blob: bbfd36dcbebe8e272d41b13dee5ecc44e998f3ba [file] [log] [blame]
/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Marek Olšák <marek.olsak@amd.com>
*/
/* Resource binding slots and sampler states (each described with 8 or 4 dwords)
* live in memory on SI.
*
* This file is responsible for managing lists of resources and sampler states
* in memory and binding them, which means updating those structures in memory.
*
* There is also code for updating shader pointers to resources and sampler
* states. CP DMA functions are here too.
*/
#include "radeon/r600_cs.h"
#include "si_pipe.h"
#include "si_shader.h"
#include "sid.h"
#include "util/u_memory.h"
#include "util/u_upload_mgr.h"
#define SI_NUM_CONTEXTS 16
/* NULL image and buffer descriptor.
*
* For images, all fields must be zero except for the swizzle, which
* supports arbitrary combinations of 0s and 1s. The texture type must be
* any valid type (e.g. 1D). If the texture type isn't set, the hw hangs.
*
* For buffers, all fields must be zero. If they are not, the hw hangs.
*
* This is the only reason why the buffer descriptor must be in words [4:7].
*/
static uint32_t null_descriptor[8] = {
0,
0,
0,
S_008F1C_DST_SEL_W(V_008F1C_SQ_SEL_1) |
S_008F1C_TYPE(V_008F1C_SQ_RSRC_IMG_1D)
/* the rest must contain zeros, which is also used by the buffer
* descriptor */
};
/* Set this if you want the 3D engine to wait until CP DMA is done.
* It should be set on the last CP DMA packet. */
#define R600_CP_DMA_SYNC (1 << 0) /* R600+ */
/* Set this if the source data was used as a destination in a previous CP DMA
* packet. It's for preventing a read-after-write (RAW) hazard between two
* CP DMA packets. */
#define SI_CP_DMA_RAW_WAIT (1 << 1) /* SI+ */
#define CIK_CP_DMA_USE_L2 (1 << 2)
/* Emit a CP DMA packet to do a copy from one buffer to another.
* The size must fit in bits [20:0].
*/
static void si_emit_cp_dma_copy_buffer(struct si_context *sctx,
uint64_t dst_va, uint64_t src_va,
unsigned size, unsigned flags)
{
struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs;
uint32_t sync_flag = flags & R600_CP_DMA_SYNC ? PKT3_CP_DMA_CP_SYNC : 0;
uint32_t raw_wait = flags & SI_CP_DMA_RAW_WAIT ? PKT3_CP_DMA_CMD_RAW_WAIT : 0;
uint32_t sel = flags & CIK_CP_DMA_USE_L2 ?
PKT3_CP_DMA_SRC_SEL(3) | PKT3_CP_DMA_DST_SEL(3) : 0;
assert(size);
assert((size & ((1<<21)-1)) == size);
if (sctx->b.chip_class >= CIK) {
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, sync_flag | sel); /* CP_SYNC [31] */
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, src_va >> 32); /* SRC_ADDR_HI [31:0] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [31:0] */
radeon_emit(cs, size | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */
} else {
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
radeon_emit(cs, src_va); /* SRC_ADDR_LO [31:0] */
radeon_emit(cs, sync_flag | ((src_va >> 32) & 0xffff)); /* CP_SYNC [31] | SRC_ADDR_HI [15:0] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, size | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */
}
}
/* Emit a CP DMA packet to clear a buffer. The size must fit in bits [20:0]. */
static void si_emit_cp_dma_clear_buffer(struct si_context *sctx,
uint64_t dst_va, unsigned size,
uint32_t clear_value, unsigned flags)
{
struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs;
uint32_t sync_flag = flags & R600_CP_DMA_SYNC ? PKT3_CP_DMA_CP_SYNC : 0;
uint32_t raw_wait = flags & SI_CP_DMA_RAW_WAIT ? PKT3_CP_DMA_CMD_RAW_WAIT : 0;
uint32_t dst_sel = flags & CIK_CP_DMA_USE_L2 ? PKT3_CP_DMA_DST_SEL(3) : 0;
assert(size);
assert((size & ((1<<21)-1)) == size);
if (sctx->b.chip_class >= CIK) {
radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
radeon_emit(cs, sync_flag | dst_sel | PKT3_CP_DMA_SRC_SEL(2)); /* CP_SYNC [31] | SRC_SEL[30:29] */
radeon_emit(cs, clear_value); /* DATA [31:0] */
radeon_emit(cs, 0);
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, dst_va >> 32); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, size | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */
} else {
radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
radeon_emit(cs, clear_value); /* DATA [31:0] */
radeon_emit(cs, sync_flag | PKT3_CP_DMA_SRC_SEL(2)); /* CP_SYNC [31] | SRC_SEL[30:29] */
radeon_emit(cs, dst_va); /* DST_ADDR_LO [31:0] */
radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
radeon_emit(cs, size | raw_wait); /* COMMAND [29:22] | BYTE_COUNT [20:0] */
}
}
static void si_init_descriptors(struct si_context *sctx,
