| /* |
| * Mesa 3-D graphics library |
| * |
| * Copyright (C) 1999-2005 Brian Paul All Rights Reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included |
| * in all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| |
| /** |
| * \file m_matrix.c |
| * Matrix operations. |
| * |
| * \note |
| * -# 4x4 transformation matrices are stored in memory in column major order. |
| * -# Points/vertices are to be thought of as column vectors. |
| * -# Transformation of a point p by a matrix M is: p' = M * p |
| */ |
| |
| |
| #include "c99_math.h" |
| #include "main/glheader.h" |
| #include "main/imports.h" |
| #include "main/macros.h" |
| |
| #include "m_matrix.h" |
| |
| |
| /** |
| * \defgroup MatFlags MAT_FLAG_XXX-flags |
| * |
| * Bitmasks to indicate different kinds of 4x4 matrices in GLmatrix::flags |
| */ |
| /*@{*/ |
| #define MAT_FLAG_IDENTITY 0 /**< is an identity matrix flag. |
| * (Not actually used - the identity |
| * matrix is identified by the absence |
| * of all other flags.) |
| */ |
| #define MAT_FLAG_GENERAL 0x1 /**< is a general matrix flag */ |
| #define MAT_FLAG_ROTATION 0x2 /**< is a rotation matrix flag */ |
| #define MAT_FLAG_TRANSLATION 0x4 /**< is a translation matrix flag */ |
| #define MAT_FLAG_UNIFORM_SCALE 0x8 /**< is an uniform scaling matrix flag */ |
| #define MAT_FLAG_GENERAL_SCALE 0x10 /**< is a general scaling matrix flag */ |
| #define MAT_FLAG_GENERAL_3D 0x20 /**< general 3D matrix flag */ |
| #define MAT_FLAG_PERSPECTIVE 0x40 /**< is a perspective proj matrix flag */ |
| #define MAT_FLAG_SINGULAR 0x80 /**< is a singular matrix flag */ |
| #define MAT_DIRTY_TYPE 0x100 /**< matrix type is dirty */ |
| #define MAT_DIRTY_FLAGS 0x200 /**< matrix flags are dirty */ |
| #define MAT_DIRTY_INVERSE 0x400 /**< matrix inverse is dirty */ |
| |
| /** angle preserving matrix flags mask */ |
| #define MAT_FLAGS_ANGLE_PRESERVING (MAT_FLAG_ROTATION | \ |
| MAT_FLAG_TRANSLATION | \ |
| MAT_FLAG_UNIFORM_SCALE) |
| |
| /** geometry related matrix flags mask */ |
| #define MAT_FLAGS_GEOMETRY (MAT_FLAG_GENERAL | \ |
| MAT_FLAG_ROTATION | \ |
| MAT_FLAG_TRANSLATION | \ |
| MAT_FLAG_UNIFORM_SCALE | \ |
| MAT_FLAG_GENERAL_SCALE | \ |
| MAT_FLAG_GENERAL_3D | \ |
| MAT_FLAG_PERSPECTIVE | \ |
| MAT_FLAG_SINGULAR) |
| |
| /** length preserving matrix flags mask */ |
| #define MAT_FLAGS_LENGTH_PRESERVING (MAT_FLAG_ROTATION | \ |
| MAT_FLAG_TRANSLATION) |
| |
| |
| /** 3D (non-perspective) matrix flags mask */ |
| #define MAT_FLAGS_3D (MAT_FLAG_ROTATION | \ |
| MAT_FLAG_TRANSLATION | \ |
| MAT_FLAG_UNIFORM_SCALE | \ |
| MAT_FLAG_GENERAL_SCALE | \ |
| MAT_FLAG_GENERAL_3D) |
| |
| /** dirty matrix flags mask */ |
| #define MAT_DIRTY (MAT_DIRTY_TYPE | \ |
| MAT_DIRTY_FLAGS | \ |
| MAT_DIRTY_INVERSE) |
| |
| /*@}*/ |
| |
| |
| /** |
| * Test geometry related matrix flags. |
| * |
| * \param mat a pointer to a GLmatrix structure. |
| * \param a flags mask. |
| * |
| * \returns non-zero if all geometry related matrix flags are contained within |
| * the mask, or zero otherwise. |
| */ |
| #define TEST_MAT_FLAGS(mat, a) \ |
| ((MAT_FLAGS_GEOMETRY & (~(a)) & ((mat)->flags) ) == 0) |
| |
| |
| |
| /** |
| * Names of the corresponding GLmatrixtype values. |
| */ |
| static const char *types[] = { |
| "MATRIX_GENERAL", |
| "MATRIX_IDENTITY", |
| "MATRIX_3D_NO_ROT", |
| "MATRIX_PERSPECTIVE", |
| "MATRIX_2D", |
| "MATRIX_2D_NO_ROT", |
| "MATRIX_3D" |
| }; |
| |
| |
| /** |
| * Identity matrix. |
| */ |
| static const GLfloat Identity[16] = { |
| 1.0, 0.0, 0.0, 0.0, |
| 0.0, 1.0, 0.0, 0.0, |
| 0.0, 0.0, 1.0, 0.0, |
| 0.0, 0.0, 0.0, 1.0 |
| }; |
| |
| |
| |
| /**********************************************************************/ |
| /** \name Matrix multiplication */ |
| /*@{*/ |
| |
| #define A(row,col) a[(col<<2)+row] |
| #define B(row,col) b[(col<<2)+row] |
| #define P(row,col) product[(col<<2)+row] |
| |
| /** |
| * Perform a full 4x4 matrix multiplication. |
| * |
| * \param a matrix. |
| * \param b matrix. |
| * \param product will receive the product of \p a and \p b. |
| * |
| * \warning Is assumed that \p product != \p b. \p product == \p a is allowed. |
| * |
| * \note KW: 4*16 = 64 multiplications |
| * |
| * \author This \c matmul was contributed by Thomas Malik |
| */ |
| static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b ) |
| { |
| GLint i; |
| for (i = 0; i < 4; i++) { |
| const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); |
| P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0); |
| P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1); |
| P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2); |
| P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3); |
| } |
| } |
| |
| /** |
| * Multiply two matrices known to occupy only the top three rows, such |
| * as typical model matrices, and orthogonal matrices. |
| * |
| * \param a matrix. |
| * \param b matrix. |
| * \param product will receive the product of \p a and \p b. |
| */ |
| static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b ) |
| { |
| GLint i; |
| for (i = 0; i < 3; i++) { |
| const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3); |
| P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0); |
| P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1); |
| P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2); |
| P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3; |
| } |
| P(3,0) = 0; |
| P(3,1) = 0; |
| P(3,2) = 0; |
| P(3,3) = 1; |
| } |
| |
| #undef A |
| #undef B |
| #undef P |
| |
| /** |
| * Multiply a matrix by an array of floats with known properties. |
| * |
| * \param mat pointer to a GLmatrix structure containing the left multiplication |
| * matrix, and that will receive the product result. |
| * \param m right multiplication matrix array. |
| * \param flags flags of the matrix \p m. |
