ac.builder;
const struct tgsi_full_instruction * inst = emit_data->inst;
LLVMValueRef ptr, result, arg;
ptr = get_memory_ptr(ctx, inst, ctx->i32, 1);
arg = lp_build_emit_fetch(&ctx->bld_base, inst, 2, 0);
arg = ac_to_integer(&ctx->ac, arg);
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS) {
LLVMValueRef new_data;
new_data = lp_build_emit_fetch(&ctx->bld_base,
inst, 3, 0);
new_data = ac_to_integer(&ctx->ac, new_data);
result = LLVMBuildAtomicCmpXchg(builder, ptr, arg, new_data,
LLVMAtomicOrderingSequentiallyConsistent,
LLVMAtomicOrderingSequentiallyConsistent,
false);
result = LLVMBuildExtractValue(builder, result, 0, "");
} else {
LLVMAtomicRMWBinOp op;
switch(inst->Instruction.Opcode) {
case TGSI_OPCODE_ATOMUADD:
op = LLVMAtomicRMWBinOpAdd;
break;
case TGSI_OPCODE_ATOMXCHG:
op = LLVMAtomicRMWBinOpXchg;
break;
case TGSI_OPCODE_ATOMAND:
op = LLVMAtomicRMWBinOpAnd;
break;
case TGSI_OPCODE_ATOMOR:
op = LLVMAtomicRMWBinOpOr;
break;
case TGSI_OPCODE_ATOMXOR:
op = LLVMAtomicRMWBinOpXor;
break;
case TGSI_OPCODE_ATOMUMIN:
op = LLVMAtomicRMWBinOpUMin;
break;
case TGSI_OPCODE_ATOMUMAX:
op = LLVMAtomicRMWBinOpUMax;
break;
case TGSI_OPCODE_ATOMIMIN:
op = LLVMAtomicRMWBinOpMin;
break;
case TGSI_OPCODE_ATOMIMAX:
op = LLVMAtomicRMWBinOpMax;
break;
default:
unreachable("unknown atomic opcode");
}
result = LLVMBuildAtomicRMW(builder, op, ptr, arg,
LLVMAtomicOrderingSequentiallyConsistent,
false);
}
emit_data->output[emit_data->chan] = LLVMBuildBitCast(builder, result, emit_data->dst_type, "");
}
static void atomic_emit(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
const struct tgsi_full_instruction * inst = emit_data->inst;
char intrinsic_name[40];
LLVMValueRef tmp;
if (inst->Src[0].Register.File == TGSI_FILE_MEMORY) {
atomic_emit_memory(ctx, emit_data);
return;
}
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER ||
inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.buffer.atomic.%s", action->intr_name);
} else {
LLVMValueRef coords;
char coords_type[8];
if (inst->Instruction.Opcode == TGSI_OPCODE_ATOMCAS)
coords = emit_data->args[2];
else
coords = emit_data->args[1];
ac_build_type_name_for_intr(LLVMTypeOf(coords), coords_type, sizeof(coords_type));
snprintf(intrinsic_name, sizeof(intrinsic_name),
"llvm.amdgcn.image.atomic.%s.%s",
action->intr_name, coords_type);
}
tmp = lp_build_intrinsic(
builder, intrinsic_name, ctx->i32,
emit_data->args, emit_data->arg_count, 0);
emit_data->output[emit_data->chan] = ac_to_float(&ctx->ac, tmp);
}
static void set_tex_fetch_args(struct si_shader_context *ctx,
struct lp_build_emit_data *emit_data,
unsigned target,
LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
LLVMValueRef *param, unsigned count,
unsigned dmask)
{
struct ac_image_args args = {};
/* Pad to power of two vector */
while (count < util_next_power_of_two(count))
param[count++] = LLVMGetUndef(ctx->i32);
if (count > 1)
args.addr = lp_build_gather_values(&ctx->gallivm, param, count);
else
args.addr = param[0];
args.resource = res_ptr;
args.sampler = samp_ptr;
args.dmask = dmask;
args.unorm = target == TGSI_TEXTURE_RECT ||
target == TGSI_TEXTURE_SHADOWRECT;
args.da = tgsi_is_array_sampler(target);
/* Ugly, but we seem to have no other choice right now. */
STATIC_ASSERT(sizeof(args) <= sizeof(emit_data->args));
memcpy(emit_data->args, &args, sizeof(args));
}
static LLVMValueRef fix_resinfo(struct si_shader_context *ctx,
unsigned target, LLVMValueRef out)
{
LLVMBuilderRef builder = ctx->ac.builder;
/* 1D textures are allocated and used as 2D on GFX9. */
if (ctx->screen->b.chip_class >= GFX9 &&
(target == TGSI_TEXTURE_1D_ARRAY ||
