blob: d220eb596d640e097fbe07c8178d2510b95309f5 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include "radv_debug.h"
#include "radv_private.h"
#include "radv_shader.h"
#include "radv_cs.h"
#include "util/disk_cache.h"
#include "util/strtod.h"
#include "vk_util.h"
#include <xf86drm.h>
#include <amdgpu.h>
#include <amdgpu_drm.h>
#include "amdgpu_id.h"
#include "winsys/amdgpu/radv_amdgpu_winsys_public.h"
#include "ac_llvm_util.h"
#include "vk_format.h"
#include "sid.h"
#include "gfx9d.h"
#include "util/debug.h"
static int
radv_device_get_cache_uuid(enum radeon_family family, void *uuid)
{
uint32_t mesa_timestamp, llvm_timestamp;
uint16_t f = family;
memset(uuid, 0, VK_UUID_SIZE);
if (!disk_cache_get_function_timestamp(radv_device_get_cache_uuid, &mesa_timestamp) ||
!disk_cache_get_function_timestamp(LLVMInitializeAMDGPUTargetInfo, &llvm_timestamp))
return -1;
memcpy(uuid, &mesa_timestamp, 4);
memcpy((char*)uuid + 4, &llvm_timestamp, 4);
memcpy((char*)uuid + 8, &f, 2);
snprintf((char*)uuid + 10, VK_UUID_SIZE - 10, "radv");
return 0;
}
static void
radv_get_driver_uuid(void *uuid)
{
ac_compute_driver_uuid(uuid, VK_UUID_SIZE);
}
static void
radv_get_device_uuid(struct radeon_info *info, void *uuid)
{
ac_compute_device_uuid(info, uuid, VK_UUID_SIZE);
}
static const VkExtensionProperties instance_extensions[] = {
{
.extensionName = VK_KHR_SURFACE_EXTENSION_NAME,
.specVersion = 25,
},
#ifdef VK_USE_PLATFORM_XCB_KHR
{
.extensionName = VK_KHR_XCB_SURFACE_EXTENSION_NAME,
.specVersion = 6,
},
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
{
.extensionName = VK_KHR_XLIB_SURFACE_EXTENSION_NAME,
.specVersion = 6,
},
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
{
.extensionName = VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME,
.specVersion = 6,
},
#endif
{
.extensionName = VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_EXTERNAL_MEMORY_CAPABILITIES_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME,
.specVersion = 1,
},
};
static const VkExtensionProperties common_device_extensions[] = {
{
.extensionName = VK_KHR_DESCRIPTOR_UPDATE_TEMPLATE_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_MAINTENANCE1_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_PUSH_DESCRIPTOR_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_SAMPLER_MIRROR_CLAMP_TO_EDGE_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_SWAPCHAIN_EXTENSION_NAME,
.specVersion = 68,
},
{
.extensionName = VK_AMD_DRAW_INDIRECT_COUNT_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_SHADER_DRAW_PARAMETERS_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_VARIABLE_POINTERS_EXTENSION_NAME,
.specVersion = 1,
},
};
static const VkExtensionProperties ext_sema_device_extensions[] = {
{
.extensionName = VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME,
.specVersion = 1,
},
{
.extensionName = VK_KHX_MULTIVIEW_EXTENSION_NAME,
.specVersion = 1,
},
};
static VkResult
radv_extensions_register(struct radv_instance *instance,
struct radv_extensions *extensions,
const VkExtensionProperties *new_ext,
uint32_t num_ext)
{
size_t new_size;
VkExtensionProperties *new_ptr;
assert(new_ext && num_ext > 0);
if (!new_ext)
return VK_ERROR_INITIALIZATION_FAILED;
new_size = (extensions->num_ext + num_ext) * sizeof(VkExtensionProperties);
new_ptr = vk_realloc(&instance->alloc, extensions->ext_array,
new_size, 8, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
/* Old array continues to be valid, update nothing */
if (!new_ptr)
return VK_ERROR_OUT_OF_HOST_MEMORY;
memcpy(&new_ptr[extensions->num_ext], new_ext,
num_ext * sizeof(VkExtensionProperties));
extensions->ext_array = new_ptr;
extensions->num_ext += num_ext;
return VK_SUCCESS;
}
static void
radv_extensions_finish(struct radv_instance *instance,
struct radv_extensions *extensions)
{
assert(extensions);
if (!extensions)
radv_loge("Attemted to free invalid extension struct\n");
if (extensions->ext_array)
vk_free(&instance->alloc, extensions->ext_array);
}
static bool
is_extension_enabled(const VkExtensionProperties *extensions,
size_t num_ext,
const char *name)
{
assert(extensions && name);
for (uint32_t i = 0; i < num_ext; i++) {
if (strcmp(name, extensions[i].extensionName) == 0)
return true;
}
return false;
}
static const char *
get_chip_name(enum radeon_family family)
{
switch (family) {
case CHIP_TAHITI: return "AMD RADV TAHITI";
case CHIP_PITCAIRN: return "AMD RADV PITCAIRN";
case CHIP_VERDE: return "AMD RADV CAPE VERDE";
case CHIP_OLAND: return "AMD RADV OLAND";
case CHIP_HAINAN: return "AMD RADV HAINAN";
case CHIP_BONAIRE: return "AMD RADV BONAIRE";
case CHIP_KAVERI: return "AMD RADV KAVERI";
case CHIP_KABINI: return "AMD RADV KABINI";
case CHIP_HAWAII: return "AMD RADV HAWAII";
case CHIP_MULLINS: return "AMD RADV MULLINS";
case CHIP_TONGA: return "AMD RADV TONGA";
case CHIP_ICELAND: return "AMD RADV ICELAND";
case CHIP_CARRIZO: return "AMD RADV CARRIZO";
case CHIP_FIJI: return "AMD RADV FIJI";
case CHIP_POLARIS10: return "AMD RADV POLARIS10";
case CHIP_POLARIS11: return "AMD RADV POLARIS11";
case CHIP_POLARIS12: return "AMD RADV POLARIS12";
case CHIP_STONEY: return "AMD RADV STONEY";
case CHIP_VEGA10: return "AMD RADV VEGA";
case CHIP_RAVEN: return "AMD RADV RAVEN";
default: return "AMD RADV unknown";
}
}
static VkResult
radv_physical_device_init(struct radv_physical_device *device,
struct radv_instance *instance,
drmDevicePtr drm_device)
{
const char *path = drm_device->nodes[DRM_NODE_RENDER];
VkResult result;
drmVersionPtr version;
int fd;
fd = open(path, O_RDWR | O_CLOEXEC);
if (fd < 0)
return VK_ERROR_INCOMPATIBLE_DRIVER;
version = drmGetVersion(fd);
if (!version) {
close(fd);
return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
"failed to get version %s: %m", path);
}
if (strcmp(version->name, "amdgpu")) {
drmFreeVersion(version);
close(fd);
return VK_ERROR_INCOMPATIBLE_DRIVER;
}
drmFreeVersion(version);
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->instance = instance;
assert(strlen(path) < ARRAY_SIZE(device->path));
strncpy(device->path, path, ARRAY_SIZE(device->path));
device->ws = radv_amdgpu_winsys_create(fd, instance->debug_flags,
instance->perftest_flags);
if (!device->ws) {
result = VK_ERROR_INCOMPATIBLE_DRIVER;
goto fail;
}
device->local_fd = fd;
device->ws->query_info(device->ws, &device->rad_info);
result = radv_init_wsi(device);
if (result != VK_SUCCESS) {
device->ws->destroy(device->ws);
goto fail;
}
if (radv_device_get_cache_uuid(device->rad_info.family, device->cache_uuid)) {
radv_finish_wsi(device);
device->ws->destroy(device->ws);
result = vk_errorf(VK_ERROR_INITIALIZATION_FAILED,
"cannot generate UUID");
goto fail;
}
result = radv_extensions_register(instance,
&device->extensions,
common_device_extensions,
ARRAY_SIZE(common_device_extensions));
if (result != VK_SUCCESS)
goto fail;
if (device->rad_info.has_syncobj) {
result = radv_extensions_register(instance,
&device->extensions,
ext_sema_device_extensions,
ARRAY_SIZE(ext_sema_device_extensions));
if (result != VK_SUCCESS)
goto fail;
}
fprintf(stderr, "WARNING: radv is not a conformant vulkan implementation, testing use only.\n");
device->name = get_chip_name(device->rad_info.family);
radv_get_driver_uuid(&device->device_uuid);
radv_get_device_uuid(&device->rad_info, &device->device_uuid);
if (device->rad_info.family == CHIP_STONEY ||
device->rad_info.chip_class >= GFX9) {
device->has_rbplus = true;
device->rbplus_allowed = device->rad_info.family == CHIP_STONEY;
}
return VK_SUCCESS;
fail:
close(fd);
return result;
}
static void
radv_physical_device_finish(struct radv_physical_device *device)
{
radv_extensions_finish(device->instance, &device->extensions);
radv_finish_wsi(device);
device->ws->destroy(device->ws);
close(device->local_fd);
}
static void *
default_alloc_func(void *pUserData, size_t size, size_t align,
VkSystemAllocationScope allocationScope)
{
return malloc(size);
}
static void *
default_realloc_func(void *pUserData, void *pOriginal, size_t size,
size_t align, VkSystemAllocationScope allocationScope)
{
return realloc(pOriginal, size);
}
static void
default_free_func(void *pUserData, void *pMemory)
{
free(pMemory);
}
static const VkAllocationCallbacks default_alloc = {
.pUserData = NULL,
.pfnAllocation = default_alloc_func,
.pfnReallocation = default_realloc_func,
.pfnFree = default_free_func,
};
static const struct debug_control radv_debug_options[] = {
{"nofastclears", RADV_DEBUG_NO_FAST_CLEARS},
{"nodcc", RADV_DEBUG_NO_DCC},
{"shaders", RADV_DEBUG_DUMP_SHADERS},
{"nocache", RADV_DEBUG_NO_CACHE},
{"shaderstats", RADV_DEBUG_DUMP_SHADER_STATS},
{"nohiz", RADV_DEBUG_NO_HIZ},
{"nocompute", RADV_DEBUG_NO_COMPUTE_QUEUE},
{"unsafemath", RADV_DEBUG_UNSAFE_MATH},
{"allbos", RADV_DEBUG_ALL_BOS},
{"noibs", RADV_DEBUG_NO_IBS},
{"spirv", RADV_DEBUG_DUMP_SPIRV},
{NULL, 0}
};
static const struct debug_control radv_perftest_options[] = {
{"nobatchchain", RADV_PERFTEST_NO_BATCHCHAIN},
{"sisched", RADV_PERFTEST_SISCHED},
{NULL, 0}
};
VkResult radv_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
struct radv_instance *instance;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
uint32_t client_version;
if (pCreateInfo->pApplicationInfo &&
pCreateInfo->pApplicationInfo->apiVersion != 0) {
client_version = pCreateInfo->pApplicationInfo->apiVersion;
} else {
client_version = VK_MAKE_VERSION(1, 0, 0);
}
if (VK_MAKE_VERSION(1, 0, 0) > client_version ||
client_version > VK_MAKE_VERSION(1, 0, 0xfff)) {
return vk_errorf(VK_ERROR_INCOMPATIBLE_DRIVER,
"Client requested version %d.%d.%d",
VK_VERSION_MAJOR(client_version),
VK_VERSION_MINOR(client_version),
VK_VERSION_PATCH(client_version));
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (!is_extension_enabled(instance_extensions,
ARRAY_SIZE(instance_extensions),
pCreateInfo->ppEnabledExtensionNames[i]))
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
}
instance = vk_alloc2(&default_alloc, pAllocator, sizeof(*instance), 8,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!instance)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(instance, 0, sizeof(*instance));
instance->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
if (pAllocator)
instance->alloc = *pAllocator;
else
instance->alloc = default_alloc;
instance->apiVersion = client_version;
instance->physicalDeviceCount = -1;
_mesa_locale_init();
VG(VALGRIND_CREATE_MEMPOOL(instance, 0, false));
instance->debug_flags = parse_debug_string(getenv("RADV_DEBUG"),
radv_debug_options);
instance->perftest_flags = parse_debug_string(getenv("RADV_PERFTEST"),
radv_perftest_options);
*pInstance = radv_instance_to_handle(instance);
return VK_SUCCESS;
}
void radv_DestroyInstance(
VkInstance _instance,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
if (!instance)
return;
for (int i = 0; i < instance->physicalDeviceCount; ++i) {
radv_physical_device_finish(instance->physicalDevices + i);
}
VG(VALGRIND_DESTROY_MEMPOOL(instance));
_mesa_locale_fini();
vk_free(&instance->alloc, instance);
}
static VkResult
radv_enumerate_devices(struct radv_instance *instance)
{
/* TODO: Check for more devices ? */
drmDevicePtr devices[8];
VkResult result = VK_ERROR_INCOMPATIBLE_DRIVER;
int max_devices;
instance->physicalDeviceCount = 0;
max_devices = drmGetDevices2(0, devices, ARRAY_SIZE(devices));
if (max_devices < 1)
return VK_ERROR_INCOMPATIBLE_DRIVER;
for (unsigned i = 0; i < (unsigned)max_devices; i++) {
if (devices[i]->available_nodes & 1 << DRM_NODE_RENDER &&
devices[i]->bustype == DRM_BUS_PCI &&
devices[i]->deviceinfo.pci->vendor_id == 0x1002) {
result = radv_physical_device_init(instance->physicalDevices +
instance->physicalDeviceCount,
instance,
devices[i]);
if (result == VK_SUCCESS)
++instance->physicalDeviceCount;
else if (result != VK_ERROR_INCOMPATIBLE_DRIVER)