| * |
| * Joins both flags and marks the type and inverse as dirty. Calls matmul34() |
| * if both matrices are 3D, or matmul4() otherwise. |
| */ |
| static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags ) |
| { |
| mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE); |
| |
| if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) |
| matmul34( mat->m, mat->m, m ); |
| else |
| matmul4( mat->m, mat->m, m ); |
| } |
| |
| /** |
| * Matrix multiplication. |
| * |
| * \param dest destination matrix. |
| * \param a left matrix. |
| * \param b right matrix. |
| * |
| * Joins both flags and marks the type and inverse as dirty. Calls matmul34() |
| * if both matrices are 3D, or matmul4() otherwise. |
| */ |
| void |
| _math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b ) |
| { |
| dest->flags = (a->flags | |
| b->flags | |
| MAT_DIRTY_TYPE | |
| MAT_DIRTY_INVERSE); |
| |
| if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D)) |
| matmul34( dest->m, a->m, b->m ); |
| else |
| matmul4( dest->m, a->m, b->m ); |
| } |
| |
| /** |
| * Matrix multiplication. |
| * |
| * \param dest left and destination matrix. |
| * \param m right matrix array. |
| * |
| * Marks the matrix flags with general flag, and type and inverse dirty flags. |
| * Calls matmul4() for the multiplication. |
| */ |
| void |
| _math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m ) |
| { |
| dest->flags |= (MAT_FLAG_GENERAL | |
| MAT_DIRTY_TYPE | |
| MAT_DIRTY_INVERSE | |
| MAT_DIRTY_FLAGS); |
| |
| matmul4( dest->m, dest->m, m ); |
| } |
| |
| /*@}*/ |
| |
| |
| /**********************************************************************/ |
| /** \name Matrix output */ |
| /*@{*/ |
| |
| /** |
| * Print a matrix array. |
| * |
| * \param m matrix array. |
| * |
| * Called by _math_matrix_print() to print a matrix or its inverse. |
| */ |
| static void print_matrix_floats( const GLfloat m[16] ) |
| { |
| int i; |
| for (i=0;i<4;i++) { |
| _mesa_debug(NULL,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] ); |
| } |
| } |
| |
| /** |
| * Dumps the contents of a GLmatrix structure. |
| * |
| * \param m pointer to the GLmatrix structure. |
| */ |
| void |
| _math_matrix_print( const GLmatrix *m ) |
| { |
| GLfloat prod[16]; |
| |
| _mesa_debug(NULL, "Matrix type: %s, flags: %x\n", types[m->type], m->flags); |
| print_matrix_floats(m->m); |
| _mesa_debug(NULL, "Inverse: \n"); |
| print_matrix_floats(m->inv); |
| matmul4(prod, m->m, m->inv); |
| _mesa_debug(NULL, "Mat * Inverse:\n"); |
| print_matrix_floats(prod); |
| } |
| |
| /*@}*/ |
| |
| |
| /** |
| * References an element of 4x4 matrix. |
| * |
| * \param m matrix array. |
| * \param c column of the desired element. |
| * \param r row of the desired element. |
| * |
| * \return value of the desired element. |
| * |
| * Calculate the linear storage index of the element and references it. |
| */ |
| #define MAT(m,r,c) (m)[(c)*4+(r)] |
| |
| |
| /**********************************************************************/ |
| /** \name Matrix inversion */ |
| /*@{*/ |
| |
| /** |
| * Swaps the values of two floating point variables. |
| * |
| * Used by invert_matrix_general() to swap the row pointers. |
| */ |
| #define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; } |
| |
| /** |
| * Compute inverse of 4x4 transformation matrix. |
| * |
| * \param mat pointer to a GLmatrix structure. The matrix inverse will be |
| * stored in the GLmatrix::inv attribute. |
| * |
| * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). |
| * |
| * \author |
| * Code contributed by Jacques Leroy jle@star.be |
| * |
| * Calculates the inverse matrix by performing the gaussian matrix reduction |
| * with partial pivoting followed by back/substitution with the loops manually |
| * unrolled. |
| */ |
| static GLboolean invert_matrix_general( GLmatrix *mat ) |
| { |
| const GLfloat *m = mat->m; |
| GLfloat *out = mat->inv; |
| GLfloat wtmp[4][8]; |
| GLfloat m0, m1, m2, m3, s; |
| GLfloat *r0, *r1, *r2, *r3; |
| |
| r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3]; |
| |
| r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1), |
| r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3), |
| r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0, |
| |
| r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1), |
| r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3), |
| r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0, |
| |
| r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1), |
| r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3), |
| r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0, |
| |
| r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1), |
| r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3), |
| r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0; |
| |
| /* choose pivot - or die */ |
| if (fabsf(r3[0])>fabsf(r2[0])) SWAP_ROWS(r3, r2); |
| if (fabsf(r2[0])>fabsf(r1[0])) SWAP_ROWS(r2, r1); |
| if (fabsf(r1[0])>fabsf(r0[0])) SWAP_ROWS(r1, r0); |
| if (0.0F == r0[0]) return GL_FALSE; |
| |
| /* eliminate first variable */ |
| m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0]; |
| s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s; |
| s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s; |
| s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s; |
| s = r0[4]; |
| if (s != 0.0F) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; } |
| s = r0[5]; |
| if (s != 0.0F) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; } |
| s = r0[6]; |
| if (s != 0.0F) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; } |
| s = r0[7]; |
| if (s != 0.0F) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; } |
| |
| /* choose pivot - or die */ |
| if (fabsf(r3[1])>fabsf(r2[1])) SWAP_ROWS(r3, r2); |
