blob: a5c58598677b2b9fd6ce0b2a4c768d15eaf9c019 [file] [log] [blame]
/* $Id: osmesa.c,v 1.40 2001/01/23 23:39:36 brianp Exp $ */
/*
* Mesa 3-D graphics library
* Version: 3.3
*
* Copyright (C) 1999-2000 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* Off-Screen Mesa rendering / Rendering into client memory space
*
* Note on thread safety: this driver is thread safe. All
* functions are reentrant. The notion of current context is
* managed by the core _mesa_make_current() and _mesa_get_current_context()
* functions. Those functions are thread-safe.
*/
#ifdef PC_HEADER
#include "all.h"
#else
#include "glheader.h"
#include "GL/osmesa.h"
#include "context.h"
#include "depth.h"
#include "macros.h"
#include "mem.h"
#include "matrix.h"
#include "mmath.h"
#include "mtypes.h"
#include "extensions.h"
#include "swrast/swrast.h"
#include "swrast_setup/swrast_setup.h"
#include "swrast/s_context.h"
#include "swrast/s_depth.h"
#include "swrast/s_lines.h"
#include "swrast/s_triangle.h"
#include "tnl/tnl.h"
#include "array_cache/acache.h"
#endif
/*
* This is the OS/Mesa context struct.
* Notice how it includes a GLcontext. By doing this we're mimicking
* C++ inheritance/derivation.
* Later, we can cast a GLcontext pointer into an OSMesaContext pointer
* or vice versa.
*/
struct osmesa_context {
GLcontext gl_ctx; /* The core GL/Mesa context */
GLvisual *gl_visual; /* Describes the buffers */
GLframebuffer *gl_buffer; /* Depth, stencil, accum, etc buffers */
GLenum format; /* either GL_RGBA or GL_COLOR_INDEX */
void *buffer; /* the image buffer */
GLint width, height; /* size of image buffer */
GLuint clearpixel; /* pixel for clearing the color buffer */
GLint rowlength; /* number of pixels per row */
GLint userRowLength; /* user-specified number of pixels per row */
GLint rshift, gshift; /* bit shifts for RGBA formats */
GLint bshift, ashift;
GLint rind, gind, bind; /* index offsets for RGBA formats */
void *rowaddr[MAX_HEIGHT]; /* address of first pixel in each image row */
GLboolean yup; /* TRUE -> Y increases upward */
/* FALSE -> Y increases downward */
};
/* A forward declaration: */
static void osmesa_update_state( GLcontext *ctx, GLuint newstate );
static void osmesa_register_swrast_functions( GLcontext *ctx );
#define OSMESA_CONTEXT(ctx) ((OSMesaContext) (ctx->DriverCtx))
/**********************************************************************/
/***** Public Functions *****/
/**********************************************************************/
/*
* Create an Off-Screen Mesa rendering context. The only attribute needed is
* an RGBA vs Color-Index mode flag.
*
* Input: format - either GL_RGBA or GL_COLOR_INDEX
* sharelist - specifies another OSMesaContext with which to share
* display lists. NULL indicates no sharing.
* Return: an OSMesaContext or 0 if error
*/
OSMesaContext GLAPIENTRY
OSMesaCreateContext( GLenum format, OSMesaContext sharelist )
{
return OSMesaCreateContextExt(format, DEFAULT_SOFTWARE_DEPTH_BITS,
8, 16, sharelist);
}
/*
* New in Mesa 3.5
*
* Create context and specify size of ancillary buffers.
*/
OSMesaContext GLAPIENTRY
OSMesaCreateContextExt( GLenum format, GLint depthBits, GLint stencilBits,
GLint accumBits, OSMesaContext sharelist )
{
OSMesaContext osmesa;
GLint rshift, gshift, bshift, ashift;
GLint rind, gind, bind;
GLint indexBits, redBits, greenBits, blueBits, alphaBits;
GLboolean rgbmode;
GLboolean swalpha;
GLuint i4 = 1;
GLubyte *i1 = (GLubyte *) &i4;
GLint little_endian = *i1;
swalpha = GL_FALSE;
rind = gind = bind = 0;
if (format==OSMESA_COLOR_INDEX) {
indexBits = 8;
rshift = gshift = bshift = ashift = 0;
rgbmode = GL_FALSE;
}
else if (format==OSMESA_RGBA) {
indexBits = 0;
redBits = 8;
greenBits = 8;
blueBits = 8;
alphaBits = 8;
if (little_endian) {
rshift = 0;
gshift = 8;
bshift = 16;
ashift = 24;
}
else {
rshift = 24;
gshift = 16;
bshift = 8;
ashift = 0;
}
rgbmode = GL_TRUE;
}
else if (format==OSMESA_BGRA) {
indexBits = 0;
redBits = 8;
greenBits = 8;
blueBits = 8;
alphaBits = 8;
if (little_endian) {
ashift = 0;
rshift = 8;
gshift = 16;
bshift = 24;
}
else {
bshift = 24;
gshift = 16;
rshift = 8;
ashift = 0;
}
rgbmode = GL_TRUE;
}
else if (format==OSMESA_ARGB) {
indexBits = 0;
redBits = 8;
greenBits = 8;
blueBits = 8;
alphaBits = 8;
if (little_endian) {
bshift = 0;
gshift = 8;
rshift = 16;
ashift = 24;
}
else {
ashift = 24;
rshift = 16;
gshift = 8;
bshift = 0;
}
rgbmode = GL_TRUE;
}
else if (format==OSMESA_RGB) {
indexBits = 0;
redBits = 8;
greenBits = 8;
blueBits = 8;
alphaBits = 0;
bshift = 0;
gshift = 8;
rshift = 16;
ashift = 24;
bind = 2;
gind = 1;
rind = 0;
rgbmode = GL_TRUE;
swalpha = GL_TRUE;
}
else if (format==OSMESA_BGR) {
indexBits = 0;
redBits = 8;
greenBits = 8;
blueBits = 8;
alphaBits = 0;
bshift = 0;
gshift = 8;
rshift = 16;
ashift = 24;
bind = 0;
gind = 1;
rind = 2;
rgbmode = GL_TRUE;
swalpha = GL_TRUE;
}
else {
return NULL;
}
osmesa = (OSMesaContext) CALLOC_STRUCT(osmesa_context);
if (osmesa) {
osmesa->gl_visual = _mesa_create_visual( rgbmode,
GL_FALSE, /* double buffer */
GL_FALSE, /* stereo */
redBits,
greenBits,
blueBits,
alphaBits,
indexBits,
depthBits,
stencilBits,
accumBits,
accumBits,
accumBits,
alphaBits ? accumBits : 0,
1 /* num samples */
);
if (!osmesa->gl_visual) {
FREE(osmesa);
return NULL;
}
if (!_mesa_initialize_context(&osmesa->gl_ctx,
osmesa->gl_visual,
sharelist ? &sharelist->gl_ctx
: (GLcontext *) NULL,
(void *) osmesa, GL_TRUE )) {
_mesa_destroy_visual( osmesa->gl_visual );
FREE(osmesa);
return NULL;
}
_mesa_enable_sw_extensions(&(osmesa->gl_ctx));
osmesa->gl_buffer = _mesa_create_framebuffer( osmesa->gl_visual,
osmesa->gl_visual->depthBits > 0,
osmesa->gl_visual->stencilBits > 0,
osmesa->gl_visual->accumRedBits > 0,
osmesa->gl_visual->alphaBits > 0 );
if (!osmesa->gl_buffer) {
_mesa_destroy_visual( osmesa->gl_visual );
_mesa_free_context_data( &osmesa->gl_ctx );
FREE(osmesa);
return NULL;
}
osmesa->format = format;
osmesa->buffer = NULL;
osmesa->width = 0;
osmesa->height = 0;
osmesa->clearpixel = 0;
osmesa->userRowLength = 0;
osmesa->rowlength = 0;
osmesa->yup = GL_TRUE;
osmesa->rshift = rshift;
osmesa->gshift = gshift;
osmesa->bshift = bshift;
osmesa->ashift = ashift;
osmesa->rind = rind;
osmesa->gind = gind;
osmesa->bind = bind;
/* Initialize the software rasterizer and helper modules.