struct si_descriptors *desc,
unsigned shader_userdata_reg,
unsigned element_dw_size,
unsigned num_elements,
void (*emit_func)(struct si_context *ctx, struct r600_atom *state))
{
assert(num_elements <= sizeof(desc->enabled_mask)*8);
assert(num_elements <= sizeof(desc->dirty_mask)*8);
desc->atom.emit = (void*)emit_func;
desc->shader_userdata_reg = shader_userdata_reg;
desc->element_dw_size = element_dw_size;
desc->num_elements = num_elements;
desc->context_size = num_elements * element_dw_size * 4;
desc->buffer = (struct r600_resource*)
pipe_buffer_create(sctx->b.b.screen, PIPE_BIND_CUSTOM,
PIPE_USAGE_DEFAULT,
SI_NUM_CONTEXTS * desc->context_size);
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, desc->buffer,
RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_DATA);
/* We don't check for CS space here, because this should be called
* only once at context initialization. */
si_emit_cp_dma_clear_buffer(sctx, desc->buffer->gpu_address,
desc->buffer->b.b.width0, 0,
R600_CP_DMA_SYNC | CIK_CP_DMA_USE_L2);
}
static void si_release_descriptors(struct si_descriptors *desc)
{
pipe_resource_reference((struct pipe_resource**)&desc->buffer, NULL);
}
static void si_update_descriptors(struct si_context *sctx,
struct si_descriptors *desc)
{
if (desc->dirty_mask) {
desc->atom.num_dw =
7 + /* copy */
(4 + desc->element_dw_size) * util_bitcount64(desc->dirty_mask) + /* update */
4; /* pointer update */
if (desc->shader_userdata_reg >= R_00B130_SPI_SHADER_USER_DATA_VS_0 &&
desc->shader_userdata_reg < R_00B230_SPI_SHADER_USER_DATA_GS_0)
desc->atom.num_dw += 4; /* second pointer update */
desc->atom.dirty = true;
/* TODO: Investigate if these flushes can be removed after
* adding CE support. */
/* The descriptors are read with the K cache. */
sctx->b.flags |= SI_CONTEXT_INV_KCACHE;
/* Since SI uses uncached CP DMA to update descriptors,
* we have to flush TC L2, which is used to fetch constants
* along with KCACHE. */
if (sctx->b.chip_class == SI)
sctx->b.flags |= SI_CONTEXT_INV_TC_L2;
} else {
desc->atom.dirty = false;
}
}
static void si_emit_shader_pointer(struct si_context *sctx,
struct r600_atom *atom)
{
struct si_descriptors *desc = (struct si_descriptors*)atom;
struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs;
uint64_t va = desc->buffer->gpu_address +
desc->current_context_id * desc->context_size +
desc->buffer_offset;
radeon_emit(cs, PKT3(PKT3_SET_SH_REG, 2, 0));
radeon_emit(cs, (desc->shader_userdata_reg - SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
if (desc->shader_userdata_reg >= R_00B130_SPI_SHADER_USER_DATA_VS_0 &&
desc->shader_userdata_reg < R_00B230_SPI_SHADER_USER_DATA_GS_0) {
radeon_emit(cs, PKT3(PKT3_SET_SH_REG, 2, 0));
radeon_emit(cs, (desc->shader_userdata_reg +
(R_00B330_SPI_SHADER_USER_DATA_ES_0 -
R_00B130_SPI_SHADER_USER_DATA_VS_0) -
SI_SH_REG_OFFSET) >> 2);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
}
}
static void si_emit_descriptors(struct si_context *sctx,
struct si_descriptors *desc,
uint32_t **descriptors)
{
struct radeon_winsys_cs *cs = sctx->b.rings.gfx.cs;
uint64_t va_base;
int packet_start = 0;
int packet_size = 0;
int last_index = desc->num_elements; /* point to a non-existing element */
uint64_t dirty_mask = desc->dirty_mask;
unsigned new_context_id = (desc->current_context_id + 1) % SI_NUM_CONTEXTS;
assert(dirty_mask);
va_base = desc->buffer->gpu_address;
/* Copy the descriptors to a new context slot. */
si_emit_cp_dma_copy_buffer(sctx,
va_base + new_context_id * desc->context_size,
va_base + desc->current_context_id * desc->context_size,
desc->context_size, R600_CP_DMA_SYNC | CIK_CP_DMA_USE_L2);
va_base += new_context_id * desc->context_size;
/* Update the descriptors.
* Updates of consecutive descriptors are merged to one WRITE_DATA packet.
*
* XXX When unbinding lots of resources, consider clearing the memory
* with CP DMA instead of emitting zeros.
*/
while (dirty_mask) {
int i = u_bit_scan64(&dirty_mask);
assert(i < desc->num_elements);
if (last_index+1 == i && packet_size) {
/* Append new data at the end of the last packet. */
packet_size += desc->element_dw_size;
cs->buf[packet_start] = PKT3(PKT3_WRITE_DATA, packet_size, 0);
} else {
/* Start a new packet. */
uint64_t va = va_base + i * desc->element_dw_size * 4;
packet_start = cs->cdw;
packet_size = 2 + desc->element_dw_size;
radeon_emit(cs, PKT3(PKT3_WRITE_DATA, packet_size, 0));
radeon_emit(cs, PKT3_WRITE_DATA_DST_SEL(sctx->b.chip_class == SI ?