| if (fabsf(r2[1])>fabsf(r1[1])) SWAP_ROWS(r2, r1); |
| if (0.0F == r1[1]) return GL_FALSE; |
| |
| /* eliminate second variable */ |
| m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1]; |
| r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2]; |
| r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3]; |
| s = r1[4]; if (0.0F != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; } |
| s = r1[5]; if (0.0F != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; } |
| s = r1[6]; if (0.0F != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; } |
| s = r1[7]; if (0.0F != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; } |
| |
| /* choose pivot - or die */ |
| if (fabsf(r3[2])>fabsf(r2[2])) SWAP_ROWS(r3, r2); |
| if (0.0F == r2[2]) return GL_FALSE; |
| |
| /* eliminate third variable */ |
| m3 = r3[2]/r2[2]; |
| r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4], |
| r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6], |
| r3[7] -= m3 * r2[7]; |
| |
| /* last check */ |
| if (0.0F == r3[3]) return GL_FALSE; |
| |
| s = 1.0F/r3[3]; /* now back substitute row 3 */ |
| r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s; |
| |
| m2 = r2[3]; /* now back substitute row 2 */ |
| s = 1.0F/r2[2]; |
| r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2), |
| r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2); |
| m1 = r1[3]; |
| r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1, |
| r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1; |
| m0 = r0[3]; |
| r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0, |
| r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0; |
| |
| m1 = r1[2]; /* now back substitute row 1 */ |
| s = 1.0F/r1[1]; |
| r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1), |
| r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1); |
| m0 = r0[2]; |
| r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0, |
| r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0; |
| |
| m0 = r0[1]; /* now back substitute row 0 */ |
| s = 1.0F/r0[0]; |
| r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0), |
| r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0); |
| |
| MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5], |
| MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7], |
| MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5], |
| MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7], |
| MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5], |
| MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7], |
| MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5], |
| MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7]; |
| |
| return GL_TRUE; |
| } |
| #undef SWAP_ROWS |
| |
| /** |
| * Compute inverse of a general 3d transformation matrix. |
| * |
| * \param mat pointer to a GLmatrix structure. The matrix inverse will be |
| * stored in the GLmatrix::inv attribute. |
| * |
| * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). |
| * |
| * \author Adapted from graphics gems II. |
| * |
| * Calculates the inverse of the upper left by first calculating its |
| * determinant and multiplying it to the symmetric adjust matrix of each |
| * element. Finally deals with the translation part by transforming the |
| * original translation vector using by the calculated submatrix inverse. |
| */ |
| static GLboolean invert_matrix_3d_general( GLmatrix *mat ) |
| { |
| const GLfloat *in = mat->m; |
| GLfloat *out = mat->inv; |
| GLfloat pos, neg, t; |
| GLfloat det; |
| |
| /* Calculate the determinant of upper left 3x3 submatrix and |
| * determine if the matrix is singular. |
| */ |
| pos = neg = 0.0; |
| t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2); |
| if (t >= 0.0F) pos += t; else neg += t; |
| |
| t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2); |
| if (t >= 0.0F) pos += t; else neg += t; |
| |
| t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2); |
| if (t >= 0.0F) pos += t; else neg += t; |
| |
| t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2); |
| if (t >= 0.0F) pos += t; else neg += t; |
| |
| t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2); |
| if (t >= 0.0F) pos += t; else neg += t; |
| |
| t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2); |
| if (t >= 0.0F) pos += t; else neg += t; |
| |
| det = pos + neg; |
| |
| if (fabsf(det) < 1e-25F) |
| return GL_FALSE; |
| |
| det = 1.0F / det; |
| MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det); |
| MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det); |
| MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det); |
| MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det); |
| MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det); |
| MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det); |
| MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det); |
| MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det); |
| MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det); |
| |
| /* Do the translation part */ |
| MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + |
| MAT(in,1,3) * MAT(out,0,1) + |
| MAT(in,2,3) * MAT(out,0,2) ); |
| MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + |
| MAT(in,1,3) * MAT(out,1,1) + |
| MAT(in,2,3) * MAT(out,1,2) ); |
| MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + |
| MAT(in,1,3) * MAT(out,2,1) + |
| MAT(in,2,3) * MAT(out,2,2) ); |
| |
| return GL_TRUE; |
| } |
| |
| /** |
| * Compute inverse of a 3d transformation matrix. |
| * |
| * \param mat pointer to a GLmatrix structure. The matrix inverse will be |
| * stored in the GLmatrix::inv attribute. |
| * |
| * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). |
| * |
| * If the matrix is not an angle preserving matrix then calls |
| * invert_matrix_3d_general for the actual calculation. Otherwise calculates |