*/
{
GLcontext *ctx = &osmesa->gl_ctx;
_swrast_CreateContext( ctx );
_ac_CreateContext( ctx );
_tnl_CreateContext( ctx );
_swsetup_CreateContext( ctx );
osmesa_register_swrast_functions( ctx );
}
}
return osmesa;
}
/*
* Destroy an Off-Screen Mesa rendering context.
*
* Input: ctx - the context to destroy
*/
void GLAPIENTRY OSMesaDestroyContext( OSMesaContext ctx )
{
if (ctx) {
_mesa_destroy_visual( ctx->gl_visual );
_mesa_destroy_framebuffer( ctx->gl_buffer );
_mesa_free_context_data( &ctx->gl_ctx );
FREE( ctx );
}
}
/*
* Recompute the values of the context's rowaddr array.
*/
static void compute_row_addresses( OSMesaContext ctx )
{
GLint i;
if (ctx->yup) {
/* Y=0 is bottom line of window */
if (ctx->format==OSMESA_COLOR_INDEX) {
/* 1-byte CI mode */
GLubyte *origin = (GLubyte *) ctx->buffer;
for (i=0;i<MAX_HEIGHT;i++) {
ctx->rowaddr[i] = origin + i * ctx->rowlength;
}
}
else {
if ((ctx->format==OSMESA_RGB) || (ctx->format==OSMESA_BGR)) {
/* 3-byte RGB mode */
GLubyte *origin = (GLubyte *) ctx->buffer;
for (i=0;i<MAX_HEIGHT;i++) {
ctx->rowaddr[i] = origin + (i * (ctx->rowlength*3));
}
} else {
/* 4-byte RGBA mode */
GLuint *origin = (GLuint *) ctx->buffer;
for (i=0;i<MAX_HEIGHT;i++) {
ctx->rowaddr[i] = origin + i * ctx->rowlength;
}
}
}
}
else {
/* Y=0 is top line of window */
if (ctx->format==OSMESA_COLOR_INDEX) {
/* 1-byte CI mode */
GLubyte *origin = (GLubyte *) ctx->buffer;
for (i=0;i<MAX_HEIGHT;i++) {
ctx->rowaddr[i] = origin + (ctx->height-i-1) * ctx->rowlength;
}
}
else {
if ((ctx->format==OSMESA_RGB) || (ctx->format==OSMESA_BGR)) {
/* 3-byte RGB mode */
GLubyte *origin = (GLubyte *) ctx->buffer;
for (i=0;i<MAX_HEIGHT;i++) {
ctx->rowaddr[i] = origin + ((ctx->height-i-1) * (ctx->rowlength*3));
}
} else {
/* 4-byte RGBA mode */
GLuint *origin = (GLuint *) ctx->buffer;
for (i=0;i<MAX_HEIGHT;i++) {
ctx->rowaddr[i] = origin + (ctx->height-i-1) * ctx->rowlength;
}
}
}
}
}
/*
* Bind an OSMesaContext to an image buffer. The image buffer is just a
* block of memory which the client provides. Its size must be at least
* as large as width*height*sizeof(type). Its address should be a multiple
* of 4 if using RGBA mode.
*
* Image data is stored in the order of glDrawPixels: row-major order
* with the lower-left image pixel stored in the first array position
* (ie. bottom-to-top).
*
* Since the only type initially supported is GL_UNSIGNED_BYTE, if the
* context is in RGBA mode, each pixel will be stored as a 4-byte RGBA
* value. If the context is in color indexed mode, each pixel will be
* stored as a 1-byte value.
*
* If the context's viewport hasn't been initialized yet, it will now be
* initialized to (0,0,width,height).
*
* Input: ctx - the rendering context
* buffer - the image buffer memory
* type - data type for pixel components, only GL_UNSIGNED_BYTE
* supported now
* width, height - size of image buffer in pixels, at least 1
* Return: GL_TRUE if success, GL_FALSE if error because of invalid ctx,
* invalid buffer address, type!=GL_UNSIGNED_BYTE, width<1, height<1,
* width>internal limit or height>internal limit.
