blob: adba2072c51410a7a285dce2d280a0d4a8bf8d40 [file] [log] [blame]
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "anv_private.h"
/** \file anv_cmd_buffer.c
*
* This file contains all of the stuff for emitting commands into a command
* buffer. This includes implementations of most of the vkCmd*
* entrypoints. This file is concerned entirely with state emission and
* not with the command buffer data structure itself. As far as this file
* is concerned, most of anv_cmd_buffer is magic.
*/
/* TODO: These are taken from GLES. We should check the Vulkan spec */
const struct anv_dynamic_state default_dynamic_state = {
.viewport = {
.count = 0,
},
.scissor = {
.count = 0,
},
.line_width = 1.0f,
.depth_bias = {
.bias = 0.0f,
.clamp = 0.0f,
.slope = 0.0f,
},
.blend_constants = { 0.0f, 0.0f, 0.0f, 0.0f },
.depth_bounds = {
.min = 0.0f,
.max = 1.0f,
},
.stencil_compare_mask = {
.front = ~0u,
.back = ~0u,
},
.stencil_write_mask = {
.front = ~0u,
.back = ~0u,
},
.stencil_reference = {
.front = 0u,
.back = 0u,
},
};
void
anv_dynamic_state_copy(struct anv_dynamic_state *dest,
const struct anv_dynamic_state *src,
uint32_t copy_mask)
{
if (copy_mask & (1 << VK_DYNAMIC_STATE_VIEWPORT)) {
dest->viewport.count = src->viewport.count;
typed_memcpy(dest->viewport.viewports, src->viewport.viewports,
src->viewport.count);
}
if (copy_mask & (1 << VK_DYNAMIC_STATE_SCISSOR)) {
dest->scissor.count = src->scissor.count;
typed_memcpy(dest->scissor.scissors, src->scissor.scissors,
src->scissor.count);
}
if (copy_mask & (1 << VK_DYNAMIC_STATE_LINE_WIDTH))
dest->line_width = src->line_width;
if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS))
dest->depth_bias = src->depth_bias;
if (copy_mask & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS))
typed_memcpy(dest->blend_constants, src->blend_constants, 4);
if (copy_mask & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS))
dest->depth_bounds = src->depth_bounds;
if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK))
dest->stencil_compare_mask = src->stencil_compare_mask;
if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK))
dest->stencil_write_mask = src->stencil_write_mask;
if (copy_mask & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE))
dest->stencil_reference = src->stencil_reference;
}
static void
anv_cmd_state_init(struct anv_cmd_state *state)
{
memset(&state->descriptors, 0, sizeof(state->descriptors));
memset(&state->push_constants, 0, sizeof(state->push_constants));
state->dirty = ~0;
state->vb_dirty = 0;
state->descriptors_dirty = 0;
state->push_constants_dirty = 0;
state->pipeline = NULL;
state->restart_index = UINT32_MAX;
state->dynamic = default_dynamic_state;
state->gen7.index_buffer = NULL;
}
static VkResult
anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
VkShaderStage stage, uint32_t size)
{
struct anv_push_constants **ptr = &cmd_buffer->state.push_constants[stage];
if (*ptr == NULL) {
*ptr = anv_device_alloc(cmd_buffer->device, size, 8,
VK_SYSTEM_ALLOC_TYPE_INTERNAL);
if (*ptr == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
(*ptr)->size = size;
} else if ((*ptr)->size < size) {
void *new_data = anv_device_alloc(cmd_buffer->device, size, 8,
VK_SYSTEM_ALLOC_TYPE_INTERNAL);
if (new_data == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memcpy(new_data, *ptr, (*ptr)->size);
anv_device_free(cmd_buffer->device, *ptr);
*ptr = new_data;
(*ptr)->size = size;
}
return VK_SUCCESS;
}
#define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
(offsetof(struct anv_push_constants, field) + \