| * the inverse matrix analyzing and inverting each of the scaling, rotation and |
| * translation parts. |
| */ |
| static GLboolean invert_matrix_3d( GLmatrix *mat ) |
| { |
| const GLfloat *in = mat->m; |
| GLfloat *out = mat->inv; |
| |
| if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) { |
| return invert_matrix_3d_general( mat ); |
| } |
| |
| if (mat->flags & MAT_FLAG_UNIFORM_SCALE) { |
| GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) + |
| MAT(in,0,1) * MAT(in,0,1) + |
| MAT(in,0,2) * MAT(in,0,2)); |
| |
| if (scale == 0.0F) |
| return GL_FALSE; |
| |
| scale = 1.0F / scale; |
| |
| /* Transpose and scale the 3 by 3 upper-left submatrix. */ |
| MAT(out,0,0) = scale * MAT(in,0,0); |
| MAT(out,1,0) = scale * MAT(in,0,1); |
| MAT(out,2,0) = scale * MAT(in,0,2); |
| MAT(out,0,1) = scale * MAT(in,1,0); |
| MAT(out,1,1) = scale * MAT(in,1,1); |
| MAT(out,2,1) = scale * MAT(in,1,2); |
| MAT(out,0,2) = scale * MAT(in,2,0); |
| MAT(out,1,2) = scale * MAT(in,2,1); |
| MAT(out,2,2) = scale * MAT(in,2,2); |
| } |
| else if (mat->flags & MAT_FLAG_ROTATION) { |
| /* Transpose the 3 by 3 upper-left submatrix. */ |
| MAT(out,0,0) = MAT(in,0,0); |
| MAT(out,1,0) = MAT(in,0,1); |
| MAT(out,2,0) = MAT(in,0,2); |
| MAT(out,0,1) = MAT(in,1,0); |
| MAT(out,1,1) = MAT(in,1,1); |
| MAT(out,2,1) = MAT(in,1,2); |
| MAT(out,0,2) = MAT(in,2,0); |
| MAT(out,1,2) = MAT(in,2,1); |
| MAT(out,2,2) = MAT(in,2,2); |
| } |
| else { |
| /* pure translation */ |
| memcpy( out, Identity, sizeof(Identity) ); |
| MAT(out,0,3) = - MAT(in,0,3); |
| MAT(out,1,3) = - MAT(in,1,3); |
| MAT(out,2,3) = - MAT(in,2,3); |
| return GL_TRUE; |
| } |
| |
| if (mat->flags & MAT_FLAG_TRANSLATION) { |
| /* Do the translation part */ |
| MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) + |
| MAT(in,1,3) * MAT(out,0,1) + |
| MAT(in,2,3) * MAT(out,0,2) ); |
| MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) + |
| MAT(in,1,3) * MAT(out,1,1) + |
| MAT(in,2,3) * MAT(out,1,2) ); |
| MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) + |
| MAT(in,1,3) * MAT(out,2,1) + |
| MAT(in,2,3) * MAT(out,2,2) ); |
| } |
| else { |
| MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0; |
| } |
| |
| return GL_TRUE; |
| } |
| |
| /** |
| * Compute inverse of an identity transformation matrix. |
| * |
| * \param mat pointer to a GLmatrix structure. The matrix inverse will be |
| * stored in the GLmatrix::inv attribute. |
| * |
| * \return always GL_TRUE. |
| * |
| * Simply copies Identity into GLmatrix::inv. |
| */ |
| static GLboolean invert_matrix_identity( GLmatrix *mat ) |
| { |
| memcpy( mat->inv, Identity, sizeof(Identity) ); |
| return GL_TRUE; |
| } |
| |
| /** |
| * Compute inverse of a no-rotation 3d transformation matrix. |
| * |
| * \param mat pointer to a GLmatrix structure. The matrix inverse will be |
| * stored in the GLmatrix::inv attribute. |
| * |
| * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). |
| * |
| * Calculates the |
| */ |
| static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat ) |
| { |
| const GLfloat *in = mat->m; |
| GLfloat *out = mat->inv; |
| |
| if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 ) |
| return GL_FALSE; |
| |
| memcpy( out, Identity, sizeof(Identity) ); |
| MAT(out,0,0) = 1.0F / MAT(in,0,0); |
| MAT(out,1,1) = 1.0F / MAT(in,1,1); |
| MAT(out,2,2) = 1.0F / MAT(in,2,2); |
| |
| if (mat->flags & MAT_FLAG_TRANSLATION) { |
| MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); |
| MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); |
| MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2)); |
| } |
| |
| return GL_TRUE; |
| } |
| |
| /** |
| * Compute inverse of a no-rotation 2d transformation matrix. |
| * |
| * \param mat pointer to a GLmatrix structure. The matrix inverse will be |
| * stored in the GLmatrix::inv attribute. |
| * |
| * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). |
| * |
| * Calculates the inverse matrix by applying the inverse scaling and |
| * translation to the identity matrix. |
| */ |
| static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat ) |
| { |
| const GLfloat *in = mat->m; |
| GLfloat *out = mat->inv; |
| |
| if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0) |
| return GL_FALSE; |
| |
| memcpy( out, Identity, sizeof(Identity) ); |
| MAT(out,0,0) = 1.0F / MAT(in,0,0); |
| MAT(out,1,1) = 1.0F / MAT(in,1,1); |
| |
| if (mat->flags & MAT_FLAG_TRANSLATION) { |
| MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0)); |
| MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1)); |
| } |
| |
| return GL_TRUE; |
| } |
| |
| #if 0 |
| /* broken */ |
| static GLboolean invert_matrix_perspective( GLmatrix *mat ) |
| { |
| const GLfloat *in = mat->m; |
| GLfloat *out = mat->inv; |
| |
| if (MAT(in,2,3) == 0) |
| return GL_FALSE; |
| |
| memcpy( out, Identity, sizeof(Identity) ); |
| |
| MAT(out,0,0) = 1.0F / MAT(in,0,0); |
| MAT(out,1,1) = 1.0F / MAT(in,1,1); |
| |
| MAT(out,0,3) = MAT(in,0,2); |
| MAT(out,1,3) = MAT(in,1,2); |
| |
| MAT(out,2,2) = 0; |
| MAT(out,2,3) = -1; |
| |
| MAT(out,3,2) = 1.0F / MAT(in,2,3); |
| MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2); |
| |
| return GL_TRUE; |
| } |
| #endif |
| |
| /** |
| * Matrix inversion function pointer type. |
| */ |
| typedef GLboolean (*inv_mat_func)( GLmatrix *mat ); |
| |
| /** |
| * Table of the matrix inversion functions according to the matrix type. |
| */ |
| static inv_mat_func inv_mat_tab[7] = { |
| invert_matrix_general, |
| invert_matrix_identity, |
| invert_matrix_3d_no_rot, |
| #if 0 |
| /* Don't use this function for now - it fails when the projection matrix |
| * is premultiplied by a translation (ala Chromium's tilesort SPU). |
| */ |
| invert_matrix_perspective, |
| #else |
| invert_matrix_general, |
| #endif |