break;
}
}
drmFreeDevices(devices, max_devices);
return result;
}
VkResult radv_EnumeratePhysicalDevices(
VkInstance _instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices)
{
RADV_FROM_HANDLE(radv_instance, instance, _instance);
VkResult result;
if (instance->physicalDeviceCount < 0) {
result = radv_enumerate_devices(instance);
if (result != VK_SUCCESS &&
result != VK_ERROR_INCOMPATIBLE_DRIVER)
return result;
}
if (!pPhysicalDevices) {
*pPhysicalDeviceCount = instance->physicalDeviceCount;
} else {
*pPhysicalDeviceCount = MIN2(*pPhysicalDeviceCount, instance->physicalDeviceCount);
for (unsigned i = 0; i < *pPhysicalDeviceCount; ++i)
pPhysicalDevices[i] = radv_physical_device_to_handle(instance->physicalDevices + i);
}
return *pPhysicalDeviceCount < instance->physicalDeviceCount ? VK_INCOMPLETE
: VK_SUCCESS;
}
void radv_GetPhysicalDeviceFeatures(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures* pFeatures)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
bool is_gfx9 = pdevice->rad_info.chip_class >= GFX9;
memset(pFeatures, 0, sizeof(*pFeatures));
*pFeatures = (VkPhysicalDeviceFeatures) {
.robustBufferAccess = true,
.fullDrawIndexUint32 = true,
.imageCubeArray = true,
.independentBlend = true,
.geometryShader = !is_gfx9,
.tessellationShader = !is_gfx9,
.sampleRateShading = true,
.dualSrcBlend = true,
.logicOp = true,
.multiDrawIndirect = true,
.drawIndirectFirstInstance = true,
.depthClamp = true,
.depthBiasClamp = true,
.fillModeNonSolid = true,
.depthBounds = true,
.wideLines = true,
.largePoints = true,
.alphaToOne = true,
.multiViewport = true,
.samplerAnisotropy = true,
.textureCompressionETC2 = false,
.textureCompressionASTC_LDR = false,
.textureCompressionBC = true,
.occlusionQueryPrecise = true,
.pipelineStatisticsQuery = true,
.vertexPipelineStoresAndAtomics = true,
.fragmentStoresAndAtomics = true,
.shaderTessellationAndGeometryPointSize = true,
.shaderImageGatherExtended = true,
.shaderStorageImageExtendedFormats = true,
.shaderStorageImageMultisample = false,
.shaderUniformBufferArrayDynamicIndexing = true,
.shaderSampledImageArrayDynamicIndexing = true,
.shaderStorageBufferArrayDynamicIndexing = true,
.shaderStorageImageArrayDynamicIndexing = true,
.shaderStorageImageReadWithoutFormat = true,
.shaderStorageImageWriteWithoutFormat = true,
.shaderClipDistance = true,
.shaderCullDistance = true,
.shaderFloat64 = true,
.shaderInt64 = true,
.shaderInt16 = false,
.sparseBinding = true,
.variableMultisampleRate = true,
.inheritedQueries = true,
};
}
void radv_GetPhysicalDeviceFeatures2KHR(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2KHR *pFeatures)
{
vk_foreach_struct(ext, pFeatures->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VARIABLE_POINTER_FEATURES_KHR: {
VkPhysicalDeviceVariablePointerFeaturesKHR *features = (void *)ext;
features->variablePointersStorageBuffer = true;
features->variablePointers = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_FEATURES_KHX: {
VkPhysicalDeviceMultiviewFeaturesKHX *features = (VkPhysicalDeviceMultiviewFeaturesKHX*)ext;
features->multiview = true;
features->multiviewGeometryShader = true;
features->multiviewTessellationShader = true;
break;
}
default:
break;
}
}
return radv_GetPhysicalDeviceFeatures(physicalDevice, &pFeatures->features);
}
void radv_GetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
VkSampleCountFlags sample_counts = 0xf;
/* make sure that the entire descriptor set is addressable with a signed
* 32-bit int. So the sum of all limits scaled by descriptor size has to
* be at most 2 GiB. the combined image & samples object count as one of
* both. This limit is for the pipeline layout, not for the set layout, but
* there is no set limit, so we just set a pipeline limit. I don't think
* any app is going to hit this soon. */
size_t max_descriptor_set_size = ((1ull << 31) - 16 * MAX_DYNAMIC_BUFFERS) /
(32 /* uniform buffer, 32 due to potential space wasted on alignement */ +
32 /* storage buffer, 32 due to potential space wasted on alignement */ +
32 /* sampler, largest when combined with image */ +
64 /* sampled image */ +
64 /* storage image */);
VkPhysicalDeviceLimits limits = {
.maxImageDimension1D = (1 << 14),
.maxImageDimension2D = (1 << 14),
.maxImageDimension3D = (1 << 11),
.maxImageDimensionCube = (1 << 14),
.maxImageArrayLayers = (1 << 11),
.maxTexelBufferElements = 128 * 1024 * 1024,
.maxUniformBufferRange = UINT32_MAX,
.maxStorageBufferRange = UINT32_MAX,
.maxPushConstantsSize = MAX_PUSH_CONSTANTS_SIZE,
.maxMemoryAllocationCount = UINT32_MAX,
.maxSamplerAllocationCount = 64 * 1024,
.bufferImageGranularity = 64, /* A cache line */
.sparseAddressSpaceSize = 0xffffffffu, /* buffer max size */
.maxBoundDescriptorSets = MAX_SETS,
.maxPerStageDescriptorSamplers = max_descriptor_set_size,
.maxPerStageDescriptorUniformBuffers = max_descriptor_set_size,
.maxPerStageDescriptorStorageBuffers = max_descriptor_set_size,
.maxPerStageDescriptorSampledImages = max_descriptor_set_size,
.maxPerStageDescriptorStorageImages = max_descriptor_set_size,
.maxPerStageDescriptorInputAttachments = max_descriptor_set_size,
.maxPerStageResources = max_descriptor_set_size,
.maxDescriptorSetSamplers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffers = max_descriptor_set_size,
.maxDescriptorSetUniformBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
.maxDescriptorSetStorageBuffers = max_descriptor_set_size,
.maxDescriptorSetStorageBuffersDynamic = MAX_DYNAMIC_BUFFERS / 2,
.maxDescriptorSetSampledImages = max_descriptor_set_size,
.maxDescriptorSetStorageImages = max_descriptor_set_size,
.maxDescriptorSetInputAttachments = max_descriptor_set_size,
.maxVertexInputAttributes = 32,
.maxVertexInputBindings = 32,
.maxVertexInputAttributeOffset = 2047,
.maxVertexInputBindingStride = 2048,
.maxVertexOutputComponents = 128,
.maxTessellationGenerationLevel = 64,
.maxTessellationPatchSize = 32,
.maxTessellationControlPerVertexInputComponents = 128,
.maxTessellationControlPerVertexOutputComponents = 128,
.maxTessellationControlPerPatchOutputComponents = 120,
.maxTessellationControlTotalOutputComponents = 4096,
.maxTessellationEvaluationInputComponents = 128,
.maxTessellationEvaluationOutputComponents = 128,
.maxGeometryShaderInvocations = 127,
.maxGeometryInputComponents = 64,
.maxGeometryOutputComponents = 128,
.maxGeometryOutputVertices = 256,
.maxGeometryTotalOutputComponents = 1024,
.maxFragmentInputComponents = 128,
.maxFragmentOutputAttachments = 8,
.maxFragmentDualSrcAttachments = 1,
.maxFragmentCombinedOutputResources = 8,
.maxComputeSharedMemorySize = 32768,
.maxComputeWorkGroupCount = { 65535, 65535, 65535 },
.maxComputeWorkGroupInvocations = 2048,
.maxComputeWorkGroupSize = {
2048,
2048,
2048
},
.subPixelPrecisionBits = 4 /* FIXME */,
.subTexelPrecisionBits = 4 /* FIXME */,
.mipmapPrecisionBits = 4 /* FIXME */,
.maxDrawIndexedIndexValue = UINT32_MAX,
.maxDrawIndirectCount = UINT32_MAX,
.maxSamplerLodBias = 16,
.maxSamplerAnisotropy = 16,
.maxViewports = MAX_VIEWPORTS,
.maxViewportDimensions = { (1 << 14), (1 << 14) },
.viewportBoundsRange = { INT16_MIN, INT16_MAX },
.viewportSubPixelBits = 13, /* We take a float? */
.minMemoryMapAlignment = 4096, /* A page */
.minTexelBufferOffsetAlignment = 1,
.minUniformBufferOffsetAlignment = 4,
.minStorageBufferOffsetAlignment = 4,
.minTexelOffset = -32,
.maxTexelOffset = 31,
.minTexelGatherOffset = -32,
.maxTexelGatherOffset = 31,
.minInterpolationOffset = -2,
.maxInterpolationOffset = 2,
.subPixelInterpolationOffsetBits = 8,
.maxFramebufferWidth = (1 << 14),
.maxFramebufferHeight = (1 << 14),
.maxFramebufferLayers = (1 << 10),
.framebufferColorSampleCounts = sample_counts,
.framebufferDepthSampleCounts = sample_counts,
.framebufferStencilSampleCounts = sample_counts,
.framebufferNoAttachmentsSampleCounts = sample_counts,
.maxColorAttachments = MAX_RTS,
.sampledImageColorSampleCounts = sample_counts,
.sampledImageIntegerSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.sampledImageDepthSampleCounts = sample_counts,
.sampledImageStencilSampleCounts = sample_counts,
.storageImageSampleCounts = VK_SAMPLE_COUNT_1_BIT,
.maxSampleMaskWords = 1,
.timestampComputeAndGraphics = true,
.timestampPeriod = 1000000.0 / pdevice->rad_info.clock_crystal_freq,
.maxClipDistances = 8,
.maxCullDistances = 8,
.maxCombinedClipAndCullDistances = 8,
.discreteQueuePriorities = 1,
.pointSizeRange = { 0.125, 255.875 },
.lineWidthRange = { 0.0, 7.9921875 },
.pointSizeGranularity = (1.0 / 8.0),
.lineWidthGranularity = (1.0 / 128.0),
.strictLines = false, /* FINISHME */
.standardSampleLocations = true,
.optimalBufferCopyOffsetAlignment = 128,
.optimalBufferCopyRowPitchAlignment = 128,
.nonCoherentAtomSize = 64,
};
*pProperties = (VkPhysicalDeviceProperties) {
.apiVersion = VK_MAKE_VERSION(1, 0, 42),
.driverVersion = vk_get_driver_version(),
.vendorID = 0x1002,
.deviceID = pdevice->rad_info.pci_id,
.deviceType = pdevice->rad_info.has_dedicated_vram ? VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU : VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU,
.limits = limits,
.sparseProperties = {0},
};
strcpy(pProperties->deviceName, pdevice->name);
memcpy(pProperties->pipelineCacheUUID, pdevice->cache_uuid, VK_UUID_SIZE);
}
void radv_GetPhysicalDeviceProperties2KHR(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties2KHR *pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
radv_GetPhysicalDeviceProperties(physicalDevice, &pProperties->properties);
vk_foreach_struct(ext, pProperties->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PUSH_DESCRIPTOR_PROPERTIES_KHR: {
VkPhysicalDevicePushDescriptorPropertiesKHR *properties =
(VkPhysicalDevicePushDescriptorPropertiesKHR *) ext;
properties->maxPushDescriptors = MAX_PUSH_DESCRIPTORS;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES_KHR: {
VkPhysicalDeviceIDPropertiesKHR *properties = (VkPhysicalDeviceIDPropertiesKHR*)ext;
memcpy(properties->driverUUID, pdevice->driver_uuid, VK_UUID_SIZE);
memcpy(properties->deviceUUID, pdevice->device_uuid, VK_UUID_SIZE);
properties->deviceLUIDValid = false;
break;
}
case VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MULTIVIEW_PROPERTIES_KHX: {
VkPhysicalDeviceMultiviewPropertiesKHX *properties = (VkPhysicalDeviceMultiviewPropertiesKHX*)ext;
properties->maxMultiviewViewCount = MAX_VIEWS;
properties->maxMultiviewInstanceIndex = INT_MAX;
break;
}
default:
break;
}
}
}
static void radv_get_physical_device_queue_family_properties(
struct radv_physical_device* pdevice,
uint32_t* pCount,
VkQueueFamilyProperties** pQueueFamilyProperties)
{
int num_queue_families = 1;
int idx;
if (pdevice->rad_info.num_compute_rings > 0 &&
pdevice->rad_info.chip_class >= CIK &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE))
num_queue_families++;
if (pQueueFamilyProperties == NULL) {
*pCount = num_queue_families;
return;
}
if (!*pCount)
return;
idx = 0;
if (*pCount >= 1) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
.queueFlags = VK_QUEUE_GRAPHICS_BIT |
VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = 1,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
};
idx++;
}
if (pdevice->rad_info.num_compute_rings > 0 &&
pdevice->rad_info.chip_class >= CIK &&
!(pdevice->instance->debug_flags & RADV_DEBUG_NO_COMPUTE_QUEUE)) {
if (*pCount > idx) {
*pQueueFamilyProperties[idx] = (VkQueueFamilyProperties) {
.queueFlags = VK_QUEUE_COMPUTE_BIT |
VK_QUEUE_TRANSFER_BIT |
VK_QUEUE_SPARSE_BINDING_BIT,
.queueCount = pdevice->rad_info.num_compute_rings,
.timestampValidBits = 64,
.minImageTransferGranularity = (VkExtent3D) { 1, 1, 1 },
};
idx++;
}
}
*pCount = idx;
}
void radv_GetPhysicalDeviceQueueFamilyProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pCount,