PKT3_WRITE_DATA_DST_SEL_MEM_SYNC :
PKT3_WRITE_DATA_DST_SEL_TC_L2) |
PKT3_WRITE_DATA_WR_CONFIRM |
PKT3_WRITE_DATA_ENGINE_SEL(PKT3_WRITE_DATA_ENGINE_SEL_ME));
radeon_emit(cs, va & 0xFFFFFFFFUL);
radeon_emit(cs, (va >> 32UL) & 0xFFFFFFFFUL);
}
radeon_emit_array(cs, descriptors[i], desc->element_dw_size);
last_index = i;
}
desc->dirty_mask = 0;
desc->current_context_id = new_context_id;
/* Now update the shader userdata pointer. */
si_emit_shader_pointer(sctx, &desc->atom);
}
static unsigned si_get_shader_user_data_base(unsigned shader)
{
switch (shader) {
case PIPE_SHADER_VERTEX:
return R_00B130_SPI_SHADER_USER_DATA_VS_0;
case PIPE_SHADER_GEOMETRY:
return R_00B230_SPI_SHADER_USER_DATA_GS_0;
case PIPE_SHADER_FRAGMENT:
return R_00B030_SPI_SHADER_USER_DATA_PS_0;
default:
assert(0);
return 0;
}
}
/* SAMPLER VIEWS */
static void si_emit_sampler_views(struct si_context *sctx, struct r600_atom *atom)
{
struct si_sampler_views *views = (struct si_sampler_views*)atom;
si_emit_descriptors(sctx, &views->desc, views->desc_data);
}
static void si_init_sampler_views(struct si_context *sctx,
struct si_sampler_views *views,
unsigned shader)
{
int i;
si_init_descriptors(sctx, &views->desc,
si_get_shader_user_data_base(shader) +
SI_SGPR_RESOURCE * 4,
8, SI_NUM_SAMPLER_VIEWS, si_emit_sampler_views);
for (i = 0; i < views->desc.num_elements; i++) {
views->desc_data[i] = null_descriptor;
views->desc.dirty_mask |= 1llu << i;
}
si_update_descriptors(sctx, &views->desc);
}
static void si_release_sampler_views(struct si_sampler_views *views)
{
int i;
for (i = 0; i < Elements(views->views); i++) {
pipe_sampler_view_reference(&views->views[i], NULL);
}
si_release_descriptors(&views->desc);
}
static enum radeon_bo_priority si_get_resource_ro_priority(struct r600_resource *res)
{
if (res->b.b.target == PIPE_BUFFER)
return RADEON_PRIO_SHADER_BUFFER_RO;
if (res->b.b.nr_samples > 1)
return RADEON_PRIO_SHADER_TEXTURE_MSAA;
return RADEON_PRIO_SHADER_TEXTURE_RO;
}
static void si_sampler_views_begin_new_cs(struct si_context *sctx,
struct si_sampler_views *views)
{
uint64_t mask = views->desc.enabled_mask;
/* Add relocations to the CS. */
while (mask) {
int i = u_bit_scan64(&mask);
struct si_sampler_view *rview =
(struct si_sampler_view*)views->views[i];
if (!rview->resource)
continue;
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
rview->resource, RADEON_USAGE_READ,
si_get_resource_ro_priority(rview->resource));
}
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, views->desc.buffer,
RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_DATA);
si_emit_shader_pointer(sctx, &views->desc.atom);
}
static void si_set_sampler_view(struct si_context *sctx, unsigned shader,
unsigned slot, struct pipe_sampler_view *view,
unsigned *view_desc)
{
struct si_sampler_views *views = &sctx->samplers[shader].views;
if (views->views[slot] == view)
return;
if (view) {
struct si_sampler_view *rview =
(struct si_sampler_view*)view;
if (rview->resource)
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
rview->resource, RADEON_USAGE_READ,
si_get_resource_ro_priority(rview->resource));
pipe_sampler_view_reference(&views->views[slot], view);
views->desc_data[slot] = view_desc;
views->desc.enabled_mask |= 1llu << slot;
} else {
pipe_sampler_view_reference(&views->views[slot], NULL);
views->desc_data[slot] = null_descriptor;
views->desc.enabled_mask &= ~(1llu << slot);
}
views->desc.dirty_mask |= 1llu << slot;
}
static void si_set_sampler_views(struct pipe_context *ctx,
unsigned shader, unsigned start,
unsigned count,
struct pipe_sampler_view **views)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_textures_info *samplers = &sctx->samplers[shader];
struct si_sampler_view **rviews = (struct si_sampler_view **)views;
int i;
if (!count || shader >= SI_NUM_SHADERS)
return;
for (i = 0; i < count; i++) {
unsigned slot = start + i;
if (!views || !views[i]) {
samplers->depth_texture_mask &= ~(1 << slot);
samplers->compressed_colortex_mask &= ~(1 << slot);
si_set_sampler_view(sctx, shader, slot, NULL, NULL);
si_set_sampler_view(sctx, shader, SI_FMASK_TEX_OFFSET + slot,
NULL, NULL);
continue;
}
si_set_sampler_view(sctx, shader, slot, views[i], rviews[i]->state);
if (views[i]->texture && views[i]->texture->target != PIPE_BUFFER) {
struct r600_texture *rtex =
(struct r600_texture*)views[i]->texture;
if (rtex->is_depth && !rtex->is_flushing_texture) {
samplers->depth_texture_mask |= 1 << slot;
} else {
samplers->depth_texture_mask &= ~(1 << slot);
}
if (rtex->cmask.size || rtex->fmask.size) {
samplers->compressed_colortex_mask |= 1 << slot;
} else {
samplers->compressed_colortex_mask &= ~(1 << slot);
}
if (rtex->fmask.size) {
si_set_sampler_view(sctx, shader, SI_FMASK_TEX_OFFSET + slot,
views[i], rviews[i]->fmask_state);