| invert_matrix_3d, /* lazy! */ |
| invert_matrix_2d_no_rot, |
| invert_matrix_3d |
| }; |
| |
| /** |
| * Compute inverse of a transformation matrix. |
| * |
| * \param mat pointer to a GLmatrix structure. The matrix inverse will be |
| * stored in the GLmatrix::inv attribute. |
| * |
| * \return GL_TRUE for success, GL_FALSE for failure (\p singular matrix). |
| * |
| * Calls the matrix inversion function in inv_mat_tab corresponding to the |
| * given matrix type. In case of failure, updates the MAT_FLAG_SINGULAR flag, |
| * and copies the identity matrix into GLmatrix::inv. |
| */ |
| static GLboolean matrix_invert( GLmatrix *mat ) |
| { |
| if (inv_mat_tab[mat->type](mat)) { |
| mat->flags &= ~MAT_FLAG_SINGULAR; |
| return GL_TRUE; |
| } else { |
| mat->flags |= MAT_FLAG_SINGULAR; |
| memcpy( mat->inv, Identity, sizeof(Identity) ); |
| return GL_FALSE; |
| } |
| } |
| |
| /*@}*/ |
| |
| |
| /**********************************************************************/ |
| /** \name Matrix generation */ |
| /*@{*/ |
| |
| /** |
| * Generate a 4x4 transformation matrix from glRotate parameters, and |
| * post-multiply the input matrix by it. |
| * |
| * \author |
| * This function was contributed by Erich Boleyn (erich@uruk.org). |
| * Optimizations contributed by Rudolf Opalla (rudi@khm.de). |
| */ |
| void |
| _math_matrix_rotate( GLmatrix *mat, |
| GLfloat angle, GLfloat x, GLfloat y, GLfloat z ) |
| { |
| GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c, s, c; |
| GLfloat m[16]; |
| GLboolean optimized; |
| |
| s = sinf( angle * M_PI / 180.0 ); |
| c = cosf( angle * M_PI / 180.0 ); |
| |
| memcpy(m, Identity, sizeof(Identity)); |
| optimized = GL_FALSE; |
| |
| #define M(row,col) m[col*4+row] |
| |
| if (x == 0.0F) { |
| if (y == 0.0F) { |
| if (z != 0.0F) { |
| optimized = GL_TRUE; |
| /* rotate only around z-axis */ |
| M(0,0) = c; |
| M(1,1) = c; |
| if (z < 0.0F) { |
| M(0,1) = s; |
| M(1,0) = -s; |
| } |
| else { |
| M(0,1) = -s; |
| M(1,0) = s; |
| } |
| } |
| } |
| else if (z == 0.0F) { |
| optimized = GL_TRUE; |
| /* rotate only around y-axis */ |
| M(0,0) = c; |
| M(2,2) = c; |
| if (y < 0.0F) { |
| M(0,2) = -s; |
| M(2,0) = s; |
| } |
| else { |
| M(0,2) = s; |
| M(2,0) = -s; |
| } |
| } |
| } |
| else if (y == 0.0F) { |
| if (z == 0.0F) { |
| optimized = GL_TRUE; |
| /* rotate only around x-axis */ |
| M(1,1) = c; |
| M(2,2) = c; |
| if (x < 0.0F) { |
| M(1,2) = s; |
| M(2,1) = -s; |
| } |
| else { |
| M(1,2) = -s; |
| M(2,1) = s; |
| } |
| } |
| } |
| |
| if (!optimized) { |
| const GLfloat mag = sqrtf(x * x + y * y + z * z); |
| |
| if (mag <= 1.0e-4F) { |
| /* no rotation, leave mat as-is */ |
| return; |
| } |
| |
| x /= mag; |
| y /= mag; |
| z /= mag; |
| |
| |
| /* |
| * Arbitrary axis rotation matrix. |
| * |
| * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied |
| * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation |
| * (which is about the X-axis), and the two composite transforms |
| * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary |
| * from the arbitrary axis to the X-axis then back. They are |
| * all elementary rotations. |
| * |
| * Rz' is a rotation about the Z-axis, to bring the axis vector |
| * into the x-z plane. Then Ry' is applied, rotating about the |
| * Y-axis to bring the axis vector parallel with the X-axis. The |
| * rotation about the X-axis is then performed. Ry and Rz are |
| * simply the respective inverse transforms to bring the arbitrary |
| * axis back to its original orientation. The first transforms |
| * Rz' and Ry' are considered inverses, since the data from the |
| * arbitrary axis gives you info on how to get to it, not how |
| * to get away from it, and an inverse must be applied. |
| * |
| * The basic calculation used is to recognize that the arbitrary |
| * axis vector (x, y, z), since it is of unit length, actually |
| * represents the sines and cosines of the angles to rotate the |
| * X-axis to the same orientation, with theta being the angle about |
| * Z and phi the angle about Y (in the order described above) |
| * as follows: |
| * |
| * cos ( theta ) = x / sqrt ( 1 - z^2 ) |
| * sin ( theta ) = y / sqrt ( 1 - z^2 ) |
| * |
| * cos ( phi ) = sqrt ( 1 - z^2 ) |
| * sin ( phi ) = z |
| * |
| * Note that cos ( phi ) can further be inserted to the above |
| * formulas: |
| * |
| * cos ( theta ) = x / cos ( phi ) |
| * sin ( theta ) = y / sin ( phi ) |
| * |
| * ...etc. Because of those relations and the standard trigonometric |
| * relations, it is pssible to reduce the transforms down to what |
| * is used below. It may be that any primary axis chosen will give the |
| * same results (modulo a sign convention) using thie method. |
| * |
| * Particularly nice is to notice that all divisions that might |
| * have caused trouble when parallel to certain planes or |
| * axis go away with care paid to reducing the expressions. |
| * After checking, it does perform correctly under all cases, since |
| * in all the cases of division where the denominator would have |
| * been zero, the numerator would have been zero as well, giving |
| * the expected result. |
| */ |
| |
| xx = x * x; |
| yy = y * y; |
| zz = z * z; |
| xy = x * y; |
| yz = y * z; |
| zx = z * x; |
| xs = x * s; |
| ys = y * s; |
| zs = z * s; |
| one_c = 1.0F - c; |
| |
| /* We already hold the identity-matrix so we can skip some statements */ |
| M(0,0) = (one_c * xx) + c; |
| M(0,1) = (one_c * xy) - zs; |
| M(0,2) = (one_c * zx) + ys; |
| /* M(0,3) = 0.0F; */ |
| |
| M(1,0) = (one_c * xy) + zs; |
| M(1,1) = (one_c * yy) + c; |
| M(1,2) = (one_c * yz) - xs; |
| /* M(1,3) = 0.0F; */ |
| |
| M(2,0) = (one_c * zx) - ys; |
| M(2,1) = (one_c * yz) + xs; |
| M(2,2) = (one_c * zz) + c; |
| /* M(2,3) = 0.0F; */ |
| |
| /* |
| M(3,0) = 0.0F; |
| M(3,1) = 0.0F; |
| M(3,2) = 0.0F; |