target == TGSI_TEXTURE_SHADOW1D_ARRAY)) {
LLVMValueRef layers =
LLVMBuildExtractElement(builder, out,
LLVMConstInt(ctx->i32, 2, 0), "");
out = LLVMBuildInsertElement(builder, out, layers,
ctx->i32_1, "");
}
/* Divide the number of layers by 6 to get the number of cubes. */
if (target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
LLVMValueRef imm2 = LLVMConstInt(ctx->i32, 2, 0);
LLVMValueRef z = LLVMBuildExtractElement(builder, out, imm2, "");
z = LLVMBuildSDiv(builder, z, LLVMConstInt(ctx->i32, 6, 0), "");
out = LLVMBuildInsertElement(builder, out, z, imm2, "");
}
return out;
}
static void resq_fetch_args(
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction *inst = emit_data->inst;
const struct tgsi_full_src_register *reg = &inst->Src[0];
emit_data->dst_type = ctx->v4i32;
if (reg->Register.File == TGSI_FILE_BUFFER) {
emit_data->args[0] = shader_buffer_fetch_rsrc(ctx, reg, false);
emit_data->arg_count = 1;
} else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
&emit_data->args[0]);
emit_data->arg_count = 1;
} else {
LLVMValueRef res_ptr;
unsigned image_target;
if (inst->Memory.Texture == TGSI_TEXTURE_3D)
image_target = TGSI_TEXTURE_2D_ARRAY;
else
image_target = inst->Memory.Texture;
image_fetch_rsrc(bld_base, reg, false, inst->Memory.Texture,
&res_ptr);
set_tex_fetch_args(ctx, emit_data, image_target,
res_ptr, NULL, &ctx->i32_0, 1,
0xf);
}
}
static void resq_emit(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMBuilderRef builder = ctx->ac.builder;
const struct tgsi_full_instruction *inst = emit_data->inst;
LLVMValueRef out;
if (inst->Src[0].Register.File == TGSI_FILE_BUFFER) {
out = LLVMBuildExtractElement(builder, emit_data->args[0],
LLVMConstInt(ctx->i32, 2, 0), "");
} else if (inst->Memory.Texture == TGSI_TEXTURE_BUFFER) {
out = get_buffer_size(bld_base, emit_data->args[0]);
} else {
struct ac_image_args args;
memcpy(&args, emit_data->args, sizeof(args)); /* ugly */
args.opcode = ac_image_get_resinfo;
out = ac_build_image_opcode(&ctx->ac, &args);
out = fix_resinfo(ctx, inst->Memory.Texture, out);
}
emit_data->output[emit_data->chan] = out;
}
/**
* Load an image view, fmask view. or sampler state descriptor.
*/
LLVMValueRef si_load_sampler_desc(struct si_shader_context *ctx,
LLVMValueRef list, LLVMValueRef index,
enum ac_descriptor_type type)
{
LLVMBuilderRef builder = ctx->ac.builder;
switch (type) {
case AC_DESC_IMAGE:
/* The image is at [0:7]. */
index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
break;
case AC_DESC_BUFFER:
/* The buffer is in [4:7]. */
index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
index = LLVMBuildAdd(builder, index, ctx->i32_1, "");
list = LLVMBuildPointerCast(builder, list,
si_const_array(ctx->v4i32, 0), "");
break;
case AC_DESC_FMASK:
/* The FMASK is at [8:15]. */
index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 2, 0), "");
index = LLVMBuildAdd(builder, index, ctx->i32_1, "");
break;
case AC_DESC_SAMPLER:
/* The sampler state is at [12:15]. */
index = LLVMBuildMul(builder, index, LLVMConstInt(ctx->i32, 4, 0), "");
index = LLVMBuildAdd(builder, index, LLVMConstInt(ctx->i32, 3, 0), "");
list = LLVMBuildPointerCast(builder, list,
si_const_array(ctx->v4i32, 0), "");
break;
}
return ac_build_load_to_sgpr(&ctx->ac, list, index);
}
/* Disable anisotropic filtering if BASE_LEVEL == LAST_LEVEL.
*
* SI-CI:
* If BASE_LEVEL == LAST_LEVEL, the shader must disable anisotropic
* filtering manually. The driver sets img7 to a mask clearing
* MAX_ANISO_RATIO if BASE_LEVEL == LAST_LEVEL. The shader must do:
* s_and_b32 samp0, samp0, img7
*
* VI:
* The ANISO_OVERRIDE sampler field enables this fix in TA.