VkQueueFamilyProperties* pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
return radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
pQueueFamilyProperties + 0,
pQueueFamilyProperties + 1,
pQueueFamilyProperties + 2,
};
radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
assert(*pCount <= 3);
}
void radv_GetPhysicalDeviceQueueFamilyProperties2KHR(
VkPhysicalDevice physicalDevice,
uint32_t* pCount,
VkQueueFamilyProperties2KHR *pQueueFamilyProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (!pQueueFamilyProperties) {
return radv_get_physical_device_queue_family_properties(pdevice, pCount, NULL);
return;
}
VkQueueFamilyProperties *properties[] = {
&pQueueFamilyProperties[0].queueFamilyProperties,
&pQueueFamilyProperties[1].queueFamilyProperties,
&pQueueFamilyProperties[2].queueFamilyProperties,
};
radv_get_physical_device_queue_family_properties(pdevice, pCount, properties);
assert(*pCount <= 3);
}
void radv_GetPhysicalDeviceMemoryProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
STATIC_ASSERT(RADV_MEM_TYPE_COUNT <= VK_MAX_MEMORY_TYPES);
pMemoryProperties->memoryTypeCount = RADV_MEM_TYPE_COUNT;
pMemoryProperties->memoryTypes[RADV_MEM_TYPE_VRAM] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT,
.heapIndex = RADV_MEM_HEAP_VRAM,
};
pMemoryProperties->memoryTypes[RADV_MEM_TYPE_GTT_WRITE_COMBINE] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = RADV_MEM_HEAP_GTT,
};
pMemoryProperties->memoryTypes[RADV_MEM_TYPE_VRAM_CPU_ACCESS] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT |
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
.heapIndex = RADV_MEM_HEAP_VRAM_CPU_ACCESS,
};
pMemoryProperties->memoryTypes[RADV_MEM_TYPE_GTT_CACHED] = (VkMemoryType) {
.propertyFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT,
.heapIndex = RADV_MEM_HEAP_GTT,
};
STATIC_ASSERT(RADV_MEM_HEAP_COUNT <= VK_MAX_MEMORY_HEAPS);
uint64_t visible_vram_size = MIN2(physical_device->rad_info.vram_size,
physical_device->rad_info.vram_vis_size);
pMemoryProperties->memoryHeapCount = RADV_MEM_HEAP_COUNT;
pMemoryProperties->memoryHeaps[RADV_MEM_HEAP_VRAM] = (VkMemoryHeap) {
.size = physical_device->rad_info.vram_size -
visible_vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
pMemoryProperties->memoryHeaps[RADV_MEM_HEAP_VRAM_CPU_ACCESS] = (VkMemoryHeap) {
.size = visible_vram_size,
.flags = VK_MEMORY_HEAP_DEVICE_LOCAL_BIT,
};
pMemoryProperties->memoryHeaps[RADV_MEM_HEAP_GTT] = (VkMemoryHeap) {
.size = physical_device->rad_info.gart_size,
.flags = 0,
};
}
void radv_GetPhysicalDeviceMemoryProperties2KHR(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties2KHR *pMemoryProperties)
{
return radv_GetPhysicalDeviceMemoryProperties(physicalDevice,
&pMemoryProperties->memoryProperties);
}
static int
radv_queue_init(struct radv_device *device, struct radv_queue *queue,
int queue_family_index, int idx)
{
queue->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
queue->device = device;
queue->queue_family_index = queue_family_index;
queue->queue_idx = idx;
queue->hw_ctx = device->ws->ctx_create(device->ws);
if (!queue->hw_ctx)
return VK_ERROR_OUT_OF_HOST_MEMORY;
return VK_SUCCESS;
}
static void
radv_queue_finish(struct radv_queue *queue)
{
if (queue->hw_ctx)
queue->device->ws->ctx_destroy(queue->hw_ctx);
if (queue->initial_full_flush_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
queue->device->ws->cs_destroy(queue->continue_preamble_cs);
if (queue->descriptor_bo)
queue->device->ws->buffer_destroy(queue->descriptor_bo);
if (queue->scratch_bo)
queue->device->ws->buffer_destroy(queue->scratch_bo);
if (queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
if (queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
if (queue->tess_factor_ring_bo)
queue->device->ws->buffer_destroy(queue->tess_factor_ring_bo);
if (queue->tess_offchip_ring_bo)
queue->device->ws->buffer_destroy(queue->tess_offchip_ring_bo);
if (queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
}
static void
radv_device_init_gs_info(struct radv_device *device)
{
switch (device->physical_device->rad_info.family) {
case CHIP_OLAND:
case CHIP_HAINAN:
case CHIP_KAVERI:
case CHIP_KABINI:
case CHIP_MULLINS:
case CHIP_ICELAND:
case CHIP_CARRIZO:
case CHIP_STONEY:
device->gs_table_depth = 16;
return;
case CHIP_TAHITI:
case CHIP_PITCAIRN:
case CHIP_VERDE:
case CHIP_BONAIRE:
case CHIP_HAWAII:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGA10:
case CHIP_RAVEN:
device->gs_table_depth = 32;
return;
default:
unreachable("unknown GPU");
}
}
VkResult radv_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
RADV_FROM_HANDLE(radv_physical_device, physical_device, physicalDevice);
VkResult result;
struct radv_device *device;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (!is_extension_enabled(physical_device->extensions.ext_array,
physical_device->extensions.num_ext,
pCreateInfo->ppEnabledExtensionNames[i]))
return vk_error(VK_ERROR_EXTENSION_NOT_PRESENT);
}
/* Check enabled features */
if (pCreateInfo->pEnabledFeatures) {
VkPhysicalDeviceFeatures supported_features;
radv_GetPhysicalDeviceFeatures(physicalDevice, &supported_features);
VkBool32 *supported_feature = (VkBool32 *)&supported_features;
VkBool32 *enabled_feature = (VkBool32 *)pCreateInfo->pEnabledFeatures;
unsigned num_features = sizeof(VkPhysicalDeviceFeatures) / sizeof(VkBool32);
for (uint32_t i = 0; i < num_features; i++) {
if (enabled_feature[i] && !supported_feature[i])
return vk_error(VK_ERROR_FEATURE_NOT_PRESENT);
}
}
device = vk_alloc2(&physical_device->instance->alloc, pAllocator,
sizeof(*device), 8,
VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
memset(device, 0, sizeof(*device));
device->_loader_data.loaderMagic = ICD_LOADER_MAGIC;
device->instance = physical_device->instance;
device->physical_device = physical_device;
device->debug_flags = device->instance->debug_flags;
device->ws = physical_device->ws;
if (pAllocator)
device->alloc = *pAllocator;
else
device->alloc = physical_device->instance->alloc;
mtx_init(&device->shader_slab_mutex, mtx_plain);
list_inithead(&device->shader_slabs);
for (unsigned i = 0; i < pCreateInfo->queueCreateInfoCount; i++) {
const VkDeviceQueueCreateInfo *queue_create = &pCreateInfo->pQueueCreateInfos[i];
uint32_t qfi = queue_create->queueFamilyIndex;
device->queues[qfi] = vk_alloc(&device->alloc,
queue_create->queueCount * sizeof(struct radv_queue), 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!device->queues[qfi]) {
result = VK_ERROR_OUT_OF_HOST_MEMORY;
goto fail;
}
memset(device->queues[qfi], 0, queue_create->queueCount * sizeof(struct radv_queue));
device->queue_count[qfi] = queue_create->queueCount;
for (unsigned q = 0; q < queue_create->queueCount; q++) {
result = radv_queue_init(device, &device->queues[qfi][q], qfi, q);
if (result != VK_SUCCESS)
goto fail;
}
}
#if HAVE_LLVM < 0x0400
device->llvm_supports_spill = false;
#else
device->llvm_supports_spill = true;
#endif
/* The maximum number of scratch waves. Scratch space isn't divided
* evenly between CUs. The number is only a function of the number of CUs.
* We can decrease the constant to decrease the scratch buffer size.
*
* sctx->scratch_waves must be >= the maximum posible size of
* 1 threadgroup, so that the hw doesn't hang from being unable
* to start any.
*
* The recommended value is 4 per CU at most. Higher numbers don't
* bring much benefit, but they still occupy chip resources (think
* async compute). I've seen ~2% performance difference between 4 and 32.
*/
uint32_t max_threads_per_block = 2048;
device->scratch_waves = MAX2(32 * physical_device->rad_info.num_good_compute_units,
max_threads_per_block / 64);
radv_device_init_gs_info(device);
device->tess_offchip_block_dw_size =
device->physical_device->rad_info.family == CHIP_HAWAII ? 4096 : 8192;
device->has_distributed_tess =
device->physical_device->rad_info.chip_class >= VI &&
device->physical_device->rad_info.max_se >= 2;
result = radv_device_init_meta(device);
if (result != VK_SUCCESS)
goto fail;
radv_device_init_msaa(device);
for (int family = 0; family < RADV_MAX_QUEUE_FAMILIES; ++family) {
device->empty_cs[family] = device->ws->cs_create(device->ws, family);
switch (family) {
case RADV_QUEUE_GENERAL:
radeon_emit(device->empty_cs[family], PKT3(PKT3_CONTEXT_CONTROL, 1, 0));
radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_LOAD_ENABLE(1));
radeon_emit(device->empty_cs[family], CONTEXT_CONTROL_SHADOW_ENABLE(1));
break;
case RADV_QUEUE_COMPUTE:
radeon_emit(device->empty_cs[family], PKT3(PKT3_NOP, 0, 0));
radeon_emit(device->empty_cs[family], 0);
break;
}
device->ws->cs_finalize(device->empty_cs[family]);
}
if (getenv("RADV_TRACE_FILE")) {
if (!radv_init_trace(device))
goto fail;
}
if (device->physical_device->rad_info.chip_class >= CIK)
cik_create_gfx_config(device);
VkPipelineCacheCreateInfo ci;
ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
ci.pNext = NULL;
ci.flags = 0;
ci.pInitialData = NULL;
ci.initialDataSize = 0;
VkPipelineCache pc;
result = radv_CreatePipelineCache(radv_device_to_handle(device),
&ci, NULL, &pc);
if (result != VK_SUCCESS)
goto fail;
device->mem_cache = radv_pipeline_cache_from_handle(pc);
*pDevice = radv_device_to_handle(device);
return VK_SUCCESS;
fail:
if (device->trace_bo)
device->ws->buffer_destroy(device->trace_bo);
if (device->gfx_init)
device->ws->buffer_destroy(device->gfx_init);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
radv_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->alloc, device->queues[i]);
}
vk_free(&device->alloc, device);
return result;
}
void radv_DestroyDevice(
VkDevice _device,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
if (!device)
return;
if (device->trace_bo)
device->ws->buffer_destroy(device->trace_bo);
if (device->gfx_init)
device->ws->buffer_destroy(device->gfx_init);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++)
radv_queue_finish(&device->queues[i][q]);
if (device->queue_count[i])
vk_free(&device->alloc, device->queues[i]);
if (device->empty_cs[i])
device->ws->cs_destroy(device->empty_cs[i]);
}
radv_device_finish_meta(device);
VkPipelineCache pc = radv_pipeline_cache_to_handle(device->mem_cache);
radv_DestroyPipelineCache(radv_device_to_handle(device), pc, NULL);
radv_destroy_shader_slabs(device);
vk_free(&device->alloc, device);
}
VkResult radv_EnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = ARRAY_SIZE(instance_extensions);
return VK_SUCCESS;
}
*pPropertyCount = MIN2(*pPropertyCount, ARRAY_SIZE(instance_extensions));
typed_memcpy(pProperties, instance_extensions, *pPropertyCount);
if (*pPropertyCount < ARRAY_SIZE(instance_extensions))
return VK_INCOMPLETE;
return VK_SUCCESS;
}
VkResult radv_EnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
RADV_FROM_HANDLE(radv_physical_device, pdevice, physicalDevice);
if (pProperties == NULL) {
*pPropertyCount = pdevice->extensions.num_ext;
return VK_SUCCESS;
}
*pPropertyCount = MIN2(*pPropertyCount, pdevice->extensions.num_ext);
typed_memcpy(pProperties, pdevice->extensions.ext_array, *pPropertyCount);
if (*pPropertyCount < pdevice->extensions.num_ext)
return VK_INCOMPLETE;
return VK_SUCCESS;
}
VkResult radv_EnumerateInstanceLayerProperties(
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
}
VkResult radv_EnumerateDeviceLayerProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
if (pProperties == NULL) {
*pPropertyCount = 0;
return VK_SUCCESS;
}
/* None supported at this time */
return vk_error(VK_ERROR_LAYER_NOT_PRESENT);
}
void radv_GetDeviceQueue(
VkDevice _device,
uint32_t queueFamilyIndex,
uint32_t queueIndex,
VkQueue* pQueue)
{
RADV_FROM_HANDLE(radv_device, device, _device);
*pQueue = radv_queue_to_handle(&device->queues[queueFamilyIndex][queueIndex]);
}
static void
fill_geom_tess_rings(struct radv_queue *queue,