} else {
si_set_sampler_view(sctx, shader, SI_FMASK_TEX_OFFSET + slot,
NULL, NULL);
}
} else {
samplers->depth_texture_mask &= ~(1 << slot);
samplers->compressed_colortex_mask &= ~(1 << slot);
si_set_sampler_view(sctx, shader, SI_FMASK_TEX_OFFSET + slot,
NULL, NULL);
}
}
si_update_descriptors(sctx, &samplers->views.desc);
}
/* SAMPLER STATES */
static void si_emit_sampler_states(struct si_context *sctx, struct r600_atom *atom)
{
struct si_sampler_states *states = (struct si_sampler_states*)atom;
si_emit_descriptors(sctx, &states->desc, states->desc_data);
}
static void si_sampler_states_begin_new_cs(struct si_context *sctx,
struct si_sampler_states *states)
{
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, states->desc.buffer,
RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_DATA);
si_emit_shader_pointer(sctx, &states->desc.atom);
}
void si_set_sampler_descriptors(struct si_context *sctx, unsigned shader,
unsigned start, unsigned count, void **states)
{
struct si_sampler_states *samplers = &sctx->samplers[shader].states;
struct si_sampler_state **sstates = (struct si_sampler_state**)states;
int i;
if (start == 0)
samplers->saved_states[0] = states[0];
if (start == 1)
samplers->saved_states[1] = states[0];
else if (start == 0 && count >= 2)
samplers->saved_states[1] = states[1];
for (i = 0; i < count; i++) {
unsigned slot = start + i;
if (!sstates[i]) {
samplers->desc.dirty_mask &= ~(1llu << slot);
continue;
}
samplers->desc_data[slot] = sstates[i]->val;
samplers->desc.dirty_mask |= 1llu << slot;
}
si_update_descriptors(sctx, &samplers->desc);
}
/* BUFFER RESOURCES */
static void si_emit_buffer_resources(struct si_context *sctx, struct r600_atom *atom)
{
struct si_buffer_resources *buffers = (struct si_buffer_resources*)atom;
si_emit_descriptors(sctx, &buffers->desc, buffers->desc_data);
}
static void si_init_buffer_resources(struct si_context *sctx,
struct si_buffer_resources *buffers,
unsigned num_buffers, unsigned shader,
unsigned shader_userdata_index,
enum radeon_bo_usage shader_usage,
enum radeon_bo_priority priority)
{
int i;
buffers->num_buffers = num_buffers;
buffers->shader_usage = shader_usage;
buffers->priority = priority;
buffers->buffers = CALLOC(num_buffers, sizeof(struct pipe_resource*));
buffers->desc_storage = CALLOC(num_buffers, sizeof(uint32_t) * 4);
/* si_emit_descriptors only accepts an array of arrays.
* This adds such an array. */
buffers->desc_data = CALLOC(num_buffers, sizeof(uint32_t*));
for (i = 0; i < num_buffers; i++) {
buffers->desc_data[i] = &buffers->desc_storage[i*4];
}
si_init_descriptors(sctx, &buffers->desc,
si_get_shader_user_data_base(shader) +
shader_userdata_index*4, 4, num_buffers,
si_emit_buffer_resources);
}
static void si_release_buffer_resources(struct si_buffer_resources *buffers)
{
int i;
for (i = 0; i < buffers->num_buffers; i++) {
pipe_resource_reference(&buffers->buffers[i], NULL);
}
FREE(buffers->buffers);
FREE(buffers->desc_storage);
FREE(buffers->desc_data);
si_release_descriptors(&buffers->desc);
}
static void si_buffer_resources_begin_new_cs(struct si_context *sctx,
struct si_buffer_resources *buffers)
{
uint64_t mask = buffers->desc.enabled_mask;
/* Add relocations to the CS. */
while (mask) {
int i = u_bit_scan64(&mask);
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
(struct r600_resource*)buffers->buffers[i],
buffers->shader_usage, buffers->priority);
}
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
buffers->desc.buffer, RADEON_USAGE_READWRITE,
RADEON_PRIO_SHADER_DATA);
si_emit_shader_pointer(sctx, &buffers->desc.atom);
}
/* VERTEX BUFFERS */
static void si_vertex_buffers_begin_new_cs(struct si_context *sctx)
{
struct si_descriptors *desc = &sctx->vertex_buffers;
int count = sctx->vertex_elements ? sctx->vertex_elements->count : 0;
int i;
for (i = 0; i < count; i++) {
int vb = sctx->vertex_elements->elements[i].vertex_buffer_index;
if (vb >= Elements(sctx->vertex_buffer))
continue;
if (!sctx->vertex_buffer[vb].buffer)
continue;
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
(struct r600_resource*)sctx->vertex_buffer[vb].buffer,
RADEON_USAGE_READ, RADEON_PRIO_SHADER_BUFFER_RO);
}
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
desc->buffer, RADEON_USAGE_READ,
RADEON_PRIO_SHADER_DATA);
si_emit_shader_pointer(sctx, &desc->atom);
}
void si_update_vertex_buffers(struct si_context *sctx)
{
struct si_descriptors *desc = &sctx->vertex_buffers;
bool bound[SI_NUM_VERTEX_BUFFERS] = {};
unsigned i, count = sctx->vertex_elements->count;
uint64_t va;
uint32_t *ptr;
if (!count || !sctx->vertex_elements)
return;
/* Vertex buffer descriptors are the only ones which are uploaded
* directly through a staging buffer and don't go through
* the fine-grained upload path.