*/
GLboolean GLAPIENTRY
OSMesaMakeCurrent( OSMesaContext ctx, void *buffer, GLenum type,
GLsizei width, GLsizei height )
{
if (!ctx || !buffer || type!=GL_UNSIGNED_BYTE
|| width<1 || height<1 || width>MAX_WIDTH || height>MAX_HEIGHT) {
return GL_FALSE;
}
osmesa_update_state( &ctx->gl_ctx, 0 );
_mesa_make_current( &ctx->gl_ctx, ctx->gl_buffer );
ctx->buffer = buffer;
ctx->width = width;
ctx->height = height;
if (ctx->userRowLength)
ctx->rowlength = ctx->userRowLength;
else
ctx->rowlength = width;
compute_row_addresses( ctx );
/* init viewport */
if (ctx->gl_ctx.Viewport.Width==0) {
/* initialize viewport and scissor box to buffer size */
_mesa_Viewport( 0, 0, width, height );
ctx->gl_ctx.Scissor.Width = width;
ctx->gl_ctx.Scissor.Height = height;
}
return GL_TRUE;
}
OSMesaContext GLAPIENTRY OSMesaGetCurrentContext( void )
{
GLcontext *ctx = _mesa_get_current_context();
if (ctx)
return (OSMesaContext) ctx;
else
return NULL;
}
void GLAPIENTRY OSMesaPixelStore( GLint pname, GLint value )
{
OSMesaContext ctx = OSMesaGetCurrentContext();
switch (pname) {
case OSMESA_ROW_LENGTH:
if (value<0) {
gl_error( &ctx->gl_ctx, GL_INVALID_VALUE,
"OSMesaPixelStore(value)" );
return;
}
ctx->userRowLength = value;
ctx->rowlength = value;
break;
case OSMESA_Y_UP:
ctx->yup = value ? GL_TRUE : GL_FALSE;
break;
default:
gl_error( &ctx->gl_ctx, GL_INVALID_ENUM, "OSMesaPixelStore(pname)" );
return;
}
compute_row_addresses( ctx );
}
void GLAPIENTRY OSMesaGetIntegerv( GLint pname, GLint *value )
{
OSMesaContext ctx = OSMesaGetCurrentContext();
switch (pname) {
case OSMESA_WIDTH:
*value = ctx->width;
return;
case OSMESA_HEIGHT:
*value = ctx->height;
return;
case OSMESA_FORMAT:
*value = ctx->format;
return;
case OSMESA_TYPE:
*value = GL_UNSIGNED_BYTE;
return;
case OSMESA_ROW_LENGTH:
*value = ctx->rowlength;
return;
case OSMESA_Y_UP:
*value = ctx->yup;
return;
default:
gl_error(&ctx->gl_ctx, GL_INVALID_ENUM, "OSMesaGetIntergerv(pname)");
return;
}
}
/*
* Return the depth buffer associated with an OSMesa context.
* Input: c - the OSMesa context
* Output: width, height - size of buffer in pixels
* bytesPerValue - bytes per depth value (2 or 4)
* buffer - pointer to depth buffer values
* Return: GL_TRUE or GL_FALSE to indicate success or failure.
*/
GLboolean GLAPIENTRY
OSMesaGetDepthBuffer( OSMesaContext c, GLint *width, GLint *height,
GLint *bytesPerValue, void **buffer )
{
if ((!c->gl_buffer) || (!c->gl_buffer->DepthBuffer)) {
*width = 0;
*height = 0;
*bytesPerValue = 0;
*buffer = 0;
return GL_FALSE;
}
else {
*width = c->gl_buffer->Width;
*height = c->gl_buffer->Height;
*bytesPerValue = sizeof(GLdepth);
*buffer = c->gl_buffer->DepthBuffer;
return GL_TRUE;
}
}
/*
* Return the color buffer associated with an OSMesa context.
* Input: c - the OSMesa context
* Output: width, height - size of buffer in pixels
* format - the pixel format (OSMESA_FORMAT)
* buffer - pointer to color buffer values
* Return: GL_TRUE or GL_FALSE to indicate success or failure.
*/
GLboolean GLAPIENTRY
OSMesaGetColorBuffer( OSMesaContext c, GLint *width,
GLint *height, GLint *format, void **buffer )
{
if (!c->buffer) {
*width = 0;
*height = 0;
*format = 0;
*buffer = 0;
return GL_FALSE;
}
else {
*width = c->width;
*height = c->height;
*format = c->format;
*buffer = c->buffer;
return GL_TRUE;
}
}
/**********************************************************************/
/*** Device Driver Functions ***/
/**********************************************************************/
/*
* Useful macros:
*/
#define PACK_RGBA(R,G,B,A) ( ((R) << osmesa->rshift) \
| ((G) << osmesa->gshift) \
| ((B) << osmesa->bshift) \
| ((A) << osmesa->ashift) )
#define PACK_RGBA2(R,G,B,A) ( ((R) << rshift) \
| ((G) << gshift) \
| ((B) << bshift) \
| ((A) << ashift) )
#define UNPACK_RED(P) (((P) >> osmesa->rshift) & 0xff)
#define UNPACK_GREEN(P) (((P) >> osmesa->gshift) & 0xff)
#define UNPACK_BLUE(P) (((P) >> osmesa->bshift) & 0xff)
#define UNPACK_ALPHA(P) (((P) >> osmesa->ashift) & 0xff)
#define PIXELADDR1(X,Y) ((GLubyte *) osmesa->rowaddr[Y] + (X))
#define PIXELADDR3(X,Y) ((GLubyte *) osmesa->rowaddr[Y] + ((X)*3))
#define PIXELADDR4(X,Y) ((GLuint *) osmesa->rowaddr[Y] + (X))
static GLboolean set_draw_buffer( GLcontext *ctx, GLenum mode )
{
(void) ctx;
if (mode==GL_FRONT_LEFT) {
return GL_TRUE;
}
else {
return GL_FALSE;
}
}
static void set_read_buffer( GLcontext *ctx, GLframebuffer *buffer, GLenum mode )
{
/* separate read buffer not supported */
ASSERT(buffer == ctx->DrawBuffer);
ASSERT(mode == GL_FRONT_LEFT);
}
static void clear_index( GLcontext *ctx, GLuint index )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
osmesa->clearpixel = index;
}
static void clear_color( GLcontext *ctx,
GLchan r, GLchan g, GLchan b, GLchan a )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
osmesa->clearpixel = PACK_RGBA( r, g, b, a );
}
static GLbitfield clear( GLcontext *ctx, GLbitfield mask, GLboolean all,
GLint x, GLint y, GLint width, GLint height )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
const GLuint *colorMask = (GLuint *) &ctx->Color.ColorMask;
/* we can't handle color or index masking */
if (*colorMask != 0xffffffff || ctx->Color.IndexMask != 0xffffffff)
return mask;
/* sanity check - we only have a front-left buffer */
ASSERT((mask & (DD_FRONT_RIGHT_BIT | DD_BACK_LEFT_BIT | DD_BACK_RIGHT_BIT)) == 0);
if (mask & DD_FRONT_LEFT_BIT) {
if (osmesa->format==OSMESA_COLOR_INDEX) {
if (all) {
/* Clear whole CI buffer */
MEMSET(osmesa->buffer, osmesa->clearpixel,
osmesa->rowlength * osmesa->height);
}
else {
/* Clear part of CI buffer */
GLint i, j;
for (i=0;i<height;i++) {
GLubyte *ptr1 = PIXELADDR1( x, (y+i) );
for (j=0;j<width;j++) {
*ptr1++ = osmesa->clearpixel;
}
}
}
}
else if ((osmesa->format==OSMESA_RGB)||(osmesa->format==OSMESA_BGR)) {
GLubyte rval = UNPACK_RED(osmesa->clearpixel);
GLubyte gval = UNPACK_GREEN(osmesa->clearpixel);
GLubyte bval = UNPACK_BLUE(osmesa->clearpixel);