sizeof(cmd_buffer->state.push_constants[0]->field)))
VkResult anv_CreateCommandBuffer(
VkDevice _device,
const VkCommandBufferCreateInfo* pCreateInfo,
VkCommandBuffer* pCommandBuffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_cmd_pool, pool, pCreateInfo->commandPool);
struct anv_cmd_buffer *cmd_buffer;
VkResult result;
cmd_buffer = anv_device_alloc(device, sizeof(*cmd_buffer), 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (cmd_buffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
cmd_buffer->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
cmd_buffer->device = device;
result = anv_cmd_buffer_init_batch_bo_chain(cmd_buffer);
if (result != VK_SUCCESS)
goto fail;
anv_state_stream_init(&cmd_buffer->surface_state_stream,
&device->surface_state_block_pool);
anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
&device->dynamic_state_block_pool);
cmd_buffer->level = pCreateInfo->level;
cmd_buffer->usage_flags = 0;
anv_cmd_state_init(&cmd_buffer->state);
if (pool) {
list_addtail(&cmd_buffer->pool_link, &pool->cmd_buffers);
} else {
/* Init the pool_link so we can safefly call list_del when we destroy
* the command buffer
*/
list_inithead(&cmd_buffer->pool_link);
}
*pCommandBuffer = anv_cmd_buffer_to_handle(cmd_buffer);
return VK_SUCCESS;
fail: anv_device_free(device, cmd_buffer);
return result;
}
void anv_DestroyCommandBuffer(
VkDevice _device,
VkCommandBuffer _cmd_buffer)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, _cmd_buffer);
list_del(&cmd_buffer->pool_link);
anv_cmd_buffer_fini_batch_bo_chain(cmd_buffer);
anv_state_stream_finish(&cmd_buffer->surface_state_stream);
anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
anv_device_free(device, cmd_buffer);
}
VkResult anv_ResetCommandBuffer(
VkCommandBuffer commandBuffer,
VkCommandBufferResetFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
anv_cmd_state_init(&cmd_buffer->state);
return VK_SUCCESS;
}
void
anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer)
{
switch (cmd_buffer->device->info.gen) {
case 7:
if (cmd_buffer->device->info.is_haswell)
return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
else
return gen7_cmd_buffer_emit_state_base_address(cmd_buffer);
case 8:
return gen8_cmd_buffer_emit_state_base_address(cmd_buffer);
case 9:
return gen9_cmd_buffer_emit_state_base_address(cmd_buffer);
default:
unreachable("unsupported gen\n");
}
}
VkResult anv_BeginCommandBuffer(
VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
anv_cmd_buffer_reset_batch_bo_chain(cmd_buffer);
cmd_buffer->usage_flags = pBeginInfo->flags;
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
cmd_buffer->state.framebuffer =
anv_framebuffer_from_handle(pBeginInfo->framebuffer);
cmd_buffer->state.pass =
anv_render_pass_from_handle(pBeginInfo->renderPass);
struct anv_subpass *subpass =
&cmd_buffer->state.pass->subpasses[pBeginInfo->subpass];
anv_cmd_buffer_begin_subpass(cmd_buffer, subpass);
}
anv_cmd_buffer_emit_state_base_address(cmd_buffer);
cmd_buffer->state.current_pipeline = UINT32_MAX;
return VK_SUCCESS;
}
VkResult anv_EndCommandBuffer(
VkCommandBuffer commandBuffer)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_device *device = cmd_buffer->device;
anv_cmd_buffer_end_batch_buffer(cmd_buffer);
if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY) {
/* The algorithm used to compute the validate list is not threadsafe as
* it uses the bo->index field. We have to lock the device around it.
* Fortunately, the chances for contention here are probably very low.