uint32_t *map,
bool add_sample_positions,
uint32_t esgs_ring_size,
struct radeon_winsys_bo *esgs_ring_bo,
uint32_t gsvs_ring_size,
struct radeon_winsys_bo *gsvs_ring_bo,
uint32_t tess_factor_ring_size,
struct radeon_winsys_bo *tess_factor_ring_bo,
uint32_t tess_offchip_ring_size,
struct radeon_winsys_bo *tess_offchip_ring_bo)
{
uint64_t esgs_va = 0, gsvs_va = 0;
uint64_t tess_factor_va = 0, tess_offchip_va = 0;
uint32_t *desc = &map[4];
if (esgs_ring_bo)
esgs_va = queue->device->ws->buffer_get_va(esgs_ring_bo);
if (gsvs_ring_bo)
gsvs_va = queue->device->ws->buffer_get_va(gsvs_ring_bo);
if (tess_factor_ring_bo)
tess_factor_va = queue->device->ws->buffer_get_va(tess_factor_ring_bo);
if (tess_offchip_ring_bo)
tess_offchip_va = queue->device->ws->buffer_get_va(tess_offchip_ring_bo);
/* stride 0, num records - size, add tid, swizzle, elsize4,
index stride 64 */
desc[0] = esgs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32) |
S_008F04_STRIDE(0) |
S_008F04_SWIZZLE_ENABLE(true);
desc[2] = esgs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(1) |
S_008F0C_INDEX_STRIDE(3) |
S_008F0C_ADD_TID_ENABLE(true);
desc += 4;
/* GS entry for ES->GS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
desc[0] = esgs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(esgs_va >> 32)|
S_008F04_STRIDE(0) |
S_008F04_SWIZZLE_ENABLE(false);
desc[2] = esgs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(0) |
S_008F0C_INDEX_STRIDE(0) |
S_008F0C_ADD_TID_ENABLE(false);
desc += 4;
/* VS entry for GS->VS ring */
/* stride 0, num records - size, elsize0,
index stride 0 */
desc[0] = gsvs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32)|
S_008F04_STRIDE(0) |
S_008F04_SWIZZLE_ENABLE(false);
desc[2] = gsvs_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(0) |
S_008F0C_INDEX_STRIDE(0) |
S_008F0C_ADD_TID_ENABLE(false);
desc += 4;
/* stride gsvs_itemsize, num records 64
elsize 4, index stride 16 */
/* shader will patch stride and desc[2] */
desc[0] = gsvs_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(gsvs_va >> 32)|
S_008F04_STRIDE(0) |
S_008F04_SWIZZLE_ENABLE(true);
desc[2] = 0;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(1) |
S_008F0C_INDEX_STRIDE(1) |
S_008F0C_ADD_TID_ENABLE(true);
desc += 4;
desc[0] = tess_factor_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(tess_factor_va >> 32) |
S_008F04_STRIDE(0) |
S_008F04_SWIZZLE_ENABLE(false);
desc[2] = tess_factor_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(0) |
S_008F0C_INDEX_STRIDE(0) |
S_008F0C_ADD_TID_ENABLE(false);
desc += 4;
desc[0] = tess_offchip_va;
desc[1] = S_008F04_BASE_ADDRESS_HI(tess_offchip_va >> 32) |
S_008F04_STRIDE(0) |
S_008F04_SWIZZLE_ENABLE(false);
desc[2] = tess_offchip_ring_size;
desc[3] = S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
S_008F0C_ELEMENT_SIZE(0) |
S_008F0C_INDEX_STRIDE(0) |
S_008F0C_ADD_TID_ENABLE(false);
desc += 4;
/* add sample positions after all rings */
memcpy(desc, queue->device->sample_locations_1x, 8);
desc += 2;
memcpy(desc, queue->device->sample_locations_2x, 16);
desc += 4;
memcpy(desc, queue->device->sample_locations_4x, 32);
desc += 8;
memcpy(desc, queue->device->sample_locations_8x, 64);
desc += 16;
memcpy(desc, queue->device->sample_locations_16x, 128);
}
static unsigned
radv_get_hs_offchip_param(struct radv_device *device, uint32_t *max_offchip_buffers_p)
{
bool double_offchip_buffers = device->physical_device->rad_info.chip_class >= CIK &&
device->physical_device->rad_info.family != CHIP_CARRIZO &&
device->physical_device->rad_info.family != CHIP_STONEY;
unsigned max_offchip_buffers_per_se = double_offchip_buffers ? 128 : 64;
unsigned max_offchip_buffers = max_offchip_buffers_per_se *
device->physical_device->rad_info.max_se;
unsigned offchip_granularity;
unsigned hs_offchip_param;
switch (device->tess_offchip_block_dw_size) {
default:
assert(0);
/* fall through */
case 8192:
offchip_granularity = V_03093C_X_8K_DWORDS;
break;
case 4096:
offchip_granularity = V_03093C_X_4K_DWORDS;
break;
}
switch (device->physical_device->rad_info.chip_class) {
case SI:
max_offchip_buffers = MIN2(max_offchip_buffers, 126);
break;
case CIK:
case VI:
case GFX9:
default:
max_offchip_buffers = MIN2(max_offchip_buffers, 508);
break;
}
*max_offchip_buffers_p = max_offchip_buffers;
if (device->physical_device->rad_info.chip_class >= CIK) {
if (device->physical_device->rad_info.chip_class >= VI)
--max_offchip_buffers;
hs_offchip_param =
S_03093C_OFFCHIP_BUFFERING(max_offchip_buffers) |
S_03093C_OFFCHIP_GRANULARITY(offchip_granularity);
} else {
hs_offchip_param =
S_0089B0_OFFCHIP_BUFFERING(max_offchip_buffers);
}
return hs_offchip_param;
}
static VkResult
radv_get_preamble_cs(struct radv_queue *queue,
uint32_t scratch_size,
uint32_t compute_scratch_size,
uint32_t esgs_ring_size,
uint32_t gsvs_ring_size,
bool needs_tess_rings,
bool needs_sample_positions,
struct radeon_winsys_cs **initial_full_flush_preamble_cs,
struct radeon_winsys_cs **initial_preamble_cs,
struct radeon_winsys_cs **continue_preamble_cs)
{
struct radeon_winsys_bo *scratch_bo = NULL;
struct radeon_winsys_bo *descriptor_bo = NULL;
struct radeon_winsys_bo *compute_scratch_bo = NULL;
struct radeon_winsys_bo *esgs_ring_bo = NULL;
struct radeon_winsys_bo *gsvs_ring_bo = NULL;
struct radeon_winsys_bo *tess_factor_ring_bo = NULL;
struct radeon_winsys_bo *tess_offchip_ring_bo = NULL;
struct radeon_winsys_cs *dest_cs[3] = {0};
bool add_tess_rings = false, add_sample_positions = false;
unsigned tess_factor_ring_size = 0, tess_offchip_ring_size = 0;
unsigned max_offchip_buffers;
unsigned hs_offchip_param = 0;
if (!queue->has_tess_rings) {
if (needs_tess_rings)
add_tess_rings = true;
}
if (!queue->has_sample_positions) {
if (needs_sample_positions)
add_sample_positions = true;
}
tess_factor_ring_size = 32768 * queue->device->physical_device->rad_info.max_se;
hs_offchip_param = radv_get_hs_offchip_param(queue->device,
&max_offchip_buffers);
tess_offchip_ring_size = max_offchip_buffers *
queue->device->tess_offchip_block_dw_size * 4;
if (scratch_size <= queue->scratch_size &&
compute_scratch_size <= queue->compute_scratch_size &&
esgs_ring_size <= queue->esgs_ring_size &&
gsvs_ring_size <= queue->gsvs_ring_size &&
!add_tess_rings && !add_sample_positions &&
queue->initial_preamble_cs) {
*initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
*initial_preamble_cs = queue->initial_preamble_cs;
*continue_preamble_cs = queue->continue_preamble_cs;
if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
*continue_preamble_cs = NULL;
return VK_SUCCESS;
}
if (scratch_size > queue->scratch_size) {
scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
scratch_size,
4096,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_CPU_ACCESS);
if (!scratch_bo)
goto fail;
} else
scratch_bo = queue->scratch_bo;
if (compute_scratch_size > queue->compute_scratch_size) {
compute_scratch_bo = queue->device->ws->buffer_create(queue->device->ws,
compute_scratch_size,
4096,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_CPU_ACCESS);
if (!compute_scratch_bo)
goto fail;
} else
compute_scratch_bo = queue->compute_scratch_bo;
if (esgs_ring_size > queue->esgs_ring_size) {
esgs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
esgs_ring_size,
4096,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_CPU_ACCESS);
if (!esgs_ring_bo)
goto fail;
} else {
esgs_ring_bo = queue->esgs_ring_bo;
esgs_ring_size = queue->esgs_ring_size;
}
if (gsvs_ring_size > queue->gsvs_ring_size) {
gsvs_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
gsvs_ring_size,
4096,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_CPU_ACCESS);
if (!gsvs_ring_bo)
goto fail;
} else {
gsvs_ring_bo = queue->gsvs_ring_bo;
gsvs_ring_size = queue->gsvs_ring_size;
}
if (add_tess_rings) {
tess_factor_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
tess_factor_ring_size,
256,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_CPU_ACCESS);
if (!tess_factor_ring_bo)
goto fail;
tess_offchip_ring_bo = queue->device->ws->buffer_create(queue->device->ws,
tess_offchip_ring_size,
256,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_NO_CPU_ACCESS);
if (!tess_offchip_ring_bo)
goto fail;
} else {
tess_factor_ring_bo = queue->tess_factor_ring_bo;
tess_offchip_ring_bo = queue->tess_offchip_ring_bo;
}
if (scratch_bo != queue->scratch_bo ||
esgs_ring_bo != queue->esgs_ring_bo ||
gsvs_ring_bo != queue->gsvs_ring_bo ||
tess_factor_ring_bo != queue->tess_factor_ring_bo ||
tess_offchip_ring_bo != queue->tess_offchip_ring_bo || add_sample_positions) {
uint32_t size = 0;
if (gsvs_ring_bo || esgs_ring_bo ||
tess_factor_ring_bo || tess_offchip_ring_bo || add_sample_positions) {
size = 112; /* 2 dword + 2 padding + 4 dword * 6 */
if (add_sample_positions)
size += 256; /* 32+16+8+4+2+1 samples * 4 * 2 = 248 bytes. */
}
else if (scratch_bo)
size = 8; /* 2 dword */
descriptor_bo = queue->device->ws->buffer_create(queue->device->ws,
size,
4096,
RADEON_DOMAIN_VRAM,
RADEON_FLAG_CPU_ACCESS);
if (!descriptor_bo)
goto fail;
} else
descriptor_bo = queue->descriptor_bo;
for(int i = 0; i < 3; ++i) {
struct radeon_winsys_cs *cs = NULL;
cs = queue->device->ws->cs_create(queue->device->ws,
queue->queue_family_index ? RING_COMPUTE : RING_GFX);
if (!cs)
goto fail;
dest_cs[i] = cs;
if (scratch_bo)
queue->device->ws->cs_add_buffer(cs, scratch_bo, 8);
if (esgs_ring_bo)
queue->device->ws->cs_add_buffer(cs, esgs_ring_bo, 8);
if (gsvs_ring_bo)
queue->device->ws->cs_add_buffer(cs, gsvs_ring_bo, 8);
if (tess_factor_ring_bo)
queue->device->ws->cs_add_buffer(cs, tess_factor_ring_bo, 8);
if (tess_offchip_ring_bo)
queue->device->ws->cs_add_buffer(cs, tess_offchip_ring_bo, 8);
if (descriptor_bo)
queue->device->ws->cs_add_buffer(cs, descriptor_bo, 8);
if (descriptor_bo != queue->descriptor_bo) {
uint32_t *map = (uint32_t*)queue->device->ws->buffer_map(descriptor_bo);
if (scratch_bo) {
uint64_t scratch_va = queue->device->ws->buffer_get_va(scratch_bo);
uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
S_008F04_SWIZZLE_ENABLE(1);
map[0] = scratch_va;
map[1] = rsrc1;
}
if (esgs_ring_bo || gsvs_ring_bo || tess_factor_ring_bo || tess_offchip_ring_bo ||
add_sample_positions)
fill_geom_tess_rings(queue, map, add_sample_positions,
esgs_ring_size, esgs_ring_bo,
gsvs_ring_size, gsvs_ring_bo,
tess_factor_ring_size, tess_factor_ring_bo,
tess_offchip_ring_size, tess_offchip_ring_bo);
queue->device->ws->buffer_unmap(descriptor_bo);
}
if (esgs_ring_bo || gsvs_ring_bo || tess_factor_ring_bo || tess_offchip_ring_bo) {
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VS_PARTIAL_FLUSH) | EVENT_INDEX(4));
radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 0, 0));
radeon_emit(cs, EVENT_TYPE(V_028A90_VGT_FLUSH) | EVENT_INDEX(0));
}
if (esgs_ring_bo || gsvs_ring_bo) {
if (queue->device->physical_device->rad_info.chip_class >= CIK) {
radeon_set_uconfig_reg_seq(cs, R_030900_VGT_ESGS_RING_SIZE, 2);
radeon_emit(cs, esgs_ring_size >> 8);
radeon_emit(cs, gsvs_ring_size >> 8);
} else {
radeon_set_config_reg_seq(cs, R_0088C8_VGT_ESGS_RING_SIZE, 2);
radeon_emit(cs, esgs_ring_size >> 8);
radeon_emit(cs, gsvs_ring_size >> 8);
}
}
if (tess_factor_ring_bo) {
uint64_t tf_va = queue->device->ws->buffer_get_va(tess_factor_ring_bo);
if (queue->device->physical_device->rad_info.chip_class >= CIK) {
radeon_set_uconfig_reg(cs, R_030938_VGT_TF_RING_SIZE,
S_030938_SIZE(tess_factor_ring_size / 4));
radeon_set_uconfig_reg(cs, R_030940_VGT_TF_MEMORY_BASE,
tf_va >> 8);
if (queue->device->physical_device->rad_info.chip_class >= GFX9) {
radeon_set_uconfig_reg(cs, R_030944_VGT_TF_MEMORY_BASE_HI,
tf_va >> 40);
}
radeon_set_uconfig_reg(cs, R_03093C_VGT_HS_OFFCHIP_PARAM, hs_offchip_param);
} else {
radeon_set_config_reg(cs, R_008988_VGT_TF_RING_SIZE,