GLint rind = osmesa->rind;
GLint gind = osmesa->gind;
GLint bind = osmesa->bind;
if (all) {
GLuint i, n;
GLubyte *ptr3 = (GLubyte *) osmesa->buffer;
/* Clear whole RGB buffer */
n = osmesa->rowlength * osmesa->height;
for (i=0;i<n;i++) {
ptr3[rind] = rval;
ptr3[gind] = gval;
ptr3[bind] = bval;
ptr3 += 3;
}
}
else {
/* Clear part of RGB buffer */
GLint i, j;
for (i=0;i<height;i++) {
GLubyte *ptr3 = PIXELADDR3( x, (y+i) );
for (j=0;j<width;j++) {
ptr3[rind] = rval;
ptr3[gind] = gval;
ptr3[bind] = bval;
ptr3 += 3;
}
}
}
}
else {
if (all) {
/* Clear whole RGBA buffer */
GLuint i, n, *ptr4;
n = osmesa->rowlength * osmesa->height;
ptr4 = (GLuint *) osmesa->buffer;
if (osmesa->clearpixel) {
for (i=0;i<n;i++) {
*ptr4++ = osmesa->clearpixel;
}
}
else {
BZERO(ptr4, n * sizeof(GLuint));
}
}
else {
/* Clear part of RGBA buffer */
GLint i, j;
for (i=0;i<height;i++) {
GLuint *ptr4 = PIXELADDR4( x, (y+i) );
for (j=0;j<width;j++) {
*ptr4++ = osmesa->clearpixel;
}
}
}
}
}
/* have Mesa clear all other buffers */
return mask & (~DD_FRONT_LEFT_BIT);
}
static void buffer_size( GLcontext *ctx, GLuint *width, GLuint *height )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
*width = osmesa->width;
*height = osmesa->height;
}
/**********************************************************************/
/***** Read/write spans/arrays of RGBA pixels *****/
/**********************************************************************/
/* Write RGBA pixels to an RGBA (or permuted) buffer. */
static void write_rgba_span( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgba[][4], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint *ptr4 = PIXELADDR4( x, y );
GLuint i;
GLint rshift = osmesa->rshift;
GLint gshift = osmesa->gshift;
GLint bshift = osmesa->bshift;
GLint ashift = osmesa->ashift;
if (mask) {
for (i=0;i<n;i++,ptr4++) {
if (mask[i]) {
*ptr4 = PACK_RGBA2( rgba[i][RCOMP], rgba[i][GCOMP], rgba[i][BCOMP], rgba[i][ACOMP] );
}
}
}
else {
for (i=0;i<n;i++,ptr4++) {
*ptr4 = PACK_RGBA2( rgba[i][RCOMP], rgba[i][GCOMP], rgba[i][BCOMP], rgba[i][ACOMP] );
}
}
}
/* Write RGBA pixels to an RGBA buffer. This is the fastest span-writer. */
static void write_rgba_span_rgba( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgba[][4],
const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint *ptr4 = PIXELADDR4( x, y );
const GLuint *rgba4 = (const GLuint *) rgba;
GLuint i;
if (mask) {
for (i=0;i<n;i++) {
if (mask[i]) {
ptr4[i] = rgba4[i];
}
}
}
else {
MEMCPY( ptr4, rgba4, n * 4 );
}
}
/* Write RGB pixels to an RGBA (or permuted) buffer. */
static void write_rgb_span( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgb[][3], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint *ptr4 = PIXELADDR4( x, y );
GLuint i;
GLint rshift = osmesa->rshift;
GLint gshift = osmesa->gshift;
GLint bshift = osmesa->bshift;
GLint ashift = osmesa->ashift;
if (mask) {
for (i=0;i<n;i++,ptr4++) {
if (mask[i]) {
*ptr4 = PACK_RGBA2( rgb[i][RCOMP], rgb[i][GCOMP], rgb[i][BCOMP], 255 );
}
}
}
else {
for (i=0;i<n;i++,ptr4++) {
*ptr4 = PACK_RGBA2( rgb[i][RCOMP], rgb[i][GCOMP], rgb[i][BCOMP], 255);
}
}
}
static void write_monocolor_span( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
const GLchan color[4], const GLubyte mask[] )
{
const OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
const GLuint pixel = PACK_RGBA(color[RCOMP], color[GCOMP],
color[BCOMP], color[ACOMP]);
GLuint *ptr4 = PIXELADDR4(x,y);
GLuint i;
for (i=0;i<n;i++,ptr4++) {
if (mask[i]) {
*ptr4 = pixel;
}
}
}
static void write_rgba_pixels( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
CONST GLchan rgba[][4], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
GLint rshift = osmesa->rshift;
GLint gshift = osmesa->gshift;
GLint bshift = osmesa->bshift;
GLint ashift = osmesa->ashift;
for (i=0;i<n;i++) {
if (mask[i]) {
GLuint *ptr4 = PIXELADDR4(x[i],y[i]);
*ptr4 = PACK_RGBA2( rgba[i][RCOMP], rgba[i][GCOMP], rgba[i][BCOMP], rgba[i][ACOMP] );
}
}
}
static void write_monocolor_pixels( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
const GLchan color[4],
const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
const GLuint pixel = PACK_RGBA(color[RCOMP], color[GCOMP],
color[BCOMP], color[ACOMP]);
GLuint i;
for (i=0;i<n;i++) {
if (mask[i]) {
GLuint *ptr4 = PIXELADDR4(x[i],y[i]);
*ptr4 = pixel;
}
}
}
static void read_rgba_span( const GLcontext *ctx, GLuint n, GLint x, GLint y,
GLchan rgba[][4] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
GLuint *ptr4 = PIXELADDR4(x,y);
for (i=0;i<n;i++) {
GLuint pixel = *ptr4++;
rgba[i][RCOMP] = UNPACK_RED(pixel);
rgba[i][GCOMP] = UNPACK_GREEN(pixel);
rgba[i][BCOMP] = UNPACK_BLUE(pixel);
rgba[i][ACOMP] = UNPACK_ALPHA(pixel);
}
}
/* Read RGBA pixels from an RGBA buffer */
static void read_rgba_span_rgba( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
GLchan rgba[][4] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint *ptr4 = PIXELADDR4(x,y);
MEMCPY( rgba, ptr4, n * 4 * sizeof(GLchan) );
}
static void read_rgba_pixels( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLchan rgba[][4], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
for (i=0;i<n;i++) {
if (mask[i]) {
GLuint *ptr4 = PIXELADDR4(x[i],y[i]);
GLuint pixel = *ptr4;
rgba[i][RCOMP] = UNPACK_RED(pixel);
rgba[i][GCOMP] = UNPACK_GREEN(pixel);
rgba[i][BCOMP] = UNPACK_BLUE(pixel);
rgba[i][ACOMP] = UNPACK_ALPHA(pixel);
}
}
}
/**********************************************************************/
/***** 3 byte RGB pixel support funcs *****/
/**********************************************************************/
/* Write RGBA pixels to an RGB or BGR buffer. */
static void write_rgba_span3( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgba[][4], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLubyte *ptr3 = PIXELADDR3( x, y);
GLuint i;
GLint rind = osmesa->rind;
GLint gind = osmesa->gind;
GLint bind = osmesa->bind;
if (mask) {