| M(3,3) = 1.0F; |
| */ |
| } |
| #undef M |
| |
| matrix_multf( mat, m, MAT_FLAG_ROTATION ); |
| } |
| |
| /** |
| * Apply a perspective projection matrix. |
| * |
| * \param mat matrix to apply the projection. |
| * \param left left clipping plane coordinate. |
| * \param right right clipping plane coordinate. |
| * \param bottom bottom clipping plane coordinate. |
| * \param top top clipping plane coordinate. |
| * \param nearval distance to the near clipping plane. |
| * \param farval distance to the far clipping plane. |
| * |
| * Creates the projection matrix and multiplies it with \p mat, marking the |
| * MAT_FLAG_PERSPECTIVE flag. |
| */ |
| void |
| _math_matrix_frustum( GLmatrix *mat, |
| GLfloat left, GLfloat right, |
| GLfloat bottom, GLfloat top, |
| GLfloat nearval, GLfloat farval ) |
| { |
| GLfloat x, y, a, b, c, d; |
| GLfloat m[16]; |
| |
| x = (2.0F*nearval) / (right-left); |
| y = (2.0F*nearval) / (top-bottom); |
| a = (right+left) / (right-left); |
| b = (top+bottom) / (top-bottom); |
| c = -(farval+nearval) / ( farval-nearval); |
| d = -(2.0F*farval*nearval) / (farval-nearval); /* error? */ |
| |
| #define M(row,col) m[col*4+row] |
| M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F; |
| M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F; |
| M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d; |
| M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F; |
| #undef M |
| |
| matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE ); |
| } |
| |
| /** |
| * Apply an orthographic projection matrix. |
| * |
| * \param mat matrix to apply the projection. |
| * \param left left clipping plane coordinate. |
| * \param right right clipping plane coordinate. |
| * \param bottom bottom clipping plane coordinate. |
| * \param top top clipping plane coordinate. |
| * \param nearval distance to the near clipping plane. |
| * \param farval distance to the far clipping plane. |
| * |
| * Creates the projection matrix and multiplies it with \p mat, marking the |
| * MAT_FLAG_GENERAL_SCALE and MAT_FLAG_TRANSLATION flags. |
| */ |
| void |
| _math_matrix_ortho( GLmatrix *mat, |
| GLfloat left, GLfloat right, |
| GLfloat bottom, GLfloat top, |
| GLfloat nearval, GLfloat farval ) |
| { |
| GLfloat m[16]; |
| |
| #define M(row,col) m[col*4+row] |
| M(0,0) = 2.0F / (right-left); |
| M(0,1) = 0.0F; |
| M(0,2) = 0.0F; |
| M(0,3) = -(right+left) / (right-left); |
| |
| M(1,0) = 0.0F; |
| M(1,1) = 2.0F / (top-bottom); |
| M(1,2) = 0.0F; |
| M(1,3) = -(top+bottom) / (top-bottom); |
| |
| M(2,0) = 0.0F; |
| M(2,1) = 0.0F; |
| M(2,2) = -2.0F / (farval-nearval); |
| M(2,3) = -(farval+nearval) / (farval-nearval); |
| |
| M(3,0) = 0.0F; |
| M(3,1) = 0.0F; |
| M(3,2) = 0.0F; |
| M(3,3) = 1.0F; |
| #undef M |
| |
| matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION)); |
| } |
| |
| /** |
| * Multiply a matrix with a general scaling matrix. |
| * |
| * \param mat matrix. |
| * \param x x axis scale factor. |
| * \param y y axis scale factor. |
| * \param z z axis scale factor. |
| * |
| * Multiplies in-place the elements of \p mat by the scale factors. Checks if |
| * the scales factors are roughly the same, marking the MAT_FLAG_UNIFORM_SCALE |
| * flag, or MAT_FLAG_GENERAL_SCALE. Marks the MAT_DIRTY_TYPE and |
| * MAT_DIRTY_INVERSE dirty flags. |
| */ |
| void |
| _math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) |
| { |
| GLfloat *m = mat->m; |
| m[0] *= x; m[4] *= y; m[8] *= z; |
| m[1] *= x; m[5] *= y; m[9] *= z; |
| m[2] *= x; m[6] *= y; m[10] *= z; |
| m[3] *= x; m[7] *= y; m[11] *= z; |
| |
| if (fabsf(x - y) < 1e-8F && fabsf(x - z) < 1e-8F) |
| mat->flags |= MAT_FLAG_UNIFORM_SCALE; |
| else |
| mat->flags |= MAT_FLAG_GENERAL_SCALE; |
| |
| mat->flags |= (MAT_DIRTY_TYPE | |
| MAT_DIRTY_INVERSE); |
| } |
| |
| /** |
| * Multiply a matrix with a translation matrix. |
| * |
| * \param mat matrix. |
| * \param x translation vector x coordinate. |
| * \param y translation vector y coordinate. |
| * \param z translation vector z coordinate. |
| * |
| * Adds the translation coordinates to the elements of \p mat in-place. Marks |
| * the MAT_FLAG_TRANSLATION flag, and the MAT_DIRTY_TYPE and MAT_DIRTY_INVERSE |
| * dirty flags. |
| */ |
| void |
| _math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z ) |
| { |
| GLfloat *m = mat->m; |
| m[12] = m[0] * x + m[4] * y + m[8] * z + m[12]; |
| m[13] = m[1] * x + m[5] * y + m[9] * z + m[13]; |
| m[14] = m[2] * x + m[6] * y + m[10] * z + m[14]; |
| m[15] = m[3] * x + m[7] * y + m[11] * z + m[15]; |
| |
| mat->flags |= (MAT_FLAG_TRANSLATION | |
| MAT_DIRTY_TYPE | |
| MAT_DIRTY_INVERSE); |
| } |
| |
| |
| /** |
| * Set matrix to do viewport and depthrange mapping. |
| * Transforms Normalized Device Coords to window/Z values. |
| */ |
| void |
| _math_matrix_viewport(GLmatrix *m, const float scale[3], |
| const float translate[3], double depthMax) |
| { |
| m->m[MAT_SX] = scale[0]; |
| m->m[MAT_TX] = translate[0]; |
| m->m[MAT_SY] = scale[1]; |
| m->m[MAT_TY] = translate[1]; |
| m->m[MAT_SZ] = depthMax*scale[2]; |
| m->m[MAT_TZ] = depthMax*translate[2]; |
| m->flags = MAT_FLAG_GENERAL_SCALE | MAT_FLAG_TRANSLATION; |
| m->type = MATRIX_3D_NO_ROT; |
| } |
| |
| |
| /** |
| * Set a matrix to the identity matrix. |
| * |
| * \param mat matrix. |
| * |
| * Copies ::Identity into \p GLmatrix::m, and into GLmatrix::inv if not NULL. |
| * Sets the matrix type to identity, and clear the dirty flags. |
| */ |
| void |
| _math_matrix_set_identity( GLmatrix *mat ) |
| { |
| memcpy( mat->m, Identity, sizeof(Identity) ); |
| memcpy( mat->inv, Identity, sizeof(Identity) ); |
| |
| mat->type = MATRIX_IDENTITY; |
| mat->flags &= ~(MAT_DIRTY_FLAGS| |
| MAT_DIRTY_TYPE| |
| MAT_DIRTY_INVERSE); |
| } |
| |
| /*@}*/ |
| |
| |