S_008988_SIZE(tess_factor_ring_size / 4));
radeon_set_config_reg(cs, R_0089B8_VGT_TF_MEMORY_BASE,
tf_va >> 8);
radeon_set_config_reg(cs, R_0089B0_VGT_HS_OFFCHIP_PARAM,
hs_offchip_param);
}
}
if (descriptor_bo) {
uint32_t regs[] = {R_00B030_SPI_SHADER_USER_DATA_PS_0,
R_00B130_SPI_SHADER_USER_DATA_VS_0,
R_00B230_SPI_SHADER_USER_DATA_GS_0,
R_00B330_SPI_SHADER_USER_DATA_ES_0,
R_00B430_SPI_SHADER_USER_DATA_HS_0,
R_00B530_SPI_SHADER_USER_DATA_LS_0};
uint64_t va = queue->device->ws->buffer_get_va(descriptor_bo);
for (int i = 0; i < ARRAY_SIZE(regs); ++i) {
radeon_set_sh_reg_seq(cs, regs[i], 2);
radeon_emit(cs, va);
radeon_emit(cs, va >> 32);
}
}
if (compute_scratch_bo) {
uint64_t scratch_va = queue->device->ws->buffer_get_va(compute_scratch_bo);
uint32_t rsrc1 = S_008F04_BASE_ADDRESS_HI(scratch_va >> 32) |
S_008F04_SWIZZLE_ENABLE(1);
queue->device->ws->cs_add_buffer(cs, compute_scratch_bo, 8);
radeon_set_sh_reg_seq(cs, R_00B900_COMPUTE_USER_DATA_0, 2);
radeon_emit(cs, scratch_va);
radeon_emit(cs, rsrc1);
}
if (i == 0) {
si_cs_emit_cache_flush(cs,
false,
queue->device->physical_device->rad_info.chip_class,
NULL, 0,
queue->queue_family_index == RING_COMPUTE &&
queue->device->physical_device->rad_info.chip_class >= CIK,
(queue->queue_family_index == RADV_QUEUE_COMPUTE ? RADV_CMD_FLAG_CS_PARTIAL_FLUSH : (RADV_CMD_FLAG_CS_PARTIAL_FLUSH | RADV_CMD_FLAG_PS_PARTIAL_FLUSH)) |
RADV_CMD_FLAG_INV_ICACHE |
RADV_CMD_FLAG_INV_SMEM_L1 |
RADV_CMD_FLAG_INV_VMEM_L1 |
RADV_CMD_FLAG_INV_GLOBAL_L2);
} else if (i == 1) {
si_cs_emit_cache_flush(cs,
false,
queue->device->physical_device->rad_info.chip_class,
NULL, 0,
queue->queue_family_index == RING_COMPUTE &&
queue->device->physical_device->rad_info.chip_class >= CIK,
RADV_CMD_FLAG_INV_ICACHE |
RADV_CMD_FLAG_INV_SMEM_L1 |
RADV_CMD_FLAG_INV_VMEM_L1 |
RADV_CMD_FLAG_INV_GLOBAL_L2);
}
if (!queue->device->ws->cs_finalize(cs))
goto fail;
}
if (queue->initial_full_flush_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_full_flush_preamble_cs);
if (queue->initial_preamble_cs)
queue->device->ws->cs_destroy(queue->initial_preamble_cs);
if (queue->continue_preamble_cs)
queue->device->ws->cs_destroy(queue->continue_preamble_cs);
queue->initial_full_flush_preamble_cs = dest_cs[0];
queue->initial_preamble_cs = dest_cs[1];
queue->continue_preamble_cs = dest_cs[2];
if (scratch_bo != queue->scratch_bo) {
if (queue->scratch_bo)
queue->device->ws->buffer_destroy(queue->scratch_bo);
queue->scratch_bo = scratch_bo;
queue->scratch_size = scratch_size;
}
if (compute_scratch_bo != queue->compute_scratch_bo) {
if (queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(queue->compute_scratch_bo);
queue->compute_scratch_bo = compute_scratch_bo;
queue->compute_scratch_size = compute_scratch_size;
}
if (esgs_ring_bo != queue->esgs_ring_bo) {
if (queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(queue->esgs_ring_bo);
queue->esgs_ring_bo = esgs_ring_bo;
queue->esgs_ring_size = esgs_ring_size;
}
if (gsvs_ring_bo != queue->gsvs_ring_bo) {
if (queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(queue->gsvs_ring_bo);
queue->gsvs_ring_bo = gsvs_ring_bo;
queue->gsvs_ring_size = gsvs_ring_size;
}
if (tess_factor_ring_bo != queue->tess_factor_ring_bo) {
queue->tess_factor_ring_bo = tess_factor_ring_bo;
}
if (tess_offchip_ring_bo != queue->tess_offchip_ring_bo) {
queue->tess_offchip_ring_bo = tess_offchip_ring_bo;
queue->has_tess_rings = true;
}
if (descriptor_bo != queue->descriptor_bo) {
if (queue->descriptor_bo)
queue->device->ws->buffer_destroy(queue->descriptor_bo);
queue->descriptor_bo = descriptor_bo;
}
if (add_sample_positions)
queue->has_sample_positions = true;
*initial_full_flush_preamble_cs = queue->initial_full_flush_preamble_cs;
*initial_preamble_cs = queue->initial_preamble_cs;
*continue_preamble_cs = queue->continue_preamble_cs;
if (!scratch_size && !compute_scratch_size && !esgs_ring_size && !gsvs_ring_size)
*continue_preamble_cs = NULL;
return VK_SUCCESS;
fail:
for (int i = 0; i < ARRAY_SIZE(dest_cs); ++i)
if (dest_cs[i])
queue->device->ws->cs_destroy(dest_cs[i]);
if (descriptor_bo && descriptor_bo != queue->descriptor_bo)
queue->device->ws->buffer_destroy(descriptor_bo);
if (scratch_bo && scratch_bo != queue->scratch_bo)
queue->device->ws->buffer_destroy(scratch_bo);
if (compute_scratch_bo && compute_scratch_bo != queue->compute_scratch_bo)
queue->device->ws->buffer_destroy(compute_scratch_bo);
if (esgs_ring_bo && esgs_ring_bo != queue->esgs_ring_bo)
queue->device->ws->buffer_destroy(esgs_ring_bo);
if (gsvs_ring_bo && gsvs_ring_bo != queue->gsvs_ring_bo)
queue->device->ws->buffer_destroy(gsvs_ring_bo);
if (tess_factor_ring_bo && tess_factor_ring_bo != queue->tess_factor_ring_bo)
queue->device->ws->buffer_destroy(tess_factor_ring_bo);
if (tess_offchip_ring_bo && tess_offchip_ring_bo != queue->tess_offchip_ring_bo)
queue->device->ws->buffer_destroy(tess_offchip_ring_bo);
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
static VkResult radv_alloc_sem_counts(struct radv_winsys_sem_counts *counts,
int num_sems,
const VkSemaphore *sems,
bool reset_temp)
{
int syncobj_idx = 0, sem_idx = 0;
if (num_sems == 0)
return VK_SUCCESS;
for (uint32_t i = 0; i < num_sems; i++) {
RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]);
if (sem->temp_syncobj || sem->syncobj)
counts->syncobj_count++;
else
counts->sem_count++;
}
if (counts->syncobj_count) {
counts->syncobj = (uint32_t *)malloc(sizeof(uint32_t) * counts->syncobj_count);
if (!counts->syncobj)
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
if (counts->sem_count) {
counts->sem = (struct radeon_winsys_sem **)malloc(sizeof(struct radeon_winsys_sem *) * counts->sem_count);
if (!counts->sem) {
free(counts->syncobj);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
}
for (uint32_t i = 0; i < num_sems; i++) {
RADV_FROM_HANDLE(radv_semaphore, sem, sems[i]);
if (sem->temp_syncobj) {
counts->syncobj[syncobj_idx++] = sem->temp_syncobj;
if (reset_temp) {
/* after we wait on a temp import - drop it */
sem->temp_syncobj = 0;
}
}
else if (sem->syncobj)
counts->syncobj[syncobj_idx++] = sem->syncobj;
else {
assert(sem->sem);
counts->sem[sem_idx++] = sem->sem;
}
}
return VK_SUCCESS;
}
void radv_free_sem_info(struct radv_winsys_sem_info *sem_info)
{
free(sem_info->wait.syncobj);
free(sem_info->wait.sem);
free(sem_info->signal.syncobj);
free(sem_info->signal.sem);
}
VkResult radv_alloc_sem_info(struct radv_winsys_sem_info *sem_info,
int num_wait_sems,
const VkSemaphore *wait_sems,
int num_signal_sems,
const VkSemaphore *signal_sems)
{
VkResult ret;
memset(sem_info, 0, sizeof(*sem_info));
ret = radv_alloc_sem_counts(&sem_info->wait, num_wait_sems, wait_sems, true);
if (ret)
return ret;
ret = radv_alloc_sem_counts(&sem_info->signal, num_signal_sems, signal_sems, false);
if (ret)
radv_free_sem_info(sem_info);
/* caller can override these */
sem_info->cs_emit_wait = true;
sem_info->cs_emit_signal = true;
return ret;
}
VkResult radv_QueueSubmit(
VkQueue _queue,
uint32_t submitCount,
const VkSubmitInfo* pSubmits,
VkFence _fence)
{
RADV_FROM_HANDLE(radv_queue, queue, _queue);
RADV_FROM_HANDLE(radv_fence, fence, _fence);
struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL;
struct radeon_winsys_ctx *ctx = queue->hw_ctx;
int ret;
uint32_t max_cs_submission = queue->device->trace_bo ? 1 : UINT32_MAX;
uint32_t scratch_size = 0;
uint32_t compute_scratch_size = 0;
uint32_t esgs_ring_size = 0, gsvs_ring_size = 0;
struct radeon_winsys_cs *initial_preamble_cs = NULL, *initial_flush_preamble_cs = NULL, *continue_preamble_cs = NULL;
VkResult result;
bool fence_emitted = false;
bool tess_rings_needed = false;
bool sample_positions_needed = false;
/* Do this first so failing to allocate scratch buffers can't result in
* partially executed submissions. */
for (uint32_t i = 0; i < submitCount; i++) {
for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
pSubmits[i].pCommandBuffers[j]);
scratch_size = MAX2(scratch_size, cmd_buffer->scratch_size_needed);
compute_scratch_size = MAX2(compute_scratch_size,
cmd_buffer->compute_scratch_size_needed);
esgs_ring_size = MAX2(esgs_ring_size, cmd_buffer->esgs_ring_size_needed);
gsvs_ring_size = MAX2(gsvs_ring_size, cmd_buffer->gsvs_ring_size_needed);
tess_rings_needed |= cmd_buffer->tess_rings_needed;
sample_positions_needed |= cmd_buffer->sample_positions_needed;
}
}
result = radv_get_preamble_cs(queue, scratch_size, compute_scratch_size,
esgs_ring_size, gsvs_ring_size, tess_rings_needed,
sample_positions_needed, &initial_flush_preamble_cs,
&initial_preamble_cs, &continue_preamble_cs);
if (result != VK_SUCCESS)
return result;
for (uint32_t i = 0; i < submitCount; i++) {
struct radeon_winsys_cs **cs_array;
bool do_flush = !i || pSubmits[i].pWaitDstStageMask;
bool can_patch = true;
uint32_t advance;
struct radv_winsys_sem_info sem_info;
result = radv_alloc_sem_info(&sem_info,
pSubmits[i].waitSemaphoreCount,
pSubmits[i].pWaitSemaphores,
pSubmits[i].signalSemaphoreCount,
pSubmits[i].pSignalSemaphores);
if (result != VK_SUCCESS)
return result;
if (!pSubmits[i].commandBufferCount) {
if (pSubmits[i].waitSemaphoreCount || pSubmits[i].signalSemaphoreCount) {
ret = queue->device->ws->cs_submit(ctx, queue->queue_idx,
&queue->device->empty_cs[queue->queue_family_index],
1, NULL, NULL,
&sem_info,
false, base_fence);
if (ret) {
radv_loge("failed to submit CS %d\n", i);
abort();
}
fence_emitted = true;
}
radv_free_sem_info(&sem_info);
continue;
}
cs_array = malloc(sizeof(struct radeon_winsys_cs *) *
(pSubmits[i].commandBufferCount));
for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j++) {
RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer,
pSubmits[i].pCommandBuffers[j]);
assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
cs_array[j] = cmd_buffer->cs;
if ((cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT))
can_patch = false;
}
for (uint32_t j = 0; j < pSubmits[i].commandBufferCount; j += advance) {
struct radeon_winsys_cs *initial_preamble = (do_flush && !j) ? initial_flush_preamble_cs : initial_preamble_cs;
advance = MIN2(max_cs_submission,
pSubmits[i].commandBufferCount - j);
if (queue->device->trace_bo)
*queue->device->trace_id_ptr = 0;
sem_info.cs_emit_wait = j == 0;
sem_info.cs_emit_signal = j + advance == pSubmits[i].commandBufferCount;
ret = queue->device->ws->cs_submit(ctx, queue->queue_idx, cs_array + j,
advance, initial_preamble, continue_preamble_cs,
&sem_info,
can_patch, base_fence);
if (ret) {
radv_loge("failed to submit CS %d\n", i);
abort();
}
fence_emitted = true;
if (queue->device->trace_bo) {
radv_check_gpu_hangs(queue, cs_array[j]);
}
}
radv_free_sem_info(&sem_info);
free(cs_array);
}
if (fence) {
if (!fence_emitted) {
struct radv_winsys_sem_info sem_info = {0};
ret = queue->device->ws->cs_submit(ctx, queue->queue_idx,
&queue->device->empty_cs[queue->queue_family_index],
1, NULL, NULL, &sem_info,
false, base_fence);
}
fence->submitted = true;
}
return VK_SUCCESS;
}
VkResult radv_QueueWaitIdle(
VkQueue _queue)
{
RADV_FROM_HANDLE(radv_queue, queue, _queue);
queue->device->ws->ctx_wait_idle(queue->hw_ctx,
radv_queue_family_to_ring(queue->queue_family_index),
queue->queue_idx);
return VK_SUCCESS;
}
VkResult radv_DeviceWaitIdle(
VkDevice _device)
{
RADV_FROM_HANDLE(radv_device, device, _device);
for (unsigned i = 0; i < RADV_MAX_QUEUE_FAMILIES; i++) {
for (unsigned q = 0; q < device->queue_count[i]; q++) {
radv_QueueWaitIdle(radv_queue_to_handle(&device->queues[i][q]));
}
}
return VK_SUCCESS;
}
PFN_vkVoidFunction radv_GetInstanceProcAddr(
VkInstance instance,
const char* pName)
{
return radv_lookup_entrypoint(pName);
}
/* The loader wants us to expose a second GetInstanceProcAddr function
* to work around certain LD_PRELOAD issues seen in apps.