for (i=0;i<n;i++,ptr3+=3) {
if (mask[i]) {
ptr3[rind] = rgba[i][RCOMP];
ptr3[gind] = rgba[i][GCOMP];
ptr3[bind] = rgba[i][BCOMP];
}
}
}
else {
for (i=0;i<n;i++,ptr3+=3) {
ptr3[rind] = rgba[i][RCOMP];
ptr3[gind] = rgba[i][GCOMP];
ptr3[bind] = rgba[i][BCOMP];
}
}
}
/* Write RGB pixels to an RGB or BGR buffer. */
static void write_rgb_span3( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
CONST GLchan rgb[][3], const GLubyte mask[] )
{
const OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
const GLint rind = osmesa->rind;
const GLint gind = osmesa->gind;
const GLint bind = osmesa->bind;
GLubyte *ptr3 = PIXELADDR3( x, y);
GLuint i;
if (mask) {
for (i=0;i<n;i++,ptr3+=3) {
if (mask[i]) {
ptr3[rind] = rgb[i][RCOMP];
ptr3[gind] = rgb[i][GCOMP];
ptr3[bind] = rgb[i][BCOMP];
}
}
}
else {
for (i=0;i<n;i++,ptr3+=3) {
ptr3[rind] = rgb[i][RCOMP];
ptr3[gind] = rgb[i][GCOMP];
ptr3[bind] = rgb[i][BCOMP];
}
}
}
static void write_monocolor_span3( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
const GLchan color[4], const GLubyte mask[] )
{
const OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
const GLubyte rval = color[RCOMP];
const GLubyte gval = color[GCOMP];
const GLubyte bval = color[BCOMP];
const GLint rind = osmesa->rind;
const GLint gind = osmesa->gind;
const GLint bind = osmesa->bind;
GLubyte *ptr3 = PIXELADDR3( x, y);
GLuint i;
for (i=0;i<n;i++,ptr3+=3) {
if (mask[i]) {
ptr3[rind] = rval;
ptr3[gind] = gval;
ptr3[bind] = bval;
}
}
}
static void write_rgba_pixels3( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
CONST GLchan rgba[][4], const GLubyte mask[] )
{
const OSMesaContext osmesa = (const OSMesaContext) ctx;
GLuint i;
GLint rind = osmesa->rind;
GLint gind = osmesa->gind;
GLint bind = osmesa->bind;
for (i=0;i<n;i++) {
if (mask[i]) {
GLubyte *ptr3 = PIXELADDR3(x[i],y[i]);
ptr3[rind] = rgba[i][RCOMP];
ptr3[gind] = rgba[i][GCOMP];
ptr3[bind] = rgba[i][BCOMP];
}
}
}
static void write_monocolor_pixels3( const GLcontext *ctx,
GLuint n, const GLint x[],
const GLint y[],
const GLchan color[4],
const GLubyte mask[] )
{
const OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
const GLint rind = osmesa->rind;
const GLint gind = osmesa->gind;
const GLint bind = osmesa->bind;
const GLubyte rval = color[RCOMP];
const GLubyte gval = color[GCOMP];
const GLubyte bval = color[BCOMP];
GLuint i;
for (i=0;i<n;i++) {
if (mask[i]) {
GLubyte *ptr3 = PIXELADDR3(x[i],y[i]);
ptr3[rind] = rval;
ptr3[gind] = gval;
ptr3[bind] = bval;
}
}
}
static void read_rgba_span3( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
GLchan rgba[][4] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
GLint rind = osmesa->rind;
GLint gind = osmesa->gind;
GLint bind = osmesa->bind;
const GLubyte *ptr3 = PIXELADDR3( x, y);
for (i=0;i<n;i++,ptr3+=3) {
rgba[i][RCOMP] = ptr3[rind];
rgba[i][GCOMP] = ptr3[gind];
rgba[i][BCOMP] = ptr3[bind];
rgba[i][ACOMP] = 0;
}
}
static void read_rgba_pixels3( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLchan rgba[][4], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
GLint rind = osmesa->rind;
GLint gind = osmesa->gind;
GLint bind = osmesa->bind;
for (i=0;i<n;i++) {
if (mask[i]) {
const GLubyte *ptr3 = PIXELADDR3(x[i],y[i]);
rgba[i][RCOMP] = ptr3[rind];
rgba[i][GCOMP] = ptr3[gind];
rgba[i][BCOMP] = ptr3[bind];
rgba[i][ACOMP] = 0;
}
}
}
/**********************************************************************/
/***** Read/write spans/arrays of CI pixels *****/
/**********************************************************************/
/* Write 32-bit color index to buffer */
static void write_index32_span( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
const GLuint index[], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLubyte *ptr1 = PIXELADDR1(x,y);
GLuint i;
if (mask) {
for (i=0;i<n;i++,ptr1++) {
if (mask[i]) {
*ptr1 = (GLubyte) index[i];
}
}
}
else {
for (i=0;i<n;i++,ptr1++) {
*ptr1 = (GLubyte) index[i];
}
}
}
/* Write 8-bit color index to buffer */
static void write_index8_span( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
const GLubyte index[], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLubyte *ptr1 = PIXELADDR1(x,y);
GLuint i;
if (mask) {
for (i=0;i<n;i++,ptr1++) {
if (mask[i]) {
*ptr1 = (GLubyte) index[i];
}
}
}
else {
MEMCPY( ptr1, index, n );
}
}
static void write_monoindex_span( const GLcontext *ctx,
GLuint n, GLint x, GLint y,
GLuint colorIndex, const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLubyte *ptr1 = PIXELADDR1(x,y);
GLuint i;
for (i=0;i<n;i++,ptr1++) {
if (mask[i]) {
*ptr1 = (GLubyte) colorIndex;
}
}
}
static void write_index_pixels( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
const GLuint index[], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
for (i=0;i<n;i++) {
if (mask[i]) {
GLubyte *ptr1 = PIXELADDR1(x[i],y[i]);
*ptr1 = (GLubyte) index[i];
}
}
}
static void write_monoindex_pixels( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLuint colorIndex, const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
for (i=0;i<n;i++) {
if (mask[i]) {
GLubyte *ptr1 = PIXELADDR1(x[i],y[i]);
*ptr1 = (GLubyte) colorIndex;
}
}
}
static void read_index_span( const GLcontext *ctx,
GLuint n, GLint x, GLint y, GLuint index[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
const GLubyte *ptr1 = PIXELADDR1(x,y);
for (i=0;i<n;i++,ptr1++) {
index[i] = (GLuint) *ptr1;
}
}
static void read_index_pixels( const GLcontext *ctx,
GLuint n, const GLint x[], const GLint y[],
GLuint index[], const GLubyte mask[] )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLuint i;
for (i=0;i<n;i++) {
if (mask[i] ) {
const GLubyte *ptr1 = PIXELADDR1(x[i],y[i]);
index[i] = (GLuint) *ptr1;
}
}
}
/**********************************************************************/
/***** Optimized line rendering *****/
/**********************************************************************/
/*
* Draw a flat-shaded, RGB line into an osmesa buffer.