*/
pthread_mutex_lock(&device->mutex);
anv_cmd_buffer_prepare_execbuf(cmd_buffer);
pthread_mutex_unlock(&device->mutex);
}
return VK_SUCCESS;
}
void anv_CmdBindPipeline(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipeline _pipeline)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_pipeline, pipeline, _pipeline);
switch (pipelineBindPoint) {
case VK_PIPELINE_BIND_POINT_COMPUTE:
cmd_buffer->state.compute_pipeline = pipeline;
cmd_buffer->state.compute_dirty |= ANV_CMD_DIRTY_PIPELINE;
cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
break;
case VK_PIPELINE_BIND_POINT_GRAPHICS:
cmd_buffer->state.pipeline = pipeline;
cmd_buffer->state.vb_dirty |= pipeline->vb_used;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_PIPELINE;
cmd_buffer->state.push_constants_dirty |= pipeline->active_stages;
/* Apply the dynamic state from the pipeline */
cmd_buffer->state.dirty |= pipeline->dynamic_state_mask;
anv_dynamic_state_copy(&cmd_buffer->state.dynamic,
&pipeline->dynamic_state,
pipeline->dynamic_state_mask);
break;
default:
assert(!"invalid bind point");
break;
}
}
void anv_CmdSetViewport(
VkCommandBuffer commandBuffer,
uint32_t viewportCount,
const VkViewport* pViewports)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.viewport.count = viewportCount;
memcpy(cmd_buffer->state.dynamic.viewport.viewports,
pViewports, viewportCount * sizeof(*pViewports));
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
}
void anv_CmdSetScissor(
VkCommandBuffer commandBuffer,
uint32_t scissorCount,
const VkRect2D* pScissors)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.scissor.count = scissorCount;
memcpy(cmd_buffer->state.dynamic.scissor.scissors,
pScissors, scissorCount * sizeof(*pScissors));
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
}
void anv_CmdSetLineWidth(
VkCommandBuffer commandBuffer,
float lineWidth)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.line_width = lineWidth;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
}
void anv_CmdSetDepthBias(
VkCommandBuffer commandBuffer,
float depthBiasConstantFactor,
float depthBiasClamp,
float depthBiasSlopeFactor)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.depth_bias.bias = depthBiasConstantFactor;
cmd_buffer->state.dynamic.depth_bias.clamp = depthBiasClamp;
cmd_buffer->state.dynamic.depth_bias.slope = depthBiasSlopeFactor;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
}
void anv_CmdSetBlendConstants(
VkCommandBuffer commandBuffer,
const float blendConstants[4])
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
memcpy(cmd_buffer->state.dynamic.blend_constants,
blendConstants, sizeof(float) * 4);
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
}
void anv_CmdSetDepthBounds(
VkCommandBuffer commandBuffer,
float minDepthBounds,
float maxDepthBounds)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
cmd_buffer->state.dynamic.depth_bounds.min = minDepthBounds;
cmd_buffer->state.dynamic.depth_bounds.max = maxDepthBounds;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
}
void anv_CmdSetStencilCompareMask(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t compareMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_compare_mask.front = compareMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_compare_mask.back = compareMask;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
}
void anv_CmdSetStencilWriteMask(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t writeMask)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_write_mask.front = writeMask;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_write_mask.back = writeMask;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
}
void anv_CmdSetStencilReference(
VkCommandBuffer commandBuffer,
VkStencilFaceFlags faceMask,
uint32_t reference)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
if (faceMask & VK_STENCIL_FACE_FRONT_BIT)
cmd_buffer->state.dynamic.stencil_reference.front = reference;
if (faceMask & VK_STENCIL_FACE_BACK_BIT)
cmd_buffer->state.dynamic.stencil_reference.back = reference;
cmd_buffer->state.dirty |= ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