*/
static LLVMValueRef sici_fix_sampler_aniso(struct si_shader_context *ctx,
LLVMValueRef res, LLVMValueRef samp)
{
LLVMValueRef img7, samp0;
if (ctx->screen->b.chip_class >= VI)
return samp;
img7 = LLVMBuildExtractElement(ctx->ac.builder, res,
LLVMConstInt(ctx->i32, 7, 0), "");
samp0 = LLVMBuildExtractElement(ctx->ac.builder, samp,
ctx->i32_0, "");
samp0 = LLVMBuildAnd(ctx->ac.builder, samp0, img7, "");
return LLVMBuildInsertElement(ctx->ac.builder, samp, samp0,
ctx->i32_0, "");
}
static void tex_fetch_ptrs(
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data,
LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr, LLVMValueRef *fmask_ptr)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMValueRef list = LLVMGetParam(ctx->main_fn, ctx->param_samplers_and_images);
const struct tgsi_full_instruction *inst = emit_data->inst;
const struct tgsi_full_src_register *reg;
unsigned target = inst->Texture.Texture;
unsigned sampler_src;
LLVMValueRef index;
sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
reg = &emit_data->inst->Src[sampler_src];
if (reg->Register.Indirect) {
index = si_get_bounded_indirect_index(ctx,
&reg->Indirect,
reg->Register.Index,
ctx->num_samplers);
index = LLVMBuildAdd(ctx->ac.builder, index,
LLVMConstInt(ctx->i32, SI_NUM_IMAGES / 2, 0), "");
} else {
index = LLVMConstInt(ctx->i32,
si_get_sampler_slot(reg->Register.Index), 0);
}
if (reg->Register.File != TGSI_FILE_SAMPLER) {
/* Bindless descriptors are accessible from a different pair of
* user SGPR indices.
*/
list = LLVMGetParam(ctx->main_fn,
ctx->param_bindless_samplers_and_images);
index = lp_build_emit_fetch_src(bld_base, reg,
TGSI_TYPE_UNSIGNED, 0);
}
if (target == TGSI_TEXTURE_BUFFER)
*res_ptr = si_load_sampler_desc(ctx, list, index, AC_DESC_BUFFER);
else
*res_ptr = si_load_sampler_desc(ctx, list, index, AC_DESC_IMAGE);
if (samp_ptr)
*samp_ptr = NULL;
if (fmask_ptr)
*fmask_ptr = NULL;
if (target == TGSI_TEXTURE_2D_MSAA ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
if (fmask_ptr)
*fmask_ptr = si_load_sampler_desc(ctx, list, index,
AC_DESC_FMASK);
} else if (target != TGSI_TEXTURE_BUFFER) {
if (samp_ptr) {
*samp_ptr = si_load_sampler_desc(ctx, list, index,
AC_DESC_SAMPLER);
*samp_ptr = sici_fix_sampler_aniso(ctx, *res_ptr, *samp_ptr);
}
}
}
static void txq_fetch_args(
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction *inst = emit_data->inst;
unsigned target = inst->Texture.Texture;
LLVMValueRef res_ptr;
LLVMValueRef address;
tex_fetch_ptrs(bld_base, emit_data, &res_ptr, NULL, NULL);
if (target == TGSI_TEXTURE_BUFFER) {
/* Read the size from the buffer descriptor directly. */
emit_data->args[0] = get_buffer_size(bld_base, res_ptr);
return;
}
/* Textures - set the mip level. */
address = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
set_tex_fetch_args(ctx, emit_data, target, res_ptr,
NULL, &address, 1, 0xf);
}
static void txq_emit(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
struct ac_image_args args;
unsigned target = emit_data->inst->Texture.Texture;
if (target == TGSI_TEXTURE_BUFFER) {
/* Just return the buffer size. */
emit_data->output[emit_data->chan] = emit_data->args[0];
return;
}
memcpy(&args, emit_data->args, sizeof(args)); /* ugly */
args.opcode = ac_image_get_resinfo;
LLVMValueRef result = ac_build_image_opcode(&ctx->ac, &args);
emit_data->output[emit_data->chan] = fix_resinfo(ctx, target, result);
}
static void tex_fetch_args(
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction *inst = emit_data->inst;
unsigned opcode = inst->Instruction.Opcode;
unsigned target = inst->Texture.Texture;
LLVMValueRef coords[5], derivs[6];
LLVMValueRef address[16];
unsigned num_coords = tgsi_util_get_texture_coord_dim(target);
int ref_pos = tgsi_util_get_shadow_ref_src_index(target);
unsigned count = 0;
unsigned chan;
unsigned num_deriv_channels = 0;
bool has_offset = inst->Texture.NumOffsets > 0;
LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
unsigned dmask = 0xf;
tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
if (target == TGSI_TEXTURE_BUFFER) {
emit_data->dst_type = ctx->v4f32;
emit_data->args[0] = res_ptr;
emit_data->args[1] = ctx->i32_0;
emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
emit_data->arg_count = 3;
return;
}
/* Fetch and project texture coordinates */
coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W);
for (chan = 0; chan < 3; chan++) {
coords[chan] = lp_build_emit_fetch(bld_base,
emit_data->inst, 0,
chan);
if (opcode == TGSI_OPCODE_TXP)
coords[chan] = lp_build_emit_llvm_binary(bld_base,
TGSI_OPCODE_DIV,
coords[chan],
coords[3]);
}
if (opcode == TGSI_OPCODE_TXP)
coords[3] = ctx->ac.f32_1;
/* Pack offsets. */
if (has_offset &&
opcode != TGSI_OPCODE_TXF &&
opcode != TGSI_OPCODE_TXF_LZ) {
/* The offsets are six-bit signed integers packed like this:
* X=[5:0], Y=[13:8], and Z=[21:16].