*/
u_upload_alloc(sctx->b.uploader, 0, count * 16, &desc->buffer_offset,
(struct pipe_resource**)&desc->buffer, (void**)&ptr);
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
desc->buffer, RADEON_USAGE_READ,
RADEON_PRIO_SHADER_DATA);
assert(count <= SI_NUM_VERTEX_BUFFERS);
assert(desc->current_context_id == 0);
for (i = 0; i < count; i++) {
struct pipe_vertex_element *ve = &sctx->vertex_elements->elements[i];
struct pipe_vertex_buffer *vb;
struct r600_resource *rbuffer;
unsigned offset;
uint32_t *desc = &ptr[i*4];
if (ve->vertex_buffer_index >= Elements(sctx->vertex_buffer)) {
memset(desc, 0, 16);
continue;
}
vb = &sctx->vertex_buffer[ve->vertex_buffer_index];
rbuffer = (struct r600_resource*)vb->buffer;
if (rbuffer == NULL) {
memset(desc, 0, 16);
continue;
}
offset = vb->buffer_offset + ve->src_offset;
va = rbuffer->gpu_address + offset;
/* Fill in T# buffer resource description */
desc[0] = va & 0xFFFFFFFF;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(vb->stride);
if (vb->stride)
/* Round up by rounding down and adding 1 */
desc[2] = (vb->buffer->width0 - offset -
sctx->vertex_elements->format_size[i]) /
vb->stride + 1;
else
desc[2] = vb->buffer->width0 - offset;
desc[3] = sctx->vertex_elements->rsrc_word3[i];
if (!bound[ve->vertex_buffer_index]) {
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
(struct r600_resource*)vb->buffer,
RADEON_USAGE_READ, RADEON_PRIO_SHADER_BUFFER_RO);
bound[ve->vertex_buffer_index] = true;
}
}
desc->atom.num_dw = 8; /* update 2 shader pointers (VS+ES) */
desc->atom.dirty = true;
/* Don't flush the const cache. It would have a very negative effect
* on performance (confirmed by testing). New descriptors are always
* uploaded to a fresh new buffer, so I don't think flushing the const
* cache is needed. */
}
/* CONSTANT BUFFERS */
void si_upload_const_buffer(struct si_context *sctx, struct r600_resource **rbuffer,
const uint8_t *ptr, unsigned size, uint32_t *const_offset)
{
void *tmp;
u_upload_alloc(sctx->b.uploader, 0, size, const_offset,
(struct pipe_resource**)rbuffer, &tmp);
util_memcpy_cpu_to_le32(tmp, ptr, size);
}
static void si_set_constant_buffer(struct pipe_context *ctx, uint shader, uint slot,
struct pipe_constant_buffer *input)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_buffer_resources *buffers = &sctx->const_buffers[shader];
if (shader >= SI_NUM_SHADERS)
return;
assert(slot < buffers->num_buffers);
pipe_resource_reference(&buffers->buffers[slot], NULL);
/* CIK cannot unbind a constant buffer (S_BUFFER_LOAD is buggy
* with a NULL buffer). We need to use a dummy buffer instead. */
if (sctx->b.chip_class == CIK &&
(!input || (!input->buffer && !input->user_buffer)))
input = &sctx->null_const_buf;
if (input && (input->buffer || input->user_buffer)) {
struct pipe_resource *buffer = NULL;
uint64_t va;
/* Upload the user buffer if needed. */
if (input->user_buffer) {
unsigned buffer_offset;
si_upload_const_buffer(sctx,
(struct r600_resource**)&buffer, input->user_buffer,
input->buffer_size, &buffer_offset);
va = r600_resource(buffer)->gpu_address + buffer_offset;
} else {
pipe_resource_reference(&buffer, input->buffer);
va = r600_resource(buffer)->gpu_address + input->buffer_offset;
}
/* Set the descriptor. */
uint32_t *desc = buffers->desc_data[slot];
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(0);
desc[2] = input->buffer_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32);
buffers->buffers[slot] = buffer;
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
(struct r600_resource*)buffer,
buffers->shader_usage, buffers->priority);
buffers->desc.enabled_mask |= 1llu << slot;
} else {
/* Clear the descriptor. */
memset(buffers->desc_data[slot], 0, sizeof(uint32_t) * 4);
buffers->desc.enabled_mask &= ~(1llu << slot);
}
buffers->desc.dirty_mask |= 1llu << slot;
si_update_descriptors(sctx, &buffers->desc);
}
/* RING BUFFERS */
void si_set_ring_buffer(struct pipe_context *ctx, uint shader, uint slot,
struct pipe_resource *buffer,
unsigned stride, unsigned num_records,
bool add_tid, bool swizzle,
unsigned element_size, unsigned index_stride)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_buffer_resources *buffers = &sctx->rw_buffers[shader];
if (shader >= SI_NUM_SHADERS)
return;
/* The stride field in the resource descriptor has 14 bits */
assert(stride < (1 << 14));
assert(slot < buffers->num_buffers);
pipe_resource_reference(&buffers->buffers[slot], NULL);
if (buffer) {
uint64_t va;
va = r600_resource(buffer)->gpu_address;
switch (element_size) {
default:
assert(!"Unsupported ring buffer element size");
case 0:
case 2:
element_size = 0;
break;
case 4:
element_size = 1;
break;
case 8:
element_size = 2;
break;
case 16:
element_size = 3;
break;
}
switch (index_stride) {
default:
assert(!"Unsupported ring buffer index stride");
case 0:
case 8:
index_stride = 0;
break;
case 16:
index_stride = 1;
break;
case 32:
index_stride = 2;
break;
case 64:
index_stride = 3;
break;
}
/* Set the descriptor. */
uint32_t *desc = buffers->desc_data[slot];
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32) |
S_008F04_STRIDE(stride) |
S_008F04_SWIZZLE_ENABLE(swizzle);
desc[2] = num_records;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(element_size) |
S_008F0C_INDEX_STRIDE(index_stride) |
S_008F0C_ADD_TID_ENABLE(add_tid);
pipe_resource_reference(&buffers->buffers[slot], buffer);
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
(struct r600_resource*)buffer,
buffers->shader_usage, buffers->priority);
buffers->desc.enabled_mask |= 1llu << slot;
} else {
/* Clear the descriptor. */
memset(buffers->desc_data[slot], 0, sizeof(uint32_t) * 4);
buffers->desc.enabled_mask &= ~(1llu << slot);
}
buffers->desc.dirty_mask |= 1llu << slot;
si_update_descriptors(sctx, &buffers->desc);
}
/* STREAMOUT BUFFERS */
static void si_set_streamout_targets(struct pipe_context *ctx,
unsigned num_targets,
struct pipe_stream_output_target **targets,
const unsigned *offsets)
{
struct si_context *sctx = (struct si_context *)ctx;
struct si_buffer_resources *buffers = &sctx->rw_buffers[PIPE_SHADER_VERTEX];
unsigned old_num_targets = sctx->b.streamout.num_targets;
unsigned i, bufidx;
/* We are going to unbind the buffers. Mark which caches need to be flushed. */
if (sctx->b.streamout.num_targets && sctx->b.streamout.begin_emitted) {
/* Since streamout uses vector writes which go through TC L2
* and most other clients can use TC L2 as well, we don't need
* to flush it.