*/
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName);
PUBLIC
VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vk_icdGetInstanceProcAddr(
VkInstance instance,
const char* pName)
{
return radv_GetInstanceProcAddr(instance, pName);
}
PFN_vkVoidFunction radv_GetDeviceProcAddr(
VkDevice device,
const char* pName)
{
return radv_lookup_entrypoint(pName);
}
bool radv_get_memory_fd(struct radv_device *device,
struct radv_device_memory *memory,
int *pFD)
{
struct radeon_bo_metadata metadata;
if (memory->image) {
radv_init_metadata(device, memory->image, &metadata);
device->ws->buffer_set_metadata(memory->bo, &metadata);
}
return device->ws->buffer_get_fd(device->ws, memory->bo,
pFD);
}
VkResult radv_AllocateMemory(
VkDevice _device,
const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator,
VkDeviceMemory* pMem)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_device_memory *mem;
VkResult result;
enum radeon_bo_domain domain;
uint32_t flags = 0;
assert(pAllocateInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO);
if (pAllocateInfo->allocationSize == 0) {
/* Apparently, this is allowed */
*pMem = VK_NULL_HANDLE;
return VK_SUCCESS;
}
const VkImportMemoryFdInfoKHR *import_info =
vk_find_struct_const(pAllocateInfo->pNext, IMPORT_MEMORY_FD_INFO_KHR);
const VkMemoryDedicatedAllocateInfoKHR *dedicate_info =
vk_find_struct_const(pAllocateInfo->pNext, MEMORY_DEDICATED_ALLOCATE_INFO_KHR);
mem = vk_alloc2(&device->alloc, pAllocator, sizeof(*mem), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (mem == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
if (dedicate_info) {
mem->image = radv_image_from_handle(dedicate_info->image);
mem->buffer = radv_buffer_from_handle(dedicate_info->buffer);
} else {
mem->image = NULL;
mem->buffer = NULL;
}
if (import_info) {
assert(import_info->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
mem->bo = device->ws->buffer_from_fd(device->ws, import_info->fd,
NULL, NULL);
if (!mem->bo) {
result = VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR;
goto fail;
} else {
close(import_info->fd);
goto out_success;
}
}
uint64_t alloc_size = align_u64(pAllocateInfo->allocationSize, 4096);
if (pAllocateInfo->memoryTypeIndex == RADV_MEM_TYPE_GTT_WRITE_COMBINE ||
pAllocateInfo->memoryTypeIndex == RADV_MEM_TYPE_GTT_CACHED)
domain = RADEON_DOMAIN_GTT;
else
domain = RADEON_DOMAIN_VRAM;
if (pAllocateInfo->memoryTypeIndex == RADV_MEM_TYPE_VRAM)
flags |= RADEON_FLAG_NO_CPU_ACCESS;
else
flags |= RADEON_FLAG_CPU_ACCESS;
if (pAllocateInfo->memoryTypeIndex == RADV_MEM_TYPE_GTT_WRITE_COMBINE)
flags |= RADEON_FLAG_GTT_WC;
mem->bo = device->ws->buffer_create(device->ws, alloc_size, device->physical_device->rad_info.max_alignment,
domain, flags);
if (!mem->bo) {
result = VK_ERROR_OUT_OF_DEVICE_MEMORY;
goto fail;
}
mem->type_index = pAllocateInfo->memoryTypeIndex;
out_success:
*pMem = radv_device_memory_to_handle(mem);
return VK_SUCCESS;
fail:
vk_free2(&device->alloc, pAllocator, mem);
return result;
}
void radv_FreeMemory(
VkDevice _device,
VkDeviceMemory _mem,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _mem);
if (mem == NULL)
return;
device->ws->buffer_destroy(mem->bo);
mem->bo = NULL;
vk_free2(&device->alloc, pAllocator, mem);
}
VkResult radv_MapMemory(
VkDevice _device,
VkDeviceMemory _memory,
VkDeviceSize offset,
VkDeviceSize size,
VkMemoryMapFlags flags,
void** ppData)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
if (mem == NULL) {
*ppData = NULL;
return VK_SUCCESS;
}
*ppData = device->ws->buffer_map(mem->bo);
if (*ppData) {
*ppData += offset;
return VK_SUCCESS;
}
return VK_ERROR_MEMORY_MAP_FAILED;
}
void radv_UnmapMemory(
VkDevice _device,
VkDeviceMemory _memory)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
if (mem == NULL)
return;
device->ws->buffer_unmap(mem->bo);
}
VkResult radv_FlushMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
return VK_SUCCESS;
}
VkResult radv_InvalidateMappedMemoryRanges(
VkDevice _device,
uint32_t memoryRangeCount,
const VkMappedMemoryRange* pMemoryRanges)
{
return VK_SUCCESS;
}
void radv_GetBufferMemoryRequirements(
VkDevice device,
VkBuffer _buffer,
VkMemoryRequirements* pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
pMemoryRequirements->memoryTypeBits = (1u << RADV_MEM_TYPE_COUNT) - 1;
if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
pMemoryRequirements->alignment = 4096;
else
pMemoryRequirements->alignment = 16;
pMemoryRequirements->size = align64(buffer->size, pMemoryRequirements->alignment);
}
void radv_GetBufferMemoryRequirements2KHR(
VkDevice device,
const VkBufferMemoryRequirementsInfo2KHR* pInfo,
VkMemoryRequirements2KHR* pMemoryRequirements)
{
radv_GetBufferMemoryRequirements(device, pInfo->buffer,
&pMemoryRequirements->memoryRequirements);
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
VkMemoryDedicatedRequirementsKHR *req =
(VkMemoryDedicatedRequirementsKHR *) ext;
req->requiresDedicatedAllocation = false;
req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
break;
}
default:
break;
}
}
}
void radv_GetImageMemoryRequirements(
VkDevice device,
VkImage _image,
VkMemoryRequirements* pMemoryRequirements)
{
RADV_FROM_HANDLE(radv_image, image, _image);
pMemoryRequirements->memoryTypeBits = (1u << RADV_MEM_TYPE_COUNT) - 1;
pMemoryRequirements->size = image->size;
pMemoryRequirements->alignment = image->alignment;
}
void radv_GetImageMemoryRequirements2KHR(
VkDevice device,
const VkImageMemoryRequirementsInfo2KHR* pInfo,
VkMemoryRequirements2KHR* pMemoryRequirements)
{
radv_GetImageMemoryRequirements(device, pInfo->image,
&pMemoryRequirements->memoryRequirements);
RADV_FROM_HANDLE(radv_image, image, pInfo->image);
vk_foreach_struct(ext, pMemoryRequirements->pNext) {
switch (ext->sType) {
case VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR: {
VkMemoryDedicatedRequirementsKHR *req =
(VkMemoryDedicatedRequirementsKHR *) ext;
req->requiresDedicatedAllocation = image->shareable;
req->prefersDedicatedAllocation = req->requiresDedicatedAllocation;
break;
}
default:
break;
}
}
}
void radv_GetImageSparseMemoryRequirements(
VkDevice device,
VkImage image,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements* pSparseMemoryRequirements)
{
stub();
}
void radv_GetImageSparseMemoryRequirements2KHR(
VkDevice device,
const VkImageSparseMemoryRequirementsInfo2KHR* pInfo,
uint32_t* pSparseMemoryRequirementCount,
VkSparseImageMemoryRequirements2KHR* pSparseMemoryRequirements)
{
stub();
}
void radv_GetDeviceMemoryCommitment(
VkDevice device,
VkDeviceMemory memory,
VkDeviceSize* pCommittedMemoryInBytes)
{
*pCommittedMemoryInBytes = 0;
}
VkResult radv_BindBufferMemory(
VkDevice device,
VkBuffer _buffer,
VkDeviceMemory _memory,
VkDeviceSize memoryOffset)
{
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
if (mem) {
buffer->bo = mem->bo;
buffer->offset = memoryOffset;
} else {
buffer->bo = NULL;
buffer->offset = 0;
}
return VK_SUCCESS;
}
VkResult radv_BindImageMemory(
VkDevice device,
VkImage _image,
VkDeviceMemory _memory,
VkDeviceSize memoryOffset)
{
RADV_FROM_HANDLE(radv_device_memory, mem, _memory);
RADV_FROM_HANDLE(radv_image, image, _image);
if (mem) {
image->bo = mem->bo;
image->offset = memoryOffset;
} else {
image->bo = NULL;
image->offset = 0;
}
return VK_SUCCESS;
}
static void
radv_sparse_buffer_bind_memory(struct radv_device *device,
const VkSparseBufferMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_buffer, buffer, bind->buffer);
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
device->ws->buffer_virtual_bind(buffer->bo,
bind->pBinds[i].resourceOffset,
bind->pBinds[i].size,
mem ? mem->bo : NULL,
bind->pBinds[i].memoryOffset);
}
}
static void
radv_sparse_image_opaque_bind_memory(struct radv_device *device,
const VkSparseImageOpaqueMemoryBindInfo *bind)
{
RADV_FROM_HANDLE(radv_image, image, bind->image);
for (uint32_t i = 0; i < bind->bindCount; ++i) {
struct radv_device_memory *mem = NULL;
if (bind->pBinds[i].memory != VK_NULL_HANDLE)
mem = radv_device_memory_from_handle(bind->pBinds[i].memory);
device->ws->buffer_virtual_bind(image->bo,
bind->pBinds[i].resourceOffset,
bind->pBinds[i].size,
mem ? mem->bo : NULL,
bind->pBinds[i].memoryOffset);
}
}
VkResult radv_QueueBindSparse(
VkQueue _queue,
uint32_t bindInfoCount,
const VkBindSparseInfo* pBindInfo,
VkFence _fence)
{
RADV_FROM_HANDLE(radv_fence, fence, _fence);
RADV_FROM_HANDLE(radv_queue, queue, _queue);
struct radeon_winsys_fence *base_fence = fence ? fence->fence : NULL;
bool fence_emitted = false;
for (uint32_t i = 0; i < bindInfoCount; ++i) {
struct radv_winsys_sem_info sem_info;
for (uint32_t j = 0; j < pBindInfo[i].bufferBindCount; ++j) {
radv_sparse_buffer_bind_memory(queue->device,
pBindInfo[i].pBufferBinds + j);
}
for (uint32_t j = 0; j < pBindInfo[i].imageOpaqueBindCount; ++j) {
radv_sparse_image_opaque_bind_memory(queue->device,
pBindInfo[i].pImageOpaqueBinds + j);
}
VkResult result;
result = radv_alloc_sem_info(&sem_info,
pBindInfo[i].waitSemaphoreCount,
pBindInfo[i].pWaitSemaphores,
pBindInfo[i].signalSemaphoreCount,
pBindInfo[i].pSignalSemaphores);
if (result != VK_SUCCESS)
return result;
if (pBindInfo[i].waitSemaphoreCount || pBindInfo[i].signalSemaphoreCount) {
queue->device->ws->cs_submit(queue->hw_ctx, queue->queue_idx,
&queue->device->empty_cs[queue->queue_family_index],
1, NULL, NULL,
&sem_info,
false, base_fence);
fence_emitted = true;
if (fence)
fence->submitted = true;
}
radv_free_sem_info(&sem_info);
}
if (fence && !fence_emitted) {
fence->signalled = true;
}
return VK_SUCCESS;
}
VkResult radv_CreateFence(
VkDevice _device,
const VkFenceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFence* pFence)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_fence *fence = vk_alloc2(&device->alloc, pAllocator,
sizeof(*fence), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!fence)
return VK_ERROR_OUT_OF_HOST_MEMORY;
memset(fence, 0, sizeof(*fence));
fence->submitted = false;
fence->signalled = !!(pCreateInfo->flags & VK_FENCE_CREATE_SIGNALED_BIT);
fence->fence = device->ws->create_fence();
if (!fence->fence) {
vk_free2(&device->alloc, pAllocator, fence);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
*pFence = radv_fence_to_handle(fence);
return VK_SUCCESS;
}
void radv_DestroyFence(
VkDevice _device,
VkFence _fence,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, _fence);
if (!fence)
return;
device->ws->destroy_fence(fence->fence);
vk_free2(&device->alloc, pAllocator, fence);
}
static uint64_t radv_get_absolute_timeout(uint64_t timeout)
{
uint64_t current_time;
struct timespec tv;
clock_gettime(CLOCK_MONOTONIC, &tv);
current_time = tv.tv_nsec + tv.tv_sec*1000000000ull;
timeout = MIN2(UINT64_MAX - current_time, timeout);
return current_time + timeout;
}
VkResult radv_WaitForFences(
VkDevice _device,
uint32_t fenceCount,
const VkFence* pFences,
VkBool32 waitAll,
uint64_t timeout)
{
RADV_FROM_HANDLE(radv_device, device, _device);
timeout = radv_get_absolute_timeout(timeout);
if (!waitAll && fenceCount > 1) {
fprintf(stderr, "radv: WaitForFences without waitAll not implemented yet\n");
}
for (uint32_t i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
bool expired = false;
if (fence->signalled)
continue;
if (!fence->submitted)
return VK_TIMEOUT;
expired = device->ws->fence_wait(device->ws, fence->fence, true, timeout);
if (!expired)
return VK_TIMEOUT;
fence->signalled = true;
}
return VK_SUCCESS;
}
VkResult radv_ResetFences(VkDevice device,
uint32_t fenceCount,
const VkFence *pFences)
{
for (unsigned i = 0; i < fenceCount; ++i) {
RADV_FROM_HANDLE(radv_fence, fence, pFences[i]);
fence->submitted = fence->signalled = false;
}
return VK_SUCCESS;
}
VkResult radv_GetFenceStatus(VkDevice _device, VkFence _fence)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_fence, fence, _fence);
if (fence->signalled)
return VK_SUCCESS;
if (!fence->submitted)
return VK_NOT_READY;
if (!device->ws->fence_wait(device->ws, fence->fence, false, 0))
return VK_NOT_READY;
return VK_SUCCESS;
}
// Queue semaphore functions
VkResult radv_CreateSemaphore(
VkDevice _device,
const VkSemaphoreCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSemaphore* pSemaphore)
{
RADV_FROM_HANDLE(radv_device, device, _device);
const VkExportSemaphoreCreateInfoKHR *export =
vk_find_struct_const(pCreateInfo->pNext, EXPORT_SEMAPHORE_CREATE_INFO_KHR);
VkExternalSemaphoreHandleTypeFlagsKHR handleTypes =