*/
LLVMValueRef offset[3], pack;
assert(inst->Texture.NumOffsets == 1);
for (chan = 0; chan < 3; chan++) {
offset[chan] = lp_build_emit_fetch_texoffset(bld_base,
emit_data->inst, 0, chan);
offset[chan] = LLVMBuildAnd(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->i32, 0x3f, 0), "");
if (chan)
offset[chan] = LLVMBuildShl(ctx->ac.builder, offset[chan],
LLVMConstInt(ctx->i32, chan*8, 0), "");
}
pack = LLVMBuildOr(ctx->ac.builder, offset[0], offset[1], "");
pack = LLVMBuildOr(ctx->ac.builder, pack, offset[2], "");
address[count++] = pack;
}
/* Pack LOD bias value */
if (opcode == TGSI_OPCODE_TXB)
address[count++] = coords[3];
if (opcode == TGSI_OPCODE_TXB2)
address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
/* Pack depth comparison value */
if (tgsi_is_shadow_target(target) && opcode != TGSI_OPCODE_LODQ) {
LLVMValueRef z;
if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
z = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
} else {
assert(ref_pos >= 0);
z = coords[ref_pos];
}
/* Section 8.23.1 (Depth Texture Comparison Mode) of the
* OpenGL 4.5 spec says:
*
* "If the texture’s internal format indicates a fixed-point
* depth texture, then D_t and D_ref are clamped to the
* range [0, 1]; otherwise no clamping is performed."
*
* TC-compatible HTILE promotes Z16 and Z24 to Z32_FLOAT,
* so the depth comparison value isn't clamped for Z16 and
* Z24 anymore. Do it manually here.
*/
if (ctx->screen->b.chip_class >= VI) {
LLVMValueRef upgraded;
LLVMValueRef clamped;
upgraded = LLVMBuildExtractElement(ctx->ac.builder, samp_ptr,
LLVMConstInt(ctx->i32, 3, false), "");
upgraded = LLVMBuildLShr(ctx->ac.builder, upgraded,
LLVMConstInt(ctx->i32, 29, false), "");
upgraded = LLVMBuildTrunc(ctx->ac.builder, upgraded, ctx->i1, "");
clamped = ac_build_clamp(&ctx->ac, z);
z = LLVMBuildSelect(ctx->ac.builder, upgraded, clamped, z, "");
}
address[count++] = z;
}
/* Pack user derivatives */
if (opcode == TGSI_OPCODE_TXD) {
int param, num_src_deriv_channels, num_dst_deriv_channels;
switch (target) {
case TGSI_TEXTURE_3D:
num_src_deriv_channels = 3;
num_dst_deriv_channels = 3;
num_deriv_channels = 3;
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
num_src_deriv_channels = 2;
num_dst_deriv_channels = 2;
num_deriv_channels = 2;
break;
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_CUBE_ARRAY:
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
/* Cube derivatives will be converted to 2D. */
num_src_deriv_channels = 3;
num_dst_deriv_channels = 3;
num_deriv_channels = 2;
break;
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
num_src_deriv_channels = 1;
/* 1D textures are allocated and used as 2D on GFX9. */
if (ctx->screen->b.chip_class >= GFX9) {
num_dst_deriv_channels = 2;
num_deriv_channels = 2;
} else {
num_dst_deriv_channels = 1;
num_deriv_channels = 1;
}
break;
default:
unreachable("invalid target");
}
for (param = 0; param < 2; param++) {
for (chan = 0; chan < num_src_deriv_channels; chan++)
derivs[param * num_dst_deriv_channels + chan] =
lp_build_emit_fetch(bld_base, inst, param+1, chan);
/* Fill in the rest with zeros. */
for (chan = num_src_deriv_channels;
chan < num_dst_deriv_channels; chan++)
derivs[param * num_dst_deriv_channels + chan] =
ctx->ac.f32_0;
}
}
if (target == TGSI_TEXTURE_CUBE ||
target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
ac_prepare_cube_coords(&ctx->ac,
opcode == TGSI_OPCODE_TXD,
target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY,
opcode == TGSI_OPCODE_LODQ,
coords, derivs);
} else if (tgsi_is_array_sampler(target) &&
opcode != TGSI_OPCODE_TXF &&
opcode != TGSI_OPCODE_TXF_LZ &&
ctx->screen->b.chip_class <= VI) {
unsigned array_coord = target == TGSI_TEXTURE_1D_ARRAY ? 1 : 2;
coords[array_coord] =
ac_build_intrinsic(&ctx->ac, "llvm.rint.f32", ctx->f32,
&coords[array_coord], 1, 0);
}
if (opcode == TGSI_OPCODE_TXD)
for (int i = 0; i < num_deriv_channels * 2; i++)
address[count++] = derivs[i];
/* Pack texture coordinates */
address[count++] = coords[0];
if (num_coords > 1)
address[count++] = coords[1];
if (num_coords > 2)
address[count++] = coords[2];
/* 1D textures are allocated and used as 2D on GFX9. */
if (ctx->screen->b.chip_class >= GFX9) {
LLVMValueRef filler;
/* Use 0.5, so that we don't sample the border color. */
if (opcode == TGSI_OPCODE_TXF ||