*
* The only case which requires flushing it is VGT DMA index
* fetching, which is a rare case. Thus, flag the TC L2
* dirtiness in the resource and handle it when index fetching
* is used.
*/
for (i = 0; i < sctx->b.streamout.num_targets; i++)
if (sctx->b.streamout.targets[i])
r600_resource(sctx->b.streamout.targets[i]->b.buffer)->TC_L2_dirty = true;
/* Invalidate the scalar cache in case a streamout buffer is
* going to be used as a constant buffer.
*
* Invalidate TC L1, because streamout bypasses it (done by
* setting GLC=1 in the store instruction), but it can contain
* outdated data of streamout buffers.
*
* VS_PARTIAL_FLUSH is required if the buffers are going to be
* used as an input immediately.
*/
sctx->b.flags |= SI_CONTEXT_INV_KCACHE |
SI_CONTEXT_INV_TC_L1 |
SI_CONTEXT_VS_PARTIAL_FLUSH;
}
/* Streamout buffers must be bound in 2 places:
* 1) in VGT by setting the VGT_STRMOUT registers
* 2) as shader resources
*/
/* Set the VGT regs. */
r600_set_streamout_targets(ctx, num_targets, targets, offsets);
/* Set the shader resources.*/
for (i = 0; i < num_targets; i++) {
bufidx = SI_SO_BUF_OFFSET + i;
if (targets[i]) {
struct pipe_resource *buffer = targets[i]->buffer;
uint64_t va = r600_resource(buffer)->gpu_address;
/* Set the descriptor. */
uint32_t *desc = buffers->desc_data[bufidx];
desc[0] = va;
desc[1] = S_008F04_BASE_ADDRESS_HI(va >> 32);
desc[2] = 0xffffffff;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W);
/* Set the resource. */
pipe_resource_reference(&buffers->buffers[bufidx],
buffer);
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
(struct r600_resource*)buffer,
buffers->shader_usage, buffers->priority);
buffers->desc.enabled_mask |= 1llu << bufidx;
} else {
/* Clear the descriptor and unset the resource. */
memset(buffers->desc_data[bufidx], 0,
sizeof(uint32_t) * 4);
pipe_resource_reference(&buffers->buffers[bufidx],
NULL);
buffers->desc.enabled_mask &= ~(1llu << bufidx);
}
buffers->desc.dirty_mask |= 1llu << bufidx;
}
for (; i < old_num_targets; i++) {
bufidx = SI_SO_BUF_OFFSET + i;
/* Clear the descriptor and unset the resource. */
memset(buffers->desc_data[bufidx], 0, sizeof(uint32_t) * 4);
pipe_resource_reference(&buffers->buffers[bufidx], NULL);
buffers->desc.enabled_mask &= ~(1llu << bufidx);
buffers->desc.dirty_mask |= 1llu << bufidx;
}
si_update_descriptors(sctx, &buffers->desc);
}
static void si_desc_reset_buffer_offset(struct pipe_context *ctx,
uint32_t *desc, uint64_t old_buf_va,
struct pipe_resource *new_buf)
{
/* Retrieve the buffer offset from the descriptor. */
uint64_t old_desc_va =
desc[0] | ((uint64_t)G_008F04_BASE_ADDRESS_HI(desc[1]) << 32);
assert(old_buf_va <= old_desc_va);
uint64_t offset_within_buffer = old_desc_va - old_buf_va;
/* Update the descriptor. */
uint64_t va = r600_resource(new_buf)->gpu_address + offset_within_buffer;
desc[0] = va;
desc[1] = (desc[1] & C_008F04_BASE_ADDRESS_HI) |
S_008F04_BASE_ADDRESS_HI(va >> 32);
}
/* BUFFER DISCARD/INVALIDATION */
/* Reallocate a buffer a update all resource bindings where the buffer is
* bound.
*
* This is used to avoid CPU-GPU synchronizations, because it makes the buffer
* idle by discarding its contents. Apps usually tell us when to do this using
* map_buffer flags, for example.
*/
static void si_invalidate_buffer(struct pipe_context *ctx, struct pipe_resource *buf)
{
struct si_context *sctx = (struct si_context*)ctx;
struct r600_resource *rbuffer = r600_resource(buf);
unsigned i, shader, alignment = rbuffer->buf->alignment;
uint64_t old_va = rbuffer->gpu_address;
unsigned num_elems = sctx->vertex_elements ?
sctx->vertex_elements->count : 0;
struct si_sampler_view *view;
/* Reallocate the buffer in the same pipe_resource. */
r600_init_resource(&sctx->screen->b, rbuffer, rbuffer->b.b.width0,
alignment, TRUE);
/* We changed the buffer, now we need to bind it where the old one
* was bound. This consists of 2 things:
* 1) Updating the resource descriptor and dirtying it.
* 2) Adding a relocation to the CS, so that it's usable.