export ? export->handleTypes : 0;
struct radv_semaphore *sem = vk_alloc2(&device->alloc, pAllocator,
sizeof(*sem), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sem)
return VK_ERROR_OUT_OF_HOST_MEMORY;
sem->temp_syncobj = 0;
/* create a syncobject if we are going to export this semaphore */
if (handleTypes) {
assert (device->physical_device->rad_info.has_syncobj);
assert (handleTypes == VK_EXTERNAL_FENCE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
int ret = device->ws->create_syncobj(device->ws, &sem->syncobj);
if (ret) {
vk_free2(&device->alloc, pAllocator, sem);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
sem->sem = NULL;
} else {
sem->sem = device->ws->create_sem(device->ws);
if (!sem->sem) {
vk_free2(&device->alloc, pAllocator, sem);
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
sem->syncobj = 0;
}
*pSemaphore = radv_semaphore_to_handle(sem);
return VK_SUCCESS;
}
void radv_DestroySemaphore(
VkDevice _device,
VkSemaphore _semaphore,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, _semaphore);
if (!_semaphore)
return;
if (sem->syncobj)
device->ws->destroy_syncobj(device->ws, sem->syncobj);
else
device->ws->destroy_sem(sem->sem);
vk_free2(&device->alloc, pAllocator, sem);
}
VkResult radv_CreateEvent(
VkDevice _device,
const VkEventCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkEvent* pEvent)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_event *event = vk_alloc2(&device->alloc, pAllocator,
sizeof(*event), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!event)
return VK_ERROR_OUT_OF_HOST_MEMORY;
event->bo = device->ws->buffer_create(device->ws, 8, 8,
RADEON_DOMAIN_GTT,
RADEON_FLAG_VA_UNCACHED | RADEON_FLAG_CPU_ACCESS);
if (!event->bo) {
vk_free2(&device->alloc, pAllocator, event);
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
}
event->map = (uint64_t*)device->ws->buffer_map(event->bo);
*pEvent = radv_event_to_handle(event);
return VK_SUCCESS;
}
void radv_DestroyEvent(
VkDevice _device,
VkEvent _event,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_event, event, _event);
if (!event)
return;
device->ws->buffer_destroy(event->bo);
vk_free2(&device->alloc, pAllocator, event);
}
VkResult radv_GetEventStatus(
VkDevice _device,
VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
if (*event->map == 1)
return VK_EVENT_SET;
return VK_EVENT_RESET;
}
VkResult radv_SetEvent(
VkDevice _device,
VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
*event->map = 1;
return VK_SUCCESS;
}
VkResult radv_ResetEvent(
VkDevice _device,
VkEvent _event)
{
RADV_FROM_HANDLE(radv_event, event, _event);
*event->map = 0;
return VK_SUCCESS;
}
VkResult radv_CreateBuffer(
VkDevice _device,
const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkBuffer* pBuffer)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_buffer *buffer;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
buffer = vk_alloc2(&device->alloc, pAllocator, sizeof(*buffer), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (buffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
buffer->size = pCreateInfo->size;
buffer->usage = pCreateInfo->usage;
buffer->bo = NULL;
buffer->offset = 0;
buffer->flags = pCreateInfo->flags;
if (pCreateInfo->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT) {
buffer->bo = device->ws->buffer_create(device->ws,
align64(buffer->size, 4096),
4096, 0, RADEON_FLAG_VIRTUAL);
if (!buffer->bo) {
vk_free2(&device->alloc, pAllocator, buffer);
return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
}
}
*pBuffer = radv_buffer_to_handle(buffer);
return VK_SUCCESS;
}
void radv_DestroyBuffer(
VkDevice _device,
VkBuffer _buffer,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_buffer, buffer, _buffer);
if (!buffer)
return;
if (buffer->flags & VK_BUFFER_CREATE_SPARSE_BINDING_BIT)
device->ws->buffer_destroy(buffer->bo);
vk_free2(&device->alloc, pAllocator, buffer);
}
static inline unsigned
si_tile_mode_index(const struct radv_image *image, unsigned level, bool stencil)
{
if (stencil)
return image->surface.u.legacy.stencil_tiling_index[level];
else
return image->surface.u.legacy.tiling_index[level];
}
static uint32_t radv_surface_layer_count(struct radv_image_view *iview)
{
return iview->type == VK_IMAGE_VIEW_TYPE_3D ? iview->extent.depth : iview->layer_count;
}
static void
radv_initialise_color_surface(struct radv_device *device,
struct radv_color_buffer_info *cb,
struct radv_image_view *iview)
{
const struct vk_format_description *desc;
unsigned ntype, format, swap, endian;
unsigned blend_clamp = 0, blend_bypass = 0;
uint64_t va;
const struct radeon_surf *surf = &iview->image->surface;
desc = vk_format_description(iview->vk_format);
memset(cb, 0, sizeof(*cb));
/* Intensity is implemented as Red, so treat it that way. */
cb->cb_color_attrib = S_028C74_FORCE_DST_ALPHA_1(desc->swizzle[3] == VK_SWIZZLE_1);
va = device->ws->buffer_get_va(iview->bo) + iview->image->offset;
cb->cb_color_base = va >> 8;
if (device->physical_device->rad_info.chip_class >= GFX9) {
struct gfx9_surf_meta_flags meta;
if (iview->image->dcc_offset)
meta = iview->image->surface.u.gfx9.dcc;
else
meta = iview->image->surface.u.gfx9.cmask;
cb->cb_color_attrib |= S_028C74_COLOR_SW_MODE(iview->image->surface.u.gfx9.surf.swizzle_mode) |
S_028C74_FMASK_SW_MODE(iview->image->surface.u.gfx9.fmask.swizzle_mode) |
S_028C74_RB_ALIGNED(meta.rb_aligned) |
S_028C74_PIPE_ALIGNED(meta.pipe_aligned);
cb->cb_color_base += iview->image->surface.u.gfx9.surf_offset >> 8;
cb->cb_color_base |= iview->image->surface.tile_swizzle;
} else {
const struct legacy_surf_level *level_info = &surf->u.legacy.level[iview->base_mip];
unsigned pitch_tile_max, slice_tile_max, tile_mode_index;
cb->cb_color_base += level_info->offset >> 8;
if (level_info->mode == RADEON_SURF_MODE_2D)
cb->cb_color_base |= iview->image->surface.tile_swizzle;
pitch_tile_max = level_info->nblk_x / 8 - 1;
slice_tile_max = (level_info->nblk_x * level_info->nblk_y) / 64 - 1;
tile_mode_index = si_tile_mode_index(iview->image, iview->base_mip, false);
cb->cb_color_pitch = S_028C64_TILE_MAX(pitch_tile_max);
cb->cb_color_slice = S_028C68_TILE_MAX(slice_tile_max);
cb->cb_color_cmask_slice = iview->image->cmask.slice_tile_max;
cb->cb_color_attrib |= S_028C74_TILE_MODE_INDEX(tile_mode_index);
cb->micro_tile_mode = iview->image->surface.micro_tile_mode;
if (iview->image->fmask.size) {
if (device->physical_device->rad_info.chip_class >= CIK)
cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(iview->image->fmask.pitch_in_pixels / 8 - 1);
cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(iview->image->fmask.tile_mode_index);
cb->cb_color_fmask_slice = S_028C88_TILE_MAX(iview->image->fmask.slice_tile_max);
} else {
/* This must be set for fast clear to work without FMASK. */
if (device->physical_device->rad_info.chip_class >= CIK)
cb->cb_color_pitch |= S_028C64_FMASK_TILE_MAX(pitch_tile_max);
cb->cb_color_attrib |= S_028C74_FMASK_TILE_MODE_INDEX(tile_mode_index);
cb->cb_color_fmask_slice = S_028C88_TILE_MAX(slice_tile_max);
}
}
/* CMASK variables */
va = device->ws->buffer_get_va(iview->bo) + iview->image->offset;
va += iview->image->cmask.offset;
cb->cb_color_cmask = va >> 8;
va = device->ws->buffer_get_va(iview->bo) + iview->image->offset;
va += iview->image->dcc_offset;
cb->cb_dcc_base = va >> 8;
cb->cb_dcc_base |= iview->image->surface.tile_swizzle;
uint32_t max_slice = radv_surface_layer_count(iview);
cb->cb_color_view = S_028C6C_SLICE_START(iview->base_layer) |
S_028C6C_SLICE_MAX(iview->base_layer + max_slice - 1);
if (iview->image->info.samples > 1) {
unsigned log_samples = util_logbase2(iview->image->info.samples);
cb->cb_color_attrib |= S_028C74_NUM_SAMPLES(log_samples) |
S_028C74_NUM_FRAGMENTS(log_samples);
}
if (iview->image->fmask.size) {
va = device->ws->buffer_get_va(iview->bo) + iview->image->offset + iview->image->fmask.offset;
cb->cb_color_fmask = va >> 8;
cb->cb_color_fmask |= iview->image->fmask.tile_swizzle;
} else {
cb->cb_color_fmask = cb->cb_color_base;
}
ntype = radv_translate_color_numformat(iview->vk_format,
desc,
vk_format_get_first_non_void_channel(iview->vk_format));
format = radv_translate_colorformat(iview->vk_format);
if (format == V_028C70_COLOR_INVALID || ntype == ~0u)
radv_finishme("Illegal color\n");
swap = radv_translate_colorswap(iview->vk_format, FALSE);
endian = radv_colorformat_endian_swap(format);
/* blend clamp should be set for all NORM/SRGB types */
if (ntype == V_028C70_NUMBER_UNORM ||
ntype == V_028C70_NUMBER_SNORM ||
ntype == V_028C70_NUMBER_SRGB)
blend_clamp = 1;
/* set blend bypass according to docs if SINT/UINT or
8/24 COLOR variants */
if (ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT ||
format == V_028C70_COLOR_8_24 || format == V_028C70_COLOR_24_8 ||
format == V_028C70_COLOR_X24_8_32_FLOAT) {
blend_clamp = 0;
blend_bypass = 1;
}
#if 0
if ((ntype == V_028C70_NUMBER_UINT || ntype == V_028C70_NUMBER_SINT) &&
(format == V_028C70_COLOR_8 ||
format == V_028C70_COLOR_8_8 ||
format == V_028C70_COLOR_8_8_8_8))
->color_is_int8 = true;
#endif
cb->cb_color_info = S_028C70_FORMAT(format) |
S_028C70_COMP_SWAP(swap) |
S_028C70_BLEND_CLAMP(blend_clamp) |
S_028C70_BLEND_BYPASS(blend_bypass) |
S_028C70_SIMPLE_FLOAT(1) |
S_028C70_ROUND_MODE(ntype != V_028C70_NUMBER_UNORM &&
ntype != V_028C70_NUMBER_SNORM &&
ntype != V_028C70_NUMBER_SRGB &&
format != V_028C70_COLOR_8_24 &&
format != V_028C70_COLOR_24_8) |
S_028C70_NUMBER_TYPE(ntype) |
S_028C70_ENDIAN(endian);
if ((iview->image->info.samples > 1) && iview->image->fmask.size) {
cb->cb_color_info |= S_028C70_COMPRESSION(1);
if (device->physical_device->rad_info.chip_class == SI) {
unsigned fmask_bankh = util_logbase2(iview->image->fmask.bank_height);
cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(fmask_bankh);
}
}
if (iview->image->cmask.size &&
!(device->debug_flags & RADV_DEBUG_NO_FAST_CLEARS))
cb->cb_color_info |= S_028C70_FAST_CLEAR(1);
if (iview->image->surface.dcc_size && iview->base_mip < surf->num_dcc_levels)
cb->cb_color_info |= S_028C70_DCC_ENABLE(1);
if (device->physical_device->rad_info.chip_class >= VI) {
unsigned max_uncompressed_block_size = 2;
if (iview->image->info.samples > 1) {
if (iview->image->surface.bpe == 1)
max_uncompressed_block_size = 0;
else if (iview->image->surface.bpe == 2)
max_uncompressed_block_size = 1;
}
cb->cb_dcc_control = S_028C78_MAX_UNCOMPRESSED_BLOCK_SIZE(max_uncompressed_block_size) |
S_028C78_INDEPENDENT_64B_BLOCKS(1);
}
/* This must be set for fast clear to work without FMASK. */
if (!iview->image->fmask.size &&
device->physical_device->rad_info.chip_class == SI) {
unsigned bankh = util_logbase2(iview->image->surface.u.legacy.bankh);
cb->cb_color_attrib |= S_028C74_FMASK_BANK_HEIGHT(bankh);
}
if (device->physical_device->rad_info.chip_class >= GFX9) {
uint32_t max_slice = radv_surface_layer_count(iview);
unsigned mip0_depth = iview->base_layer + max_slice - 1;
cb->cb_color_view |= S_028C6C_MIP_LEVEL(iview->base_mip);
cb->cb_color_attrib |= S_028C74_MIP0_DEPTH(mip0_depth) |
S_028C74_RESOURCE_TYPE(iview->image->surface.u.gfx9.resource_type);
cb->cb_color_attrib2 = S_028C68_MIP0_WIDTH(iview->extent.width - 1) |
S_028C68_MIP0_HEIGHT(iview->extent.height - 1) |
S_028C68_MAX_MIP(iview->image->info.levels - 1);
cb->gfx9_epitch = S_0287A0_EPITCH(iview->image->surface.u.gfx9.surf.epitch);
}
}
static void
radv_initialise_ds_surface(struct radv_device *device,
struct radv_ds_buffer_info *ds,
struct radv_image_view *iview)
{
unsigned level = iview->base_mip;
unsigned format, stencil_format;
uint64_t va, s_offs, z_offs;
bool stencil_only = false;
memset(ds, 0, sizeof(*ds));
switch (iview->image->vk_format) {
case VK_FORMAT_D24_UNORM_S8_UINT:
case VK_FORMAT_X8_D24_UNORM_PACK32:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-24);
ds->offset_scale = 2.0f;
break;
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D16_UNORM_S8_UINT:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-16);
ds->offset_scale = 4.0f;
break;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
ds->pa_su_poly_offset_db_fmt_cntl = S_028B78_POLY_OFFSET_NEG_NUM_DB_BITS(-23) |
S_028B78_POLY_OFFSET_DB_IS_FLOAT_FMT(1);
ds->offset_scale = 1.0f;
break;
case VK_FORMAT_S8_UINT:
stencil_only = true;
break;
default:
break;
}
format = radv_translate_dbformat(iview->image->vk_format);
stencil_format = iview->image->surface.has_stencil ?