opcode == TGSI_OPCODE_TXF_LZ)
filler = ctx->i32_0;
else
filler = LLVMConstReal(ctx->f32, 0.5);
if (target == TGSI_TEXTURE_1D ||
target == TGSI_TEXTURE_SHADOW1D) {
address[count++] = filler;
} else if (target == TGSI_TEXTURE_1D_ARRAY ||
target == TGSI_TEXTURE_SHADOW1D_ARRAY) {
address[count] = address[count - 1];
address[count - 1] = filler;
count++;
}
}
/* Pack LOD or sample index */
if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF)
address[count++] = coords[3];
else if (opcode == TGSI_OPCODE_TXL2)
address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
if (count > 16) {
assert(!"Cannot handle more than 16 texture address parameters");
count = 16;
}
for (chan = 0; chan < count; chan++)
address[chan] = ac_to_integer(&ctx->ac, address[chan]);
/* Adjust the sample index according to FMASK.
*
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* For example, 0x11111100 means there are only 2 samples stored and
* the second sample covers 3/4 of the pixel. When reading samples 0
* and 1, return physical sample 0 (determined by the first two 0s
* in FMASK), otherwise return physical sample 1.
*
* The sample index should be adjusted as follows:
* sample_index = (fmask >> (sample_index * 4)) & 0xF;
*/
if (target == TGSI_TEXTURE_2D_MSAA ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
struct lp_build_emit_data txf_emit_data = *emit_data;
LLVMValueRef txf_address[4];
/* We only need .xy for non-arrays, and .xyz for arrays. */
unsigned txf_count = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3;
struct tgsi_full_instruction inst = {};
memcpy(txf_address, address, sizeof(txf_address));
/* Read FMASK using TXF_LZ. */
inst.Instruction.Opcode = TGSI_OPCODE_TXF_LZ;
inst.Texture.Texture = target;
txf_emit_data.inst = &inst;
txf_emit_data.chan = 0;
set_tex_fetch_args(ctx, &txf_emit_data,
target, fmask_ptr, NULL,
txf_address, txf_count, 0xf);
build_tex_intrinsic(&tex_action, bld_base, &txf_emit_data);
/* Initialize some constants. */
LLVMValueRef four = LLVMConstInt(ctx->i32, 4, 0);
LLVMValueRef F = LLVMConstInt(ctx->i32, 0xF, 0);
/* Apply the formula. */
LLVMValueRef fmask =
LLVMBuildExtractElement(ctx->ac.builder,
txf_emit_data.output[0],
ctx->i32_0, "");
unsigned sample_chan = txf_count; /* the sample index is last */
LLVMValueRef sample_index4 =
LLVMBuildMul(ctx->ac.builder, address[sample_chan], four, "");
LLVMValueRef shifted_fmask =
LLVMBuildLShr(ctx->ac.builder, fmask, sample_index4, "");
LLVMValueRef final_sample =
LLVMBuildAnd(ctx->ac.builder, shifted_fmask, F, "");
/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
* resource descriptor is 0 (invalid),
*/
LLVMValueRef fmask_desc =
LLVMBuildBitCast(ctx->ac.builder, fmask_ptr,
ctx->v8i32, "");
LLVMValueRef fmask_word1 =
LLVMBuildExtractElement(ctx->ac.builder, fmask_desc,
ctx->i32_1, "");
LLVMValueRef word1_is_nonzero =
LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
fmask_word1, ctx->i32_0, "");
/* Replace the MSAA sample index. */
address[sample_chan] =
LLVMBuildSelect(ctx->ac.builder, word1_is_nonzero,
final_sample, address[sample_chan], "");
}
if (opcode == TGSI_OPCODE_TXF ||
opcode == TGSI_OPCODE_TXF_LZ) {
/* add tex offsets */
if (inst->Texture.NumOffsets) {
struct lp_build_context *uint_bld = &bld_base->uint_bld;
const struct tgsi_texture_offset *off = inst->TexOffsets;
assert(inst->Texture.NumOffsets == 1);
switch (target) {
case TGSI_TEXTURE_3D:
address[2] = lp_build_add(uint_bld, address[2],
ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleZ]);
/* fall through */
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
address[1] =
lp_build_add(uint_bld, address[1],
ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleY]);
/* fall through */
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
address[0] =
lp_build_add(uint_bld, address[0],
ctx->imms[off->Index * TGSI_NUM_CHANNELS + off->SwizzleX]);
break;
/* texture offsets do not apply to other texture targets */
}
}
}
if (opcode == TGSI_OPCODE_TG4) {
unsigned gather_comp = 0;
/* DMASK was repurposed for GATHER4. 4 components are always
* returned and DMASK works like a swizzle - it selects
* the component to fetch. The only valid DMASK values are
* 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
* (red,red,red,red) etc.) The ISA document doesn't mention
* this.