*/
/* Vertex buffers. */
for (i = 0; i < num_elems; i++) {
int vb = sctx->vertex_elements->elements[i].vertex_buffer_index;
if (vb >= Elements(sctx->vertex_buffer))
continue;
if (!sctx->vertex_buffer[vb].buffer)
continue;
if (sctx->vertex_buffer[vb].buffer == buf) {
sctx->vertex_buffers_dirty = true;
break;
}
}
/* Read/Write buffers. */
for (shader = 0; shader < SI_NUM_SHADERS; shader++) {
struct si_buffer_resources *buffers = &sctx->rw_buffers[shader];
bool found = false;
uint64_t mask = buffers->desc.enabled_mask;
while (mask) {
i = u_bit_scan64(&mask);
if (buffers->buffers[i] == buf) {
si_desc_reset_buffer_offset(ctx, buffers->desc_data[i],
old_va, buf);
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
rbuffer, buffers->shader_usage,
buffers->priority);
buffers->desc.dirty_mask |= 1llu << i;
found = true;
if (i >= SI_SO_BUF_OFFSET && shader == PIPE_SHADER_VERTEX) {
/* Update the streamout state. */
if (sctx->b.streamout.begin_emitted) {
r600_emit_streamout_end(&sctx->b);
}
sctx->b.streamout.append_bitmask =
sctx->b.streamout.enabled_mask;
r600_streamout_buffers_dirty(&sctx->b);
}
}
}
if (found) {
si_update_descriptors(sctx, &buffers->desc);
}
}
/* Constant buffers. */
for (shader = 0; shader < SI_NUM_SHADERS; shader++) {
struct si_buffer_resources *buffers = &sctx->const_buffers[shader];
bool found = false;
uint64_t mask = buffers->desc.enabled_mask;
while (mask) {
unsigned i = u_bit_scan64(&mask);
if (buffers->buffers[i] == buf) {
si_desc_reset_buffer_offset(ctx, buffers->desc_data[i],
old_va, buf);
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
rbuffer, buffers->shader_usage,
buffers->priority);
buffers->desc.dirty_mask |= 1llu << i;
found = true;
}
}
if (found) {
si_update_descriptors(sctx, &buffers->desc);
}
}
/* Texture buffers - update virtual addresses in sampler view descriptors. */
LIST_FOR_EACH_ENTRY(view, &sctx->b.texture_buffers, list) {
if (view->base.texture == buf) {
si_desc_reset_buffer_offset(ctx, &view->state[4], old_va, buf);
}
}
/* Texture buffers - update bindings. */
for (shader = 0; shader < SI_NUM_SHADERS; shader++) {
struct si_sampler_views *views = &sctx->samplers[shader].views;
bool found = false;
uint64_t mask = views->desc.enabled_mask;
while (mask) {
unsigned i = u_bit_scan64(&mask);
if (views->views[i]->texture == buf) {
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
rbuffer, RADEON_USAGE_READ,
RADEON_PRIO_SHADER_BUFFER_RO);
views->desc.dirty_mask |= 1llu << i;
found = true;
}
}
if (found) {
si_update_descriptors(sctx, &views->desc);
}
}
}
/* CP DMA */
/* The max number of bytes to copy per packet. */
#define CP_DMA_MAX_BYTE_COUNT ((1 << 21) - 8)
static void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
unsigned offset, unsigned size, unsigned value,
bool is_framebuffer)
{
struct si_context *sctx = (struct si_context*)ctx;
unsigned flush_flags, tc_l2_flag;
if (!size)
return;
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
util_range_add(&r600_resource(dst)->valid_buffer_range, offset,
offset + size);
/* Fallback for unaligned clears. */
if (offset % 4 != 0 || size % 4 != 0) {
uint32_t *map = sctx->b.ws->buffer_map(r600_resource(dst)->cs_buf,
sctx->b.rings.gfx.cs,
PIPE_TRANSFER_WRITE);
size /= 4;
for (unsigned i = 0; i < size; i++)
*map++ = value;
return;
}
uint64_t va = r600_resource(dst)->gpu_address + offset;
/* Flush the caches where the resource is bound. */
if (is_framebuffer) {
flush_flags = SI_CONTEXT_FLUSH_AND_INV_FRAMEBUFFER;
tc_l2_flag = 0;
} else {
flush_flags = SI_CONTEXT_INV_TC_L1 |
(sctx->b.chip_class == SI ? SI_CONTEXT_INV_TC_L2 : 0) |
SI_CONTEXT_INV_KCACHE;
tc_l2_flag = sctx->b.chip_class == SI ? 0 : CIK_CP_DMA_USE_L2;
}
sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
flush_flags;
while (size) {
unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT);
unsigned dma_flags = tc_l2_flag;
si_need_cs_space(sctx, 7 + (sctx->b.flags ? sctx->cache_flush.num_dw : 0),
FALSE);
/* This must be done after need_cs_space. */
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx,
(struct r600_resource*)dst, RADEON_USAGE_WRITE,
RADEON_PRIO_MIN);
/* Flush the caches for the first copy only.