*/
static void flat_rgba_line( GLcontext *ctx,
const SWvertex *vert0, const SWvertex *vert1 )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLubyte *color = (GLubyte*) vert0->color;
unsigned long pixel = PACK_RGBA( color[0], color[1], color[2], color[3] );
#define INTERP_XY 1
#define CLIP_HACK 1
#define PLOT(X,Y) { GLuint *ptr4 = PIXELADDR4(X,Y); *ptr4 = pixel; }
#ifdef WIN32
#include "..\swrast\s_linetemp.h"
#else
#include "swrast/s_linetemp.h"
#endif
}
/*
* Draw a flat-shaded, Z-less, RGB line into an osmesa buffer.
*/
static void flat_rgba_z_line( GLcontext *ctx,
const SWvertex *vert0, const SWvertex *vert1 )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLubyte *color = (GLubyte*) vert0->color;
unsigned long pixel = PACK_RGBA( color[0], color[1], color[2], color[3] );
#define INTERP_XY 1
#define INTERP_Z 1
#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
#define CLIP_HACK 1
#define PLOT(X,Y) \
if (Z < *zPtr) { \
GLuint *ptr4 = PIXELADDR4(X,Y); \
*ptr4 = pixel; \
*zPtr = Z; \
}
#ifdef WIN32
#include "..\swrast\s_linetemp.h"
#else
#include "swrast/s_linetemp.h"
#endif
}
/*
* Draw a flat-shaded, alpha-blended, RGB line into an osmesa buffer.
*/
static void flat_blend_rgba_line( GLcontext *ctx,
const SWvertex *vert0, const SWvertex *vert1 )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLint rshift = osmesa->rshift;
GLint gshift = osmesa->gshift;
GLint bshift = osmesa->bshift;
GLint avalue = vert0->color[3];
GLint msavalue = 255 - avalue;
GLint rvalue = vert0->color[0]*avalue;
GLint gvalue = vert0->color[1]*avalue;
GLint bvalue = vert0->color[2]*avalue;
#define INTERP_XY 1
#define CLIP_HACK 1
#define PLOT(X,Y) \
{ GLuint *ptr4 = PIXELADDR4(X,Y); \
GLuint pixel = 0; \
pixel |=((((((*ptr4) >> rshift) & 0xff)*msavalue+rvalue)>>8) << rshift);\
pixel |=((((((*ptr4) >> gshift) & 0xff)*msavalue+gvalue)>>8) << gshift);\
pixel |=((((((*ptr4) >> bshift) & 0xff)*msavalue+bvalue)>>8) << bshift);\
*ptr4 = pixel; \
}
#ifdef WIN32
#include "..\swrast\s_linetemp.h"
#else
#include "swrast/s_linetemp.h"
#endif
}
/*
* Draw a flat-shaded, Z-less, alpha-blended, RGB line into an osmesa buffer.
*/
static void flat_blend_rgba_z_line( GLcontext *ctx,
const SWvertex *vert0, const SWvertex *vert1 )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLint rshift = osmesa->rshift;
GLint gshift = osmesa->gshift;
GLint bshift = osmesa->bshift;
GLint avalue = vert0->color[3];
GLint msavalue = 256 - avalue;
GLint rvalue = vert0->color[0]*avalue;
GLint gvalue = vert0->color[1]*avalue;
GLint bvalue = vert0->color[2]*avalue;
#define INTERP_XY 1
#define INTERP_Z 1
#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
#define CLIP_HACK 1
#define PLOT(X,Y) \
if (Z < *zPtr) { \
GLuint *ptr4 = PIXELADDR4(X,Y); \
GLuint pixel = 0; \
pixel |=((((((*ptr4) >> rshift) & 0xff)*msavalue+rvalue)>>8) << rshift); \
pixel |=((((((*ptr4) >> gshift) & 0xff)*msavalue+gvalue)>>8) << gshift); \
pixel |=((((((*ptr4) >> bshift) & 0xff)*msavalue+bvalue)>>8) << bshift); \
*ptr4 = pixel; \
}
#ifdef WIN32
#include "..\swrast\s_linetemp.h"
#else
#include "swrast/s_linetemp.h"
#endif
}
/*
* Draw a flat-shaded, Z-less, alpha-blended, RGB line into an osmesa buffer.
*/
static void flat_blend_rgba_z_line_write( GLcontext *ctx,
const SWvertex *vert0, const SWvertex *vert1 )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLint rshift = osmesa->rshift;
GLint gshift = osmesa->gshift;
GLint bshift = osmesa->bshift;
GLint avalue = vert0->color[3];
GLint msavalue = 256 - avalue;
GLint rvalue = vert0->color[0]*avalue;
GLint gvalue = vert0->color[1]*avalue;
GLint bvalue = vert0->color[2]*avalue;
#define INTERP_XY 1
#define INTERP_Z 1
#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
#define CLIP_HACK 1
#define PLOT(X,Y) \
if (Z < *zPtr) { \
GLuint *ptr4 = PIXELADDR4(X,Y); \
GLuint pixel = 0; \
pixel |=((((((*ptr4) >> rshift) & 0xff)*msavalue+rvalue)>>8) << rshift); \
pixel |=((((((*ptr4) >> gshift) & 0xff)*msavalue+gvalue)>>8) << gshift); \
pixel |=((((((*ptr4) >> bshift) & 0xff)*msavalue+bvalue)>>8) << bshift); \
*ptr4 = pixel; \
*zPtr = Z; \
}
#ifdef WIN32
#include "..\swrast\s_linetemp.h"
#else
#include "swrast/s_linetemp.h"
#endif
}
/*
* Analyze context state to see if we can provide a fast line drawing
* function, like those in lines.c. Otherwise, return NULL.