*/
/* Get the component index from src1.x for Gather4. */
if (!tgsi_is_shadow_target(target)) {
LLVMValueRef comp_imm;
struct tgsi_src_register src1 = inst->Src[1].Register;
assert(src1.File == TGSI_FILE_IMMEDIATE);
comp_imm = ctx->imms[src1.Index * TGSI_NUM_CHANNELS + src1.SwizzleX];
gather_comp = LLVMConstIntGetZExtValue(comp_imm);
gather_comp = CLAMP(gather_comp, 0, 3);
}
dmask = 1 << gather_comp;
}
set_tex_fetch_args(ctx, emit_data, target, res_ptr,
samp_ptr, address, count, dmask);
}
/* Gather4 should follow the same rules as bilinear filtering, but the hardware
* incorrectly forces nearest filtering if the texture format is integer.
* The only effect it has on Gather4, which always returns 4 texels for
* bilinear filtering, is that the final coordinates are off by 0.5 of
* the texel size.
*
* The workaround is to subtract 0.5 from the unnormalized coordinates,
* or (0.5 / size) from the normalized coordinates.
*
* However, cube textures with 8_8_8_8 data formats require a different
* workaround of overriding the num format to USCALED/SSCALED. This would lose
* precision in 32-bit data formats, so it needs to be applied dynamically at
* runtime. In this case, return an i1 value that indicates whether the
* descriptor was overridden (and hence a fixup of the sampler result is needed).
*/
static LLVMValueRef
si_lower_gather4_integer(struct si_shader_context *ctx,
struct ac_image_args *args,
unsigned target,
enum tgsi_return_type return_type)
{
LLVMBuilderRef builder = ctx->ac.builder;
LLVMValueRef wa_8888 = NULL;
LLVMValueRef coord = args->addr;
LLVMValueRef half_texel[2];
/* Texture coordinates start after:
* {offset, bias, z-compare, derivatives}
* Only the offset and z-compare can occur here.
*/
unsigned coord_vgpr_index = (int)args->offset + (int)args->compare;
int c;
assert(return_type == TGSI_RETURN_TYPE_SINT ||
return_type == TGSI_RETURN_TYPE_UINT);
if (target == TGSI_TEXTURE_CUBE ||
target == TGSI_TEXTURE_CUBE_ARRAY) {
LLVMValueRef formats;
LLVMValueRef data_format;
LLVMValueRef wa_formats;
formats = LLVMBuildExtractElement(builder, args->resource, ctx->i32_1, "");
data_format = LLVMBuildLShr(builder, formats,
LLVMConstInt(ctx->i32, 20, false), "");
data_format = LLVMBuildAnd(builder, data_format,
LLVMConstInt(ctx->i32, (1u << 6) - 1, false), "");
wa_8888 = LLVMBuildICmp(
builder, LLVMIntEQ, data_format,
LLVMConstInt(ctx->i32, V_008F14_IMG_DATA_FORMAT_8_8_8_8, false),
"");
uint32_t wa_num_format =
return_type == TGSI_RETURN_TYPE_UINT ?