| /**********************************************************************/ |
| /** \name Matrix analysis */ |
| /*@{*/ |
| |
| #define ZERO(x) (1<<x) |
| #define ONE(x) (1<<(x+16)) |
| |
| #define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14)) |
| #define MASK_NO_2D_SCALE ( ONE(0) | ONE(5)) |
| |
| #define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\ |
| ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\ |
| ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ |
| ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
| |
| #define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \ |
| ZERO(1) | ZERO(9) | \ |
| ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ |
| ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
| |
| #define MASK_2D ( ZERO(8) | \ |
| ZERO(9) | \ |
| ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\ |
| ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
| |
| |
| #define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \ |
| ZERO(1) | ZERO(9) | \ |
| ZERO(2) | ZERO(6) | \ |
| ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
| |
| #define MASK_3D ( \ |
| \ |
| \ |
| ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) ) |
| |
| |
| #define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\ |
| ZERO(1) | ZERO(13) |\ |
| ZERO(2) | ZERO(6) | \ |
| ZERO(3) | ZERO(7) | ZERO(15) ) |
| |
| #define SQ(x) ((x)*(x)) |
| |
| /** |
| * Determine type and flags from scratch. |
| * |
| * \param mat matrix. |
| * |
| * This is expensive enough to only want to do it once. |
| */ |
| static void analyse_from_scratch( GLmatrix *mat ) |
| { |
| const GLfloat *m = mat->m; |
| GLuint mask = 0; |
| GLuint i; |
| |
| for (i = 0 ; i < 16 ; i++) { |
| if (m[i] == 0.0F) mask |= (1<<i); |
| } |
| |
| if (m[0] == 1.0F) mask |= (1<<16); |
| if (m[5] == 1.0F) mask |= (1<<21); |
| if (m[10] == 1.0F) mask |= (1<<26); |
| if (m[15] == 1.0F) mask |= (1<<31); |
| |
| mat->flags &= ~MAT_FLAGS_GEOMETRY; |
| |
| /* Check for translation - no-one really cares |
| */ |
| if ((mask & MASK_NO_TRX) != MASK_NO_TRX) |
| mat->flags |= MAT_FLAG_TRANSLATION; |
| |
| /* Do the real work |
| */ |
| if (mask == (GLuint) MASK_IDENTITY) { |
| mat->type = MATRIX_IDENTITY; |
| } |
| else if ((mask & MASK_2D_NO_ROT) == (GLuint) MASK_2D_NO_ROT) { |
| mat->type = MATRIX_2D_NO_ROT; |
| |
| if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE) |
| mat->flags |= MAT_FLAG_GENERAL_SCALE; |
| } |
| else if ((mask & MASK_2D) == (GLuint) MASK_2D) { |
| GLfloat mm = DOT2(m, m); |
| GLfloat m4m4 = DOT2(m+4,m+4); |
| GLfloat mm4 = DOT2(m,m+4); |
| |
| mat->type = MATRIX_2D; |
| |
| /* Check for scale */ |
| if (SQ(mm-1) > SQ(1e-6F) || |
| SQ(m4m4-1) > SQ(1e-6F)) |
| mat->flags |= MAT_FLAG_GENERAL_SCALE; |
| |
| /* Check for rotation */ |
| if (SQ(mm4) > SQ(1e-6F)) |
| mat->flags |= MAT_FLAG_GENERAL_3D; |
| else |
| mat->flags |= MAT_FLAG_ROTATION; |
| |
| } |
| else if ((mask & MASK_3D_NO_ROT) == (GLuint) MASK_3D_NO_ROT) { |
| mat->type = MATRIX_3D_NO_ROT; |
| |
| /* Check for scale */ |
| if (SQ(m[0]-m[5]) < SQ(1e-6F) && |
| SQ(m[0]-m[10]) < SQ(1e-6F)) { |
| if (SQ(m[0]-1.0F) > SQ(1e-6F)) { |
| mat->flags |= MAT_FLAG_UNIFORM_SCALE; |
| } |
| } |
| else { |
| mat->flags |= MAT_FLAG_GENERAL_SCALE; |
| } |
| } |
| else if ((mask & MASK_3D) == (GLuint) MASK_3D) { |
| GLfloat c1 = DOT3(m,m); |
| GLfloat c2 = DOT3(m+4,m+4); |
| GLfloat c3 = DOT3(m+8,m+8); |
| GLfloat d1 = DOT3(m, m+4); |
| GLfloat cp[3]; |
| |
| mat->type = MATRIX_3D; |
| |
| /* Check for scale */ |
| if (SQ(c1-c2) < SQ(1e-6F) && SQ(c1-c3) < SQ(1e-6F)) { |
| if (SQ(c1-1.0F) > SQ(1e-6F)) |
| mat->flags |= MAT_FLAG_UNIFORM_SCALE; |
| /* else no scale at all */ |
| } |
| else { |
| mat->flags |= MAT_FLAG_GENERAL_SCALE; |
| } |
| |
| /* Check for rotation */ |
| if (SQ(d1) < SQ(1e-6F)) { |
| CROSS3( cp, m, m+4 ); |
| SUB_3V( cp, cp, (m+8) ); |
| if (LEN_SQUARED_3FV(cp) < SQ(1e-6F)) |
| mat->flags |= MAT_FLAG_ROTATION; |
| else |
| mat->flags |= MAT_FLAG_GENERAL_3D; |
| } |
| else { |
| mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */ |
| } |
| } |
| else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) { |
| mat->type = MATRIX_PERSPECTIVE; |
| mat->flags |= MAT_FLAG_GENERAL; |
| } |
| else { |
| mat->type = MATRIX_GENERAL; |
| mat->flags |= MAT_FLAG_GENERAL; |
| } |
| } |
| |
| /** |
| * Analyze a matrix given that its flags are accurate. |
| * |
| * This is the more common operation, hopefully. |
| */ |
| static void analyse_from_flags( GLmatrix *mat ) |
| { |
| const GLfloat *m = mat->m; |
| |
| if (TEST_MAT_FLAGS(mat, 0)) { |
| mat->type = MATRIX_IDENTITY; |
| } |
| else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION | |
| MAT_FLAG_UNIFORM_SCALE | |
| MAT_FLAG_GENERAL_SCALE))) { |
| if ( m[10]==1.0F && m[14]==0.0F ) { |
| mat->type = MATRIX_2D_NO_ROT; |
| } |
| else { |
| mat->type = MATRIX_3D_NO_ROT; |
| } |
| } |
| else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) { |
| if ( m[ 8]==0.0F |
| && m[ 9]==0.0F |
| && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) { |
| mat->type = MATRIX_2D; |
| } |
| else { |
| mat->type = MATRIX_3D; |
| } |
| } |
| else if ( m[4]==0.0F && m[12]==0.0F |
| && m[1]==0.0F && m[13]==0.0F |
| && m[2]==0.0F && m[6]==0.0F |
| && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) { |
| mat->type = MATRIX_PERSPECTIVE; |
| } |
| else { |
| mat->type = MATRIX_GENERAL; |
| } |
| } |
| |
| /** |
| * Analyze and update a matrix. |
| * |
| * \param mat matrix. |
| * |
| * If the matrix type is dirty then calls either analyse_from_scratch() or |
| * analyse_from_flags() to determine its type, according to whether the flags |
| * are dirty or not, respectively. If the matrix has an inverse and it's dirty |
| * then calls matrix_invert(). Finally clears the dirty flags. |
| */ |
| void |
| _math_matrix_analyse( GLmatrix *mat ) |