*/
static swrast_line_func
osmesa_choose_line_function( GLcontext *ctx )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
SWcontext *swrast = SWRAST_CONTEXT(ctx);
if (ctx->RenderMode != GL_RENDER) return NULL;
if (ctx->Line.SmoothFlag) return NULL;
if (ctx->Texture._ReallyEnabled) return NULL;
if (ctx->Light.ShadeModel!=GL_FLAT) return NULL;
if (ctx->Line.Width==1.0F
&& ctx->Line.StippleFlag==GL_FALSE) {
if (swrast->_RasterMask==DEPTH_BIT
&& ctx->Depth.Func==GL_LESS
&& ctx->Depth.Mask==GL_TRUE
&& ctx->Visual.depthBits == DEFAULT_SOFTWARE_DEPTH_BITS) {
switch(osmesa->format) {
case OSMESA_RGBA:
case OSMESA_BGRA:
case OSMESA_ARGB:
return flat_rgba_z_line;
default:
return NULL;
}
}
if (swrast->_RasterMask==0) {
switch(osmesa->format) {
case OSMESA_RGBA:
case OSMESA_BGRA:
case OSMESA_ARGB:
return flat_rgba_line;
default:
return NULL;
}
}
if (swrast->_RasterMask==(DEPTH_BIT|BLEND_BIT)
&& ctx->Depth.Func==GL_LESS
&& ctx->Depth.Mask==GL_TRUE
&& ctx->Visual.depthBits == DEFAULT_SOFTWARE_DEPTH_BITS
&& ctx->Color.BlendSrcRGB==GL_SRC_ALPHA
&& ctx->Color.BlendDstRGB==GL_ONE_MINUS_SRC_ALPHA
&& ctx->Color.BlendSrcA==GL_SRC_ALPHA
&& ctx->Color.BlendDstA==GL_ONE_MINUS_SRC_ALPHA
&& ctx->Color.BlendEquation==GL_FUNC_ADD_EXT) {
switch(osmesa->format) {
case OSMESA_RGBA:
case OSMESA_BGRA:
case OSMESA_ARGB:
return flat_blend_rgba_z_line_write;
default:
return NULL;
}
}
if (swrast->_RasterMask==(DEPTH_BIT|BLEND_BIT)
&& ctx->Depth.Func==GL_LESS
&& ctx->Depth.Mask==GL_FALSE
&& ctx->Visual.depthBits == DEFAULT_SOFTWARE_DEPTH_BITS
&& ctx->Color.BlendSrcRGB==GL_SRC_ALPHA
&& ctx->Color.BlendDstRGB==GL_ONE_MINUS_SRC_ALPHA
&& ctx->Color.BlendSrcA==GL_SRC_ALPHA
&& ctx->Color.BlendDstA==GL_ONE_MINUS_SRC_ALPHA
&& ctx->Color.BlendEquation==GL_FUNC_ADD_EXT) {
switch(osmesa->format) {
case OSMESA_RGBA:
case OSMESA_BGRA:
case OSMESA_ARGB:
return flat_blend_rgba_z_line;
default:
return NULL;
}
}
if (swrast->_RasterMask==BLEND_BIT
&& ctx->Color.BlendSrcRGB==GL_SRC_ALPHA
&& ctx->Color.BlendDstRGB==GL_ONE_MINUS_SRC_ALPHA
&& ctx->Color.BlendSrcA==GL_SRC_ALPHA
&& ctx->Color.BlendDstA==GL_ONE_MINUS_SRC_ALPHA
&& ctx->Color.BlendEquation==GL_FUNC_ADD_EXT) {
switch(osmesa->format) {
case OSMESA_RGBA:
case OSMESA_BGRA:
case OSMESA_ARGB:
return flat_blend_rgba_line;
default:
return NULL;
}
}
}
return NULL;
}
/**********************************************************************/
/***** Optimized triangle rendering *****/
/**********************************************************************/
/*
* Smooth-shaded, z-less triangle, RGBA color.
*/
static void smooth_rgba_z_triangle( GLcontext *ctx,
const SWvertex *v0,
const SWvertex *v1,
const SWvertex *v2 )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
GLint rshift = osmesa->rshift;
GLint gshift = osmesa->gshift;
GLint bshift = osmesa->bshift;
GLint ashift = osmesa->ashift;
#define INTERP_Z 1
#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
#define INTERP_RGB 1
#define INTERP_ALPHA 1
#define INNER_LOOP( LEFT, RIGHT, Y ) \
{ \
GLint i, len = RIGHT-LEFT; \
GLuint *img = PIXELADDR4(LEFT,Y); \
(void) fffog; \
for (i=0;i<len;i++,img++) { \
GLdepth z = FixedToDepth(ffz); \
if (z < zRow[i]) { \
*img = PACK_RGBA2( FixedToInt(ffr), FixedToInt(ffg), \
FixedToInt(ffb), FixedToInt(ffa) ); \
zRow[i] = z; \
} \
ffr += fdrdx; ffg += fdgdx; ffb += fdbdx; ffa += fdadx;\
ffz += fdzdx; \
} \
}
#ifdef WIN32
#include "..\swrast\s_tritemp.h"
#else
#include "swrast/s_tritemp.h"
#endif
}
/*
* Flat-shaded, z-less triangle, RGBA color.
*/
static void flat_rgba_z_triangle( GLcontext *ctx,
const SWvertex *v0,
const SWvertex *v1,
const SWvertex *v2 )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
#define INTERP_Z 1
#define DEPTH_TYPE DEFAULT_SOFTWARE_DEPTH_TYPE
#define SETUP_CODE \
GLubyte r = v0->color[0]; \
GLubyte g = v0->color[1]; \
GLubyte b = v0->color[2]; \
GLubyte a = v0->color[3]; \
GLuint pixel = PACK_RGBA(r,g,b,a);
#define INNER_LOOP( LEFT, RIGHT, Y ) \
{ \
GLint i, len = RIGHT-LEFT; \
GLuint *img = PIXELADDR4(LEFT,Y); \
(void) fffog; \
for (i=0;i<len;i++,img++) { \
GLdepth z = FixedToDepth(ffz); \
if (z < zRow[i]) { \
*img = pixel; \
zRow[i] = z; \
} \
ffz += fdzdx; \
} \
}
#ifdef WIN32
#include "..\swrast\s_tritemp.h"
#else
#include "swrast/s_tritemp.h"
#endif
}
/*
* Return pointer to an accelerated triangle function if possible.