S_008F14_NUM_FORMAT_GFX6(V_008F14_IMG_NUM_FORMAT_USCALED) :
S_008F14_NUM_FORMAT_GFX6(V_008F14_IMG_NUM_FORMAT_SSCALED);
wa_formats = LLVMBuildAnd(builder, formats,
LLVMConstInt(ctx->i32, C_008F14_NUM_FORMAT_GFX6, false),
"");
wa_formats = LLVMBuildOr(builder, wa_formats,
LLVMConstInt(ctx->i32, wa_num_format, false), "");
formats = LLVMBuildSelect(builder, wa_8888, wa_formats, formats, "");
args->resource = LLVMBuildInsertElement(
builder, args->resource, formats, ctx->i32_1, "");
}
if (target == TGSI_TEXTURE_RECT ||
target == TGSI_TEXTURE_SHADOWRECT) {
assert(!wa_8888);
half_texel[0] = half_texel[1] = LLVMConstReal(ctx->f32, -0.5);
} else {
struct tgsi_full_instruction txq_inst = {};
struct lp_build_emit_data txq_emit_data = {};
struct lp_build_if_state if_ctx;
if (wa_8888) {
/* Skip the texture size query entirely if we don't need it. */
lp_build_if(&if_ctx, &ctx->gallivm, LLVMBuildNot(builder, wa_8888, ""));
}
/* Query the texture size. */
txq_inst.Texture.Texture = target;
txq_emit_data.inst = &txq_inst;
txq_emit_data.dst_type = ctx->v4i32;
set_tex_fetch_args(ctx, &txq_emit_data, target,
args->resource, NULL, &ctx->i32_0,
1, 0xf);
txq_emit(NULL, &ctx->bld_base, &txq_emit_data);
/* Compute -0.5 / size. */
for (c = 0; c < 2; c++) {
half_texel[c] =
LLVMBuildExtractElement(builder, txq_emit_data.output[0],
LLVMConstInt(ctx->i32, c, 0), "");
half_texel[c] = LLVMBuildUIToFP(builder, half_texel[c], ctx->f32, "");
half_texel[c] =
lp_build_emit_llvm_unary(&ctx->bld_base,
TGSI_OPCODE_RCP, half_texel[c]);
half_texel[c] = LLVMBuildFMul(builder, half_texel[c],
LLVMConstReal(ctx->f32, -0.5), "");
}
if (wa_8888) {
lp_build_endif(&if_ctx);
LLVMBasicBlockRef bb[2] = { if_ctx.true_block, if_ctx.entry_block };
for (c = 0; c < 2; c++) {
LLVMValueRef values[2] = { half_texel[c], ctx->ac.f32_0 };
half_texel[c] = ac_build_phi(&ctx->ac, ctx->f32, 2,
values, bb);
}
}
}
for (c = 0; c < 2; c++) {
LLVMValueRef tmp;
LLVMValueRef index = LLVMConstInt(ctx->i32, coord_vgpr_index + c, 0);
tmp = LLVMBuildExtractElement(builder, coord, index, "");
tmp = ac_to_float(&ctx->ac, tmp);
tmp = LLVMBuildFAdd(builder, tmp, half_texel[c], "");
tmp = ac_to_integer(&ctx->ac, tmp);
coord = LLVMBuildInsertElement(builder, coord, tmp, index, "");
}
args->addr = coord;
return wa_8888;
}
/* The second half of the cube texture 8_8_8_8 integer workaround: adjust the
* result after the gather operation.
*/
static LLVMValueRef
si_fix_gather4_integer_result(struct si_shader_context *ctx,
LLVMValueRef result,
enum tgsi_return_type return_type,
LLVMValueRef wa)
{
LLVMBuilderRef builder = ctx->ac.builder;
assert(return_type == TGSI_RETURN_TYPE_SINT ||
return_type == TGSI_RETURN_TYPE_UINT);
for (unsigned chan = 0; chan < 4; ++chan) {
LLVMValueRef chanv = LLVMConstInt(ctx->i32, chan, false);
LLVMValueRef value;
LLVMValueRef wa_value;
value = LLVMBuildExtractElement(builder, result, chanv, "");
if (return_type == TGSI_RETURN_TYPE_UINT)
wa_value = LLVMBuildFPToUI(builder, value, ctx->i32, "");
else
wa_value = LLVMBuildFPToSI(builder, value, ctx->i32, "");
wa_value = ac_to_float(&ctx->ac, wa_value);
value = LLVMBuildSelect(builder, wa, wa_value, value, "");
result = LLVMBuildInsertElement(builder, result, value, chanv, "");
}
return result;
}
static void build_tex_intrinsic(const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction *inst = emit_data->inst;
struct ac_image_args args;
unsigned opcode = inst->Instruction.Opcode;
unsigned target = inst->Texture.Texture;
if (target == TGSI_TEXTURE_BUFFER) {
emit_data->output[emit_data->chan] =
ac_build_buffer_load_format(&ctx->ac,
emit_data->args[0],
emit_data->args[2],
emit_data->args[1],
true);
return;
}
memcpy(&args, emit_data->args, sizeof(args)); /* ugly */
args.opcode = ac_image_sample;
args.compare = tgsi_is_shadow_target(target);
args.offset = inst->Texture.NumOffsets > 0;
switch (opcode) {
case TGSI_OPCODE_TXF:
case TGSI_OPCODE_TXF_LZ:
args.opcode = opcode == TGSI_OPCODE_TXF_LZ ||
target == TGSI_TEXTURE_2D_MSAA ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA ?