}
void anv_CmdBindDescriptorSets(
VkCommandBuffer commandBuffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t firstSet,
uint32_t descriptorSetCount,
const VkDescriptorSet* pDescriptorSets,
uint32_t dynamicOffsetCount,
const uint32_t* pDynamicOffsets)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
ANV_FROM_HANDLE(anv_pipeline_layout, layout, _layout);
struct anv_descriptor_set_layout *set_layout;
assert(firstSet + descriptorSetCount < MAX_SETS);
uint32_t dynamic_slot = 0;
for (uint32_t i = 0; i < descriptorSetCount; i++) {
ANV_FROM_HANDLE(anv_descriptor_set, set, pDescriptorSets[i]);
set_layout = layout->set[firstSet + i].layout;
if (cmd_buffer->state.descriptors[firstSet + i] != set) {
cmd_buffer->state.descriptors[firstSet + i] = set;
cmd_buffer->state.descriptors_dirty |= set_layout->shader_stages;
}
if (set_layout->dynamic_offset_count > 0) {
VkShaderStage s;
for_each_bit(s, set_layout->shader_stages) {
anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, s, dynamic);
struct anv_push_constants *push =
cmd_buffer->state.push_constants[s];
unsigned d = layout->set[firstSet + i].dynamic_offset_start;
const uint32_t *offsets = pDynamicOffsets + dynamic_slot;
struct anv_descriptor *desc = set->descriptors;
for (unsigned b = 0; b < set_layout->binding_count; b++) {
if (set_layout->binding[b].dynamic_offset_index < 0)
continue;
unsigned array_size = set_layout->binding[b].array_size;
for (unsigned j = 0; j < array_size; j++) {
push->dynamic[d].offset = *(offsets++);
push->dynamic[d].range = (desc++)->range;
d++;
}
}
}
cmd_buffer->state.push_constants_dirty |= set_layout->shader_stages;
}
}
}
void anv_CmdBindVertexBuffers(
VkCommandBuffer commandBuffer,
uint32_t startBinding,
uint32_t bindingCount,
const VkBuffer* pBuffers,
const VkDeviceSize* pOffsets)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
struct anv_vertex_binding *vb = cmd_buffer->state.vertex_bindings;
/* We have to defer setting up vertex buffer since we need the buffer
* stride from the pipeline. */
assert(startBinding + bindingCount < MAX_VBS);
for (uint32_t i = 0; i < bindingCount; i++) {
vb[startBinding + i].buffer = anv_buffer_from_handle(pBuffers[i]);
vb[startBinding + i].offset = pOffsets[i];
cmd_buffer->state.vb_dirty |= 1 << (startBinding + i);
}
}
static void
add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
struct anv_state state, struct anv_bo *bo, uint32_t offset)
{
/* The address goes in SURFACE_STATE dword 1 for gens < 8 and dwords 8 and
* 9 for gen8+. We only write the first dword for gen8+ here and rely on
* the initial state to set the high bits to 0. */
const uint32_t dword = cmd_buffer->device->info.gen < 8 ? 1 : 8;
anv_reloc_list_add(&cmd_buffer->surface_relocs, cmd_buffer->device,
state.offset + dword * 4, bo, offset);
}
static void
fill_descriptor_buffer_surface_state(struct anv_device *device, void *state,
VkShaderStage stage, VkDescriptorType type,
uint32_t offset, uint32_t range)
{
VkFormat format;
uint32_t stride;
switch (type) {
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
if (anv_is_scalar_shader_stage(device->instance->physicalDevice.compiler,
stage)) {
stride = 4;
} else {
stride = 16;
}
format = VK_FORMAT_R32G32B32A32_SFLOAT;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
stride = 1;
format = VK_FORMAT_UNDEFINED;
break;
default:
unreachable("Invalid descriptor type");
}
anv_fill_buffer_surface_state(device, state,
anv_format_for_vk_format(format),
offset, range, stride);
}
VkResult
anv_cmd_buffer_emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
VkShaderStage stage, struct anv_state *bt_state)
{
struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
struct anv_subpass *subpass = cmd_buffer->state.subpass;
struct anv_pipeline_layout *layout;
uint32_t color_count, bias, state_offset;
if (stage == VK_SHADER_STAGE_COMPUTE)
layout = cmd_buffer->state.compute_pipeline->layout;
else
layout = cmd_buffer->state.pipeline->layout;
if (stage == VK_SHADER_STAGE_FRAGMENT) {
bias = MAX_RTS;
color_count = subpass->color_count;
} else {
bias = 0;
color_count = 0;