* Also wait for the previous CP DMA operations. */
if (sctx->b.flags) {
si_emit_cache_flush(&sctx->b, NULL);
dma_flags |= SI_CP_DMA_RAW_WAIT; /* same as WAIT_UNTIL=CP_DMA_IDLE */
}
/* Do the synchronization after the last copy, so that all data is written to memory. */
if (size == byte_count)
dma_flags |= R600_CP_DMA_SYNC;
/* Emit the clear packet. */
si_emit_cp_dma_clear_buffer(sctx, va, byte_count, value, dma_flags);
size -= byte_count;
va += byte_count;
}
/* Flush the caches again in case the 3D engine has been prefetching
* the resource. */
sctx->b.flags |= flush_flags;
if (tc_l2_flag)
r600_resource(dst)->TC_L2_dirty = true;
}
void si_copy_buffer(struct si_context *sctx,
struct pipe_resource *dst, struct pipe_resource *src,
uint64_t dst_offset, uint64_t src_offset, unsigned size,
bool is_framebuffer)
{
unsigned flush_flags, tc_l2_flag;
if (!size)
return;
/* Mark the buffer range of destination as valid (initialized),
* so that transfer_map knows it should wait for the GPU when mapping
* that range. */
util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
dst_offset + size);
dst_offset += r600_resource(dst)->gpu_address;
src_offset += r600_resource(src)->gpu_address;
/* Flush the caches where the resource is bound. */
if (is_framebuffer) {
flush_flags = SI_CONTEXT_FLUSH_AND_INV_FRAMEBUFFER;
tc_l2_flag = 0;
} else {
flush_flags = SI_CONTEXT_INV_TC_L1 |
(sctx->b.chip_class == SI ? SI_CONTEXT_INV_TC_L2 : 0) |
SI_CONTEXT_INV_KCACHE;
tc_l2_flag = sctx->b.chip_class == SI ? 0 : CIK_CP_DMA_USE_L2;
}
sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
flush_flags;
while (size) {
unsigned sync_flags = tc_l2_flag;
unsigned byte_count = MIN2(size, CP_DMA_MAX_BYTE_COUNT);
si_need_cs_space(sctx, 7 + (sctx->b.flags ? sctx->cache_flush.num_dw : 0), FALSE);
/* Flush the caches for the first copy only. Also wait for old CP DMA packets to complete. */
if (sctx->b.flags) {
si_emit_cache_flush(&sctx->b, NULL);
sync_flags |= SI_CP_DMA_RAW_WAIT;
}
/* Do the synchronization after the last copy, so that all data is written to memory. */
if (size == byte_count) {
sync_flags |= R600_CP_DMA_SYNC;
}
/* This must be done after r600_need_cs_space. */
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)src,
RADEON_USAGE_READ, RADEON_PRIO_MIN);
r600_context_bo_reloc(&sctx->b, &sctx->b.rings.gfx, (struct r600_resource*)dst,
RADEON_USAGE_WRITE, RADEON_PRIO_MIN);
si_emit_cp_dma_copy_buffer(sctx, dst_offset, src_offset, byte_count, sync_flags);
size -= byte_count;
src_offset += byte_count;
dst_offset += byte_count;
}
/* Flush the caches again in case the 3D engine has been prefetching
* the resource. */
sctx->b.flags |= flush_flags;
if (tc_l2_flag)
r600_resource(dst)->TC_L2_dirty = true;
}
/* INIT/DEINIT */
void si_init_all_descriptors(struct si_context *sctx)
{
int i;
for (i = 0; i < SI_NUM_SHADERS; i++) {
si_init_buffer_resources(sctx, &sctx->const_buffers[i],
SI_NUM_CONST_BUFFERS, i, SI_SGPR_CONST,
RADEON_USAGE_READ, RADEON_PRIO_SHADER_BUFFER_RO);
si_init_buffer_resources(sctx, &sctx->rw_buffers[i],
i == PIPE_SHADER_VERTEX ?
SI_NUM_RW_BUFFERS : SI_NUM_RING_BUFFERS,
i, SI_SGPR_RW_BUFFERS,
RADEON_USAGE_READWRITE, RADEON_PRIO_SHADER_RESOURCE_RW);
si_init_sampler_views(sctx, &sctx->samplers[i].views, i);
si_init_descriptors(sctx, &sctx->samplers[i].states.desc,
si_get_shader_user_data_base(i) + SI_SGPR_SAMPLER * 4,
4, SI_NUM_SAMPLER_STATES, si_emit_sampler_states);
sctx->atoms.s.const_buffers[i] = &sctx->const_buffers[i].desc.atom;
sctx->atoms.s.rw_buffers[i] = &sctx->rw_buffers[i].desc.atom;
sctx->atoms.s.sampler_views[i] = &sctx->samplers[i].views.desc.atom;
sctx->atoms.s.sampler_states[i] = &sctx->samplers[i].states.desc.atom;
}
si_init_descriptors(sctx, &sctx->vertex_buffers,
si_get_shader_user_data_base(PIPE_SHADER_VERTEX) +
SI_SGPR_VERTEX_BUFFER*4, 4, SI_NUM_VERTEX_BUFFERS,
si_emit_shader_pointer);
sctx->atoms.s.vertex_buffers = &sctx->vertex_buffers.atom;
/* Set pipe_context functions. */
sctx->b.b.set_constant_buffer = si_set_constant_buffer;
sctx->b.b.set_sampler_views = si_set_sampler_views;
sctx->b.b.set_stream_output_targets = si_set_streamout_targets;
sctx->b.clear_buffer = si_clear_buffer;
sctx->b.invalidate_buffer = si_invalidate_buffer;
}
void si_release_all_descriptors(struct si_context *sctx)
{
int i;
for (i = 0; i < SI_NUM_SHADERS; i++) {
si_release_buffer_resources(&sctx->const_buffers[i]);
si_release_buffer_resources(&sctx->rw_buffers[i]);
si_release_sampler_views(&sctx->samplers[i].views);
si_release_descriptors(&sctx->samplers[i].states.desc);
}
si_release_descriptors(&sctx->vertex_buffers);
}
void si_all_descriptors_begin_new_cs(struct si_context *sctx)
{
int i;
for (i = 0; i < SI_NUM_SHADERS; i++) {
si_buffer_resources_begin_new_cs(sctx, &sctx->const_buffers[i]);
si_buffer_resources_begin_new_cs(sctx, &sctx->rw_buffers[i]);
si_sampler_views_begin_new_cs(sctx, &sctx->samplers[i].views);
si_sampler_states_begin_new_cs(sctx, &sctx->samplers[i].states);
}
si_vertex_buffers_begin_new_cs(sctx);
}