| { |
| if (mat->flags & MAT_DIRTY_TYPE) { |
| if (mat->flags & MAT_DIRTY_FLAGS) |
| analyse_from_scratch( mat ); |
| else |
| analyse_from_flags( mat ); |
| } |
| |
| if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) { |
| matrix_invert( mat ); |
| mat->flags &= ~MAT_DIRTY_INVERSE; |
| } |
| |
| mat->flags &= ~(MAT_DIRTY_FLAGS | MAT_DIRTY_TYPE); |
| } |
| |
| /*@}*/ |
| |
| |
| /** |
| * Test if the given matrix preserves vector lengths. |
| */ |
| GLboolean |
| _math_matrix_is_length_preserving( const GLmatrix *m ) |
| { |
| return TEST_MAT_FLAGS( m, MAT_FLAGS_LENGTH_PRESERVING); |
| } |
| |
| |
| /** |
| * Test if the given matrix does any rotation. |
| * (or perhaps if the upper-left 3x3 is non-identity) |
| */ |
| GLboolean |
| _math_matrix_has_rotation( const GLmatrix *m ) |
| { |
| if (m->flags & (MAT_FLAG_GENERAL | |
| MAT_FLAG_ROTATION | |
| MAT_FLAG_GENERAL_3D | |
| MAT_FLAG_PERSPECTIVE)) |
| return GL_TRUE; |
| else |
| return GL_FALSE; |
| } |
| |
| |
| GLboolean |
| _math_matrix_is_general_scale( const GLmatrix *m ) |
| { |
| return (m->flags & MAT_FLAG_GENERAL_SCALE) ? GL_TRUE : GL_FALSE; |
| } |
| |
| |
| GLboolean |
| _math_matrix_is_dirty( const GLmatrix *m ) |
| { |
| return (m->flags & MAT_DIRTY) ? GL_TRUE : GL_FALSE; |
| } |
| |
| |
| /**********************************************************************/ |
| /** \name Matrix setup */ |
| /*@{*/ |
| |
| /** |
| * Copy a matrix. |
| * |
| * \param to destination matrix. |
| * \param from source matrix. |
| * |
| * Copies all fields in GLmatrix, creating an inverse array if necessary. |
| */ |
| void |
| _math_matrix_copy( GLmatrix *to, const GLmatrix *from ) |
| { |
| memcpy(to->m, from->m, 16 * sizeof(GLfloat)); |
| memcpy(to->inv, from->inv, 16 * sizeof(GLfloat)); |
| to->flags = from->flags; |
| to->type = from->type; |
| } |
| |
| /** |
| * Loads a matrix array into GLmatrix. |
| * |
| * \param m matrix array. |
| * \param mat matrix. |
| * |
| * Copies \p m into GLmatrix::m and marks the MAT_FLAG_GENERAL and MAT_DIRTY |
| * flags. |
| */ |
| void |
| _math_matrix_loadf( GLmatrix *mat, const GLfloat *m ) |
| { |
| memcpy( mat->m, m, 16*sizeof(GLfloat) ); |
| mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY); |
| } |
| |
| /** |
| * Matrix constructor. |
| * |
| * \param m matrix. |
| * |
| * Initialize the GLmatrix fields. |
| */ |
| void |
| _math_matrix_ctr( GLmatrix *m ) |
| { |
| m->m = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 ); |
| if (m->m) |
| memcpy( m->m, Identity, sizeof(Identity) ); |
| m->inv = _mesa_align_malloc( 16 * sizeof(GLfloat), 16 ); |
| if (m->inv) |
| memcpy( m->inv, Identity, sizeof(Identity) ); |
| m->type = MATRIX_IDENTITY; |
| m->flags = 0; |
| } |
| |
| /** |
| * Matrix destructor. |
| * |
| * \param m matrix. |
| * |
| * Frees the data in a GLmatrix. |
| */ |
| void |
| _math_matrix_dtr( GLmatrix *m ) |
| { |
| _mesa_align_free( m->m ); |
| m->m = NULL; |
| |
| _mesa_align_free( m->inv ); |
| m->inv = NULL; |
| } |
| |
| /*@}*/ |
| |
| |
| /**********************************************************************/ |
| /** \name Matrix transpose */ |
| /*@{*/ |
| |
| /** |
| * Transpose a GLfloat matrix. |
| * |
| * \param to destination array. |
| * \param from source array. |
| */ |
| void |
| _math_transposef( GLfloat to[16], const GLfloat from[16] ) |
| { |
| to[0] = from[0]; |
| to[1] = from[4]; |
| to[2] = from[8]; |
| to[3] = from[12]; |
| to[4] = from[1]; |
| to[5] = from[5]; |
| to[6] = from[9]; |
| to[7] = from[13]; |
| to[8] = from[2]; |
| to[9] = from[6]; |
| to[10] = from[10]; |
| to[11] = from[14]; |
| to[12] = from[3]; |
| to[13] = from[7]; |
| to[14] = from[11]; |
| to[15] = from[15]; |
| } |
| |
| /** |
| * Transpose a GLdouble matrix. |
| * |
| * \param to destination array. |
| * \param from source array. |
| */ |
| void |
| _math_transposed( GLdouble to[16], const GLdouble from[16] ) |
| { |
| to[0] = from[0]; |
| to[1] = from[4]; |
| to[2] = from[8]; |
| to[3] = from[12]; |
| to[4] = from[1]; |
| to[5] = from[5]; |
| to[6] = from[9]; |
| to[7] = from[13]; |
| to[8] = from[2]; |
| to[9] = from[6]; |
| to[10] = from[10]; |
| to[11] = from[14]; |
| to[12] = from[3]; |
| to[13] = from[7]; |
| to[14] = from[11]; |
| to[15] = from[15]; |
| } |
| |
| /** |
| * Transpose a GLdouble matrix and convert to GLfloat. |
| * |
| * \param to destination array. |
| * \param from source array. |
| */ |
| void |
| _math_transposefd( GLfloat to[16], const GLdouble from[16] ) |
| { |
| to[0] = (GLfloat) from[0]; |
| to[1] = (GLfloat) from[4]; |
| to[2] = (GLfloat) from[8]; |
| to[3] = (GLfloat) from[12]; |
| to[4] = (GLfloat) from[1]; |
| to[5] = (GLfloat) from[5]; |
| to[6] = (GLfloat) from[9]; |
| to[7] = (GLfloat) from[13]; |
| to[8] = (GLfloat) from[2]; |
| to[9] = (GLfloat) from[6]; |
| to[10] = (GLfloat) from[10]; |
| to[11] = (GLfloat) from[14]; |
| to[12] = (GLfloat) from[3]; |
| to[13] = (GLfloat) from[7]; |
| to[14] = (GLfloat) from[11]; |
| to[15] = (GLfloat) from[15]; |
| } |
| |
| /*@}*/ |
| |
| |
| /** |
| * Transform a 4-element row vector (1x4 matrix) by a 4x4 matrix. This |
| * function is used for transforming clipping plane equations and spotlight |
| * directions. |
| * Mathematically, u = v * m. |
| * Input: v - input vector |
| * m - transformation matrix |
| * Output: u - transformed vector |
| */ |
| void |
| _mesa_transform_vector( GLfloat u[4], const GLfloat v[4], const GLfloat m[16] ) |
| { |
| const GLfloat v0 = v[0], v1 = v[1], v2 = v[2], v3 = v[3]; |
| #define M(row,col) m[row + col*4] |
| u[0] = v0 * M(0,0) + v1 * M(1,0) + v2 * M(2,0) + v3 * M(3,0); |
| u[1] = v0 * M(0,1) + v1 * M(1,1) + v2 * M(2,1) + v3 * M(3,1); |
| u[2] = v0 * M(0,2) + v1 * M(1,2) + v2 * M(2,2) + v3 * M(3,2); |
| u[3] = v0 * M(0,3) + v1 * M(1,3) + v2 * M(2,3) + v3 * M(3,3); |
| #undef M |
| } |