}
/* This is a little awkward: layout can be NULL but we still have to
* allocate and set a binding table for the PS stage for render
* targets. */
uint32_t surface_count = layout ? layout->stage[stage].surface_count : 0;
if (color_count + surface_count == 0)
return VK_SUCCESS;
*bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
bias + surface_count,
&state_offset);
uint32_t *bt_map = bt_state->map;
if (bt_state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
for (uint32_t a = 0; a < color_count; a++) {
const struct anv_image_view *iview =
fb->attachments[subpass->color_attachments[a]];
bt_map[a] = iview->color_rt_surface_state.offset + state_offset;
add_surface_state_reloc(cmd_buffer, iview->color_rt_surface_state,
iview->bo, iview->offset);
}
if (layout == NULL)
return VK_SUCCESS;
for (uint32_t s = 0; s < layout->stage[stage].surface_count; s++) {
struct anv_pipeline_binding *binding =
&layout->stage[stage].surface_to_descriptor[s];
struct anv_descriptor_set *set =
cmd_buffer->state.descriptors[binding->set];
struct anv_descriptor *desc = &set->descriptors[binding->offset];
struct anv_state surface_state;
struct anv_bo *bo;
uint32_t bo_offset;
switch (desc->type) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
/* Nothing for us to do here */
continue;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
bo = desc->buffer->bo;
bo_offset = desc->buffer->offset + desc->offset;
surface_state =
anv_cmd_buffer_alloc_surface_state(cmd_buffer);
fill_descriptor_buffer_surface_state(cmd_buffer->device,
surface_state.map,
stage, desc->type,
bo_offset, desc->range);
break;
}
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
surface_state = desc->image_view->nonrt_surface_state;
bo = desc->image_view->bo;
bo_offset = desc->image_view->offset;
break;
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
assert(!"Unsupported descriptor type");
break;
default:
assert(!"Invalid descriptor type");
continue;
}
bt_map[bias + s] = surface_state.offset + state_offset;
add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
}
return VK_SUCCESS;
}
VkResult
anv_cmd_buffer_emit_samplers(struct anv_cmd_buffer *cmd_buffer,
VkShaderStage stage, struct anv_state *state)
{
struct anv_pipeline_layout *layout;
uint32_t sampler_count;
if (stage == VK_SHADER_STAGE_COMPUTE)
layout = cmd_buffer->state.compute_pipeline->layout;
else
layout = cmd_buffer->state.pipeline->layout;
sampler_count = layout ? layout->stage[stage].sampler_count : 0;
if (sampler_count == 0)
return VK_SUCCESS;
uint32_t size = sampler_count * 16;
*state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
if (state->map == NULL)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
for (uint32_t s = 0; s < layout->stage[stage].sampler_count; s++) {
struct anv_pipeline_binding *binding =
&layout->stage[stage].sampler_to_descriptor[s];
struct anv_descriptor_set *set =
cmd_buffer->state.descriptors[binding->set];
struct anv_descriptor *desc = &set->descriptors[binding->offset];
if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
continue;
struct anv_sampler *sampler = desc->sampler;
/* This can happen if we have an unfilled slot since TYPE_SAMPLER
* happens to be zero.
*/
if (sampler == NULL)
continue;
memcpy(state->map + (s * 16),
sampler->state, sizeof(sampler->state));
}
return VK_SUCCESS;
}
struct anv_state
anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
uint32_t *a, uint32_t dwords, uint32_t alignment)
{
struct anv_state state;
state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
dwords * 4, alignment);
memcpy(state.map, a, dwords * 4);
VG(VALGRIND_CHECK_MEM_IS_DEFINED(state.map, dwords * 4));
return state;
}
struct anv_state
anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
uint32_t *a, uint32_t *b,
uint32_t dwords, uint32_t alignment)
{
struct anv_state state;
uint32_t *p;
state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
dwords * 4, alignment);
p = state.map;
for (uint32_t i = 0; i < dwords; i++)
p[i] = a[i] | b[i];
VG(VALGRIND_CHECK_MEM_IS_DEFINED(p, dwords * 4));
return state;
}
void
anv_cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