*/
static swrast_tri_func
osmesa_choose_triangle_function( GLcontext *ctx )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
SWcontext *swrast = SWRAST_CONTEXT(ctx);
if ((osmesa->format==OSMESA_RGB)||(osmesa->format==OSMESA_BGR))
return (swrast_tri_func)NULL;
if (ctx->RenderMode != GL_RENDER) return (swrast_tri_func) NULL;
if (ctx->Polygon.SmoothFlag) return (swrast_tri_func) NULL;
if (ctx->Polygon.StippleFlag) return (swrast_tri_func) NULL;
if (ctx->Texture._ReallyEnabled) return (swrast_tri_func) NULL;
if (swrast->_RasterMask==DEPTH_BIT
&& ctx->Depth.Func==GL_LESS
&& ctx->Depth.Mask==GL_TRUE
&& ctx->Visual.depthBits == DEFAULT_SOFTWARE_DEPTH_BITS
&& osmesa->format!=OSMESA_COLOR_INDEX) {
if (ctx->Light.ShadeModel==GL_SMOOTH) {
return smooth_rgba_z_triangle;
}
else {
return flat_rgba_z_triangle;
}
}
return (swrast_tri_func)NULL;
}
/* Override for the swrast triangle-selection function. Try to use one
* of our internal triangle functions, otherwise fall back to the
* standard swrast functions.
*/
static void osmesa_choose_triangle( GLcontext *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
swrast->Triangle = osmesa_choose_triangle_function( ctx );
if (!swrast->Triangle)
_swrast_choose_triangle( ctx );
}
static void osmesa_choose_line( GLcontext *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT(ctx);
swrast->Line = osmesa_choose_line_function( ctx );
if (!swrast->Line)
_swrast_choose_line( ctx );
}
#define OSMESA_NEW_LINE (_NEW_LINE | \
_NEW_TEXTURE | \
_NEW_LIGHT | \
_NEW_DEPTH | \
_NEW_RENDERMODE | \
_SWRAST_NEW_RASTERMASK)
#define OSMESA_NEW_TRIANGLE (_NEW_POLYGON | \
_NEW_TEXTURE | \
_NEW_LIGHT | \
_NEW_DEPTH | \
_NEW_RENDERMODE | \
_SWRAST_NEW_RASTERMASK)
/* Extend the software rasterizer with our line and triangle
* functions.
*/
static void osmesa_register_swrast_functions( GLcontext *ctx )
{
SWcontext *swrast = SWRAST_CONTEXT( ctx );
swrast->choose_line = osmesa_choose_line;
swrast->choose_triangle = osmesa_choose_triangle;
swrast->invalidate_line |= OSMESA_NEW_LINE;
swrast->invalidate_triangle |= OSMESA_NEW_TRIANGLE;
}
static const GLubyte *get_string( GLcontext *ctx, GLenum name )
{
(void) ctx;
switch (name) {
case GL_RENDERER:
return (const GLubyte *) "Mesa OffScreen";
default:
return NULL;
}
}
static void osmesa_update_state( GLcontext *ctx, GLuint new_state )
{
OSMesaContext osmesa = OSMESA_CONTEXT(ctx);
ASSERT((void *) osmesa == (void *) ctx->DriverCtx);
ctx->Driver.GetString = get_string;
ctx->Driver.UpdateState = osmesa_update_state;
ctx->Driver.SetDrawBuffer = set_draw_buffer;
ctx->Driver.SetReadBuffer = set_read_buffer;
ctx->Driver.ClearIndex = clear_index;
ctx->Driver.ClearColor = clear_color;
ctx->Driver.Clear = clear;
ctx->Driver.GetBufferSize = buffer_size;
ctx->Driver.PointsFunc = _swsetup_Points;
ctx->Driver.LineFunc = _swsetup_Line;
ctx->Driver.TriangleFunc = _swsetup_Triangle;
ctx->Driver.QuadFunc = _swsetup_Quad;
ctx->Driver.BuildProjectedVertices = _swsetup_BuildProjectedVertices;
ctx->Driver.RenderPrimitive = _swsetup_RenderPrimitive;
ctx->Driver.RenderStart = _swsetup_RenderStart;
ctx->Driver.RenderFinish = _swsetup_RenderFinish;
/* RGB(A) span/pixel functions */
if ((osmesa->format==OSMESA_RGB) || (osmesa->format==OSMESA_BGR)) {
/* 3 bytes / pixel in frame buffer */
ctx->Driver.WriteRGBASpan = write_rgba_span3;
ctx->Driver.WriteRGBSpan = write_rgb_span3;
ctx->Driver.WriteRGBAPixels = write_rgba_pixels3;
ctx->Driver.WriteMonoRGBASpan = write_monocolor_span3;
ctx->Driver.WriteMonoRGBAPixels = write_monocolor_pixels3;
ctx->Driver.ReadRGBASpan = read_rgba_span3;
ctx->Driver.ReadRGBAPixels = read_rgba_pixels3;
}
else {
/* 4 bytes / pixel in frame buffer */
if (osmesa->format==OSMESA_RGBA
&& RCOMP==0 && GCOMP==1 && BCOMP==2 && ACOMP==3)
ctx->Driver.WriteRGBASpan = write_rgba_span_rgba;
else
ctx->Driver.WriteRGBASpan = write_rgba_span;
ctx->Driver.WriteRGBSpan = write_rgb_span;
ctx->Driver.WriteRGBAPixels = write_rgba_pixels;
ctx->Driver.WriteMonoRGBASpan = write_monocolor_span;
ctx->Driver.WriteMonoRGBAPixels = write_monocolor_pixels;
if (osmesa->format==OSMESA_RGBA
&& RCOMP==0 && GCOMP==1 && BCOMP==2 && ACOMP==3)
ctx->Driver.ReadRGBASpan = read_rgba_span_rgba;
else
ctx->Driver.ReadRGBASpan = read_rgba_span;
ctx->Driver.ReadRGBAPixels = read_rgba_pixels;
}
/* CI span/pixel functions */
ctx->Driver.WriteCI32Span = write_index32_span;
ctx->Driver.WriteCI8Span = write_index8_span;
ctx->Driver.WriteMonoCISpan = write_monoindex_span;
ctx->Driver.WriteCI32Pixels = write_index_pixels;
ctx->Driver.WriteMonoCIPixels = write_monoindex_pixels;
ctx->Driver.ReadCI32Span = read_index_span;
ctx->Driver.ReadCI32Pixels = read_index_pixels;
_swrast_InvalidateState( ctx, new_state );
_swsetup_InvalidateState( ctx, new_state );
_ac_InvalidateState( ctx, new_state );
_tnl_InvalidateState( ctx, new_state );
}