ac_image_load : ac_image_load_mip;
args.compare = false;
args.offset = false;
break;
case TGSI_OPCODE_LODQ:
args.opcode = ac_image_get_lod;
args.compare = false;
args.offset = false;
break;
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TEX2:
case TGSI_OPCODE_TXP:
if (ctx->type != PIPE_SHADER_FRAGMENT)
args.level_zero = true;
break;
case TGSI_OPCODE_TEX_LZ:
args.level_zero = true;
break;
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXB2:
assert(ctx->type == PIPE_SHADER_FRAGMENT);
args.bias = true;
break;
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXL2:
args.lod = true;
break;
case TGSI_OPCODE_TXD:
args.deriv = true;
break;
case TGSI_OPCODE_TG4:
args.opcode = ac_image_gather4;
args.level_zero = true;
break;
default:
assert(0);
return;
}
/* The hardware needs special lowering for Gather4 with integer formats. */
LLVMValueRef gather4_int_result_workaround = NULL;
if (ctx->screen->b.chip_class <= VI &&
opcode == TGSI_OPCODE_TG4) {
assert(inst->Texture.ReturnType != TGSI_RETURN_TYPE_UNKNOWN);
if (inst->Texture.ReturnType == TGSI_RETURN_TYPE_SINT ||
inst->Texture.ReturnType == TGSI_RETURN_TYPE_UINT) {
gather4_int_result_workaround =
si_lower_gather4_integer(ctx, &args, target,
inst->Texture.ReturnType);
}
}
LLVMValueRef result =
ac_build_image_opcode(&ctx->ac, &args);
if (gather4_int_result_workaround) {
result = si_fix_gather4_integer_result(ctx, result,
inst->Texture.ReturnType,
gather4_int_result_workaround);
}
emit_data->output[emit_data->chan] = result;
}
static void si_llvm_emit_txqs(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *ctx = si_shader_context(bld_base);
LLVMValueRef res, samples;
LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
/* Read the samples from the descriptor directly. */
res = LLVMBuildBitCast(ctx->ac.builder, res_ptr, ctx->v8i32, "");
samples = LLVMBuildExtractElement(ctx->ac.builder, res,
LLVMConstInt(ctx->i32, 3, 0), "");
samples = LLVMBuildLShr(ctx->ac.builder, samples,
LLVMConstInt(ctx->i32, 16, 0), "");
samples = LLVMBuildAnd(ctx->ac.builder, samples,
LLVMConstInt(ctx->i32, 0xf, 0), "");
samples = LLVMBuildShl(ctx->ac.builder, ctx->i32_1,
samples, "");
emit_data->output[emit_data->chan] = samples;
}
static const struct lp_build_tgsi_action tex_action = {
.fetch_args = tex_fetch_args,
.emit = build_tex_intrinsic,
};
/**
* Setup actions for TGSI memory opcode, including texture opcodes.
*/
void si_shader_context_init_mem(struct si_shader_context *ctx)
{
struct lp_build_tgsi_context *bld_base;
struct lp_build_tgsi_action tmpl = {};
bld_base = &ctx->bld_base;
bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TEX_LZ] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TEX2] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXB] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXB2] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXD] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXF] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXF_LZ] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXL] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXL2] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXQ].fetch_args = txq_fetch_args;
bld_base->op_actions[TGSI_OPCODE_TXQ].emit = txq_emit;
bld_base->op_actions[TGSI_OPCODE_TG4] = tex_action;
bld_base->op_actions[TGSI_OPCODE_LODQ] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXQS].emit = si_llvm_emit_txqs;
bld_base->op_actions[TGSI_OPCODE_LOAD].fetch_args = load_fetch_args;
bld_base->op_actions[TGSI_OPCODE_LOAD].emit = load_emit;
bld_base->op_actions[TGSI_OPCODE_STORE].fetch_args = store_fetch_args;
bld_base->op_actions[TGSI_OPCODE_STORE].emit = store_emit;
bld_base->op_actions[TGSI_OPCODE_RESQ].fetch_args = resq_fetch_args;
bld_base->op_actions[TGSI_OPCODE_RESQ].emit = resq_emit;
tmpl.fetch_args = atomic_fetch_args;
tmpl.emit = atomic_emit;
bld_base->op_actions[TGSI_OPCODE_ATOMUADD] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMUADD].intr_name = "add";
bld_base->op_actions[TGSI_OPCODE_ATOMXCHG] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMXCHG].intr_name = "swap";
bld_base->op_actions[TGSI_OPCODE_ATOMCAS] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMCAS].intr_name = "cmpswap";
bld_base->op_actions[TGSI_OPCODE_ATOMAND] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMAND].intr_name = "and";
bld_base->op_actions[TGSI_OPCODE_ATOMOR] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMOR].intr_name = "or";
bld_base->op_actions[TGSI_OPCODE_ATOMXOR] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMXOR].intr_name = "xor";
bld_base->op_actions[TGSI_OPCODE_ATOMUMIN] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMUMIN].intr_name = "umin";
bld_base->op_actions[TGSI_OPCODE_ATOMUMAX] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMUMAX].intr_name = "umax";
bld_base->op_actions[TGSI_OPCODE_ATOMIMIN] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMIMIN].intr_name = "smin";
bld_base->op_actions[TGSI_OPCODE_ATOMIMAX] = tmpl;
bld_base->op_actions[TGSI_OPCODE_ATOMIMAX].intr_name = "smax";
}