struct anv_subpass *subpass)
{
switch (cmd_buffer->device->info.gen) {
case 7:
gen7_cmd_buffer_begin_subpass(cmd_buffer, subpass);
break;
case 8:
gen8_cmd_buffer_begin_subpass(cmd_buffer, subpass);
break;
case 9:
gen9_cmd_buffer_begin_subpass(cmd_buffer, subpass);
break;
default:
unreachable("unsupported gen\n");
}
}
void anv_CmdSetEvent(
VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask)
{
stub();
}
void anv_CmdResetEvent(
VkCommandBuffer commandBuffer,
VkEvent event,
VkPipelineStageFlags stageMask)
{
stub();
}
void anv_CmdWaitEvents(
VkCommandBuffer commandBuffer,
uint32_t eventCount,
const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags destStageMask,
uint32_t memBarrierCount,
const void* const* ppMemBarriers)
{
stub();
}
struct anv_state
anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
VkShaderStage stage)
{
struct anv_push_constants *data =
cmd_buffer->state.push_constants[stage];
struct brw_stage_prog_data *prog_data =
cmd_buffer->state.pipeline->prog_data[stage];
/* If we don't actually have any push constants, bail. */
if (data == NULL || prog_data->nr_params == 0)
return (struct anv_state) { .offset = 0 };
struct anv_state state =
anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
prog_data->nr_params * sizeof(float),
32 /* bottom 5 bits MBZ */);
/* Walk through the param array and fill the buffer with data */
uint32_t *u32_map = state.map;
for (unsigned i = 0; i < prog_data->nr_params; i++) {
uint32_t offset = (uintptr_t)prog_data->param[i];
u32_map[i] = *(uint32_t *)((uint8_t *)data + offset);
}
return state;
}
void anv_CmdPushConstants(
VkCommandBuffer commandBuffer,
VkPipelineLayout layout,
VkShaderStageFlags stageFlags,
uint32_t offset,
uint32_t size,
const void* pValues)
{
ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
VkShaderStage stage;
for_each_bit(stage, stageFlags) {
anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, client_data);
memcpy(cmd_buffer->state.push_constants[stage]->client_data + offset,
pValues, size);
}
cmd_buffer->state.push_constants_dirty |= stageFlags;
}
void anv_CmdExecuteCommands(
VkCommandBuffer commandBuffer,
uint32_t commandBuffersCount,
const VkCommandBuffer* pCmdBuffers)
{
ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
anv_assert(primary->state.subpass == &primary->state.pass->subpasses[0]);
for (uint32_t i = 0; i < commandBuffersCount; i++) {
ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
anv_cmd_buffer_add_secondary(primary, secondary);
}
}
VkResult anv_CreateCommandPool(
VkDevice _device,
const VkCommandPoolCreateInfo* pCreateInfo,
VkCommandPool* pCmdPool)
{
ANV_FROM_HANDLE(anv_device, device, _device);
struct anv_cmd_pool *pool;
pool = anv_device_alloc(device, sizeof(*pool), 8,
VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
if (pool == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
list_inithead(&pool->cmd_buffers);
*pCmdPool = anv_cmd_pool_to_handle(pool);
return VK_SUCCESS;
}
void anv_DestroyCommandPool(
VkDevice _device,
VkCommandPool commandPool)
{
ANV_FROM_HANDLE(anv_device, device, _device);
ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
anv_ResetCommandPool(_device, commandPool, 0);
anv_device_free(device, pool);
}
VkResult anv_ResetCommandPool(
VkDevice device,
VkCommandPool commandPool,
VkCommandPoolResetFlags flags)
{
ANV_FROM_HANDLE(anv_cmd_pool, pool, commandPool);
list_for_each_entry_safe(struct anv_cmd_buffer, cmd_buffer,
&pool->cmd_buffers, pool_link) {
anv_DestroyCommandBuffer(device, anv_cmd_buffer_to_handle(cmd_buffer));
}
return VK_SUCCESS;
}
/**
* Return NULL if the current subpass has no depthstencil attachment.
*/
const struct anv_image_view *
anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer)
{
const struct anv_subpass *subpass = cmd_buffer->state.subpass;
const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
if (subpass->depth_stencil_attachment == VK_ATTACHMENT_UNUSED)
return NULL;
const struct anv_image_view *iview =
fb->attachments[subpass->depth_stencil_attachment];
assert(anv_format_is_depth_or_stencil(iview->format));
return iview;
}