V_028044_STENCIL_8 : V_028044_STENCIL_INVALID;
uint32_t max_slice = radv_surface_layer_count(iview);
ds->db_depth_view = S_028008_SLICE_START(iview->base_layer) |
S_028008_SLICE_MAX(iview->base_layer + max_slice - 1);
ds->db_htile_data_base = 0;
ds->db_htile_surface = 0;
va = device->ws->buffer_get_va(iview->bo) + iview->image->offset;
s_offs = z_offs = va;
if (device->physical_device->rad_info.chip_class >= GFX9) {
assert(iview->image->surface.u.gfx9.surf_offset == 0);
s_offs += iview->image->surface.u.gfx9.stencil_offset;
ds->db_z_info = S_028038_FORMAT(format) |
S_028038_NUM_SAMPLES(util_logbase2(iview->image->info.samples)) |
S_028038_SW_MODE(iview->image->surface.u.gfx9.surf.swizzle_mode) |
S_028038_MAXMIP(iview->image->info.levels - 1);
ds->db_stencil_info = S_02803C_FORMAT(stencil_format) |
S_02803C_SW_MODE(iview->image->surface.u.gfx9.stencil.swizzle_mode);
ds->db_z_info2 = S_028068_EPITCH(iview->image->surface.u.gfx9.surf.epitch);
ds->db_stencil_info2 = S_02806C_EPITCH(iview->image->surface.u.gfx9.stencil.epitch);
ds->db_depth_view |= S_028008_MIPID(level);
ds->db_depth_size = S_02801C_X_MAX(iview->image->info.width - 1) |
S_02801C_Y_MAX(iview->image->info.height - 1);
/* Only use HTILE for the first level. */
if (iview->image->surface.htile_size && !level) {
ds->db_z_info |= S_028038_TILE_SURFACE_ENABLE(1);
if (!iview->image->surface.has_stencil)
/* Use all of the htile_buffer for depth if there's no stencil. */
ds->db_stencil_info |= S_02803C_TILE_STENCIL_DISABLE(1);
va = device->ws->buffer_get_va(iview->bo) + iview->image->offset +
iview->image->htile_offset;
ds->db_htile_data_base = va >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1) |
S_028ABC_PIPE_ALIGNED(iview->image->surface.u.gfx9.htile.pipe_aligned) |
S_028ABC_RB_ALIGNED(iview->image->surface.u.gfx9.htile.rb_aligned);
}
} else {
const struct legacy_surf_level *level_info = &iview->image->surface.u.legacy.level[level];
if (stencil_only)
level_info = &iview->image->surface.u.legacy.stencil_level[level];
z_offs += iview->image->surface.u.legacy.level[level].offset;
s_offs += iview->image->surface.u.legacy.stencil_level[level].offset;
ds->db_depth_info = S_02803C_ADDR5_SWIZZLE_MASK(1);
ds->db_z_info = S_028040_FORMAT(format) | S_028040_ZRANGE_PRECISION(1);
ds->db_stencil_info = S_028044_FORMAT(stencil_format);
if (iview->image->info.samples > 1)
ds->db_z_info |= S_028040_NUM_SAMPLES(util_logbase2(iview->image->info.samples));
if (device->physical_device->rad_info.chip_class >= CIK) {
struct radeon_info *info = &device->physical_device->rad_info;
unsigned tiling_index = iview->image->surface.u.legacy.tiling_index[level];
unsigned stencil_index = iview->image->surface.u.legacy.stencil_tiling_index[level];
unsigned macro_index = iview->image->surface.u.legacy.macro_tile_index;
unsigned tile_mode = info->si_tile_mode_array[tiling_index];
unsigned stencil_tile_mode = info->si_tile_mode_array[stencil_index];
unsigned macro_mode = info->cik_macrotile_mode_array[macro_index];
if (stencil_only)
tile_mode = stencil_tile_mode;
ds->db_depth_info |=
S_02803C_ARRAY_MODE(G_009910_ARRAY_MODE(tile_mode)) |
S_02803C_PIPE_CONFIG(G_009910_PIPE_CONFIG(tile_mode)) |
S_02803C_BANK_WIDTH(G_009990_BANK_WIDTH(macro_mode)) |
S_02803C_BANK_HEIGHT(G_009990_BANK_HEIGHT(macro_mode)) |
S_02803C_MACRO_TILE_ASPECT(G_009990_MACRO_TILE_ASPECT(macro_mode)) |
S_02803C_NUM_BANKS(G_009990_NUM_BANKS(macro_mode));
ds->db_z_info |= S_028040_TILE_SPLIT(G_009910_TILE_SPLIT(tile_mode));
ds->db_stencil_info |= S_028044_TILE_SPLIT(G_009910_TILE_SPLIT(stencil_tile_mode));
} else {
unsigned tile_mode_index = si_tile_mode_index(iview->image, level, false);
ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
tile_mode_index = si_tile_mode_index(iview->image, level, true);
ds->db_stencil_info |= S_028044_TILE_MODE_INDEX(tile_mode_index);
if (stencil_only)
ds->db_z_info |= S_028040_TILE_MODE_INDEX(tile_mode_index);
}
ds->db_depth_size = S_028058_PITCH_TILE_MAX((level_info->nblk_x / 8) - 1) |
S_028058_HEIGHT_TILE_MAX((level_info->nblk_y / 8) - 1);
ds->db_depth_slice = S_02805C_SLICE_TILE_MAX((level_info->nblk_x * level_info->nblk_y) / 64 - 1);
if (iview->image->surface.htile_size && !level) {
ds->db_z_info |= S_028040_TILE_SURFACE_ENABLE(1);
if (!iview->image->surface.has_stencil)
/* Use all of the htile_buffer for depth if there's no stencil. */
ds->db_stencil_info |= S_028044_TILE_STENCIL_DISABLE(1);
va = device->ws->buffer_get_va(iview->bo) + iview->image->offset +
iview->image->htile_offset;
ds->db_htile_data_base = va >> 8;
ds->db_htile_surface = S_028ABC_FULL_CACHE(1);
}
}
ds->db_z_read_base = ds->db_z_write_base = z_offs >> 8;
ds->db_stencil_read_base = ds->db_stencil_write_base = s_offs >> 8;
}
VkResult radv_CreateFramebuffer(
VkDevice _device,
const VkFramebufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkFramebuffer* pFramebuffer)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_framebuffer *framebuffer;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
size_t size = sizeof(*framebuffer) +
sizeof(struct radv_attachment_info) * pCreateInfo->attachmentCount;
framebuffer = vk_alloc2(&device->alloc, pAllocator, size, 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (framebuffer == NULL)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
framebuffer->attachment_count = pCreateInfo->attachmentCount;
framebuffer->width = pCreateInfo->width;
framebuffer->height = pCreateInfo->height;
framebuffer->layers = pCreateInfo->layers;
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) {
VkImageView _iview = pCreateInfo->pAttachments[i];
struct radv_image_view *iview = radv_image_view_from_handle(_iview);
framebuffer->attachments[i].attachment = iview;
if (iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT) {
radv_initialise_color_surface(device, &framebuffer->attachments[i].cb, iview);
} else if (iview->aspect_mask & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT)) {
radv_initialise_ds_surface(device, &framebuffer->attachments[i].ds, iview);
}
framebuffer->width = MIN2(framebuffer->width, iview->extent.width);
framebuffer->height = MIN2(framebuffer->height, iview->extent.height);
framebuffer->layers = MIN2(framebuffer->layers, radv_surface_layer_count(iview));
}
*pFramebuffer = radv_framebuffer_to_handle(framebuffer);
return VK_SUCCESS;
}
void radv_DestroyFramebuffer(
VkDevice _device,
VkFramebuffer _fb,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_framebuffer, fb, _fb);
if (!fb)
return;
vk_free2(&device->alloc, pAllocator, fb);
}
static unsigned radv_tex_wrap(VkSamplerAddressMode address_mode)
{
switch (address_mode) {
case VK_SAMPLER_ADDRESS_MODE_REPEAT:
return V_008F30_SQ_TEX_WRAP;
case VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT:
return V_008F30_SQ_TEX_MIRROR;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_CLAMP_LAST_TEXEL;
case VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER:
return V_008F30_SQ_TEX_CLAMP_BORDER;
case VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE:
return V_008F30_SQ_TEX_MIRROR_ONCE_LAST_TEXEL;
default:
unreachable("illegal tex wrap mode");
break;
}
}
static unsigned
radv_tex_compare(VkCompareOp op)
{
switch (op) {
case VK_COMPARE_OP_NEVER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NEVER;
case VK_COMPARE_OP_LESS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESS;
case VK_COMPARE_OP_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_EQUAL;
case VK_COMPARE_OP_LESS_OR_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_LESSEQUAL;
case VK_COMPARE_OP_GREATER:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATER;
case VK_COMPARE_OP_NOT_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_NOTEQUAL;
case VK_COMPARE_OP_GREATER_OR_EQUAL:
return V_008F30_SQ_TEX_DEPTH_COMPARE_GREATEREQUAL;
case VK_COMPARE_OP_ALWAYS:
return V_008F30_SQ_TEX_DEPTH_COMPARE_ALWAYS;
default:
unreachable("illegal compare mode");
break;
}
}
static unsigned
radv_tex_filter(VkFilter filter, unsigned max_ansio)
{
switch (filter) {
case VK_FILTER_NEAREST:
return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_POINT :
V_008F38_SQ_TEX_XY_FILTER_POINT);
case VK_FILTER_LINEAR:
return (max_ansio > 1 ? V_008F38_SQ_TEX_XY_FILTER_ANISO_BILINEAR :
V_008F38_SQ_TEX_XY_FILTER_BILINEAR);
case VK_FILTER_CUBIC_IMG:
default:
fprintf(stderr, "illegal texture filter");
return 0;
}
}
static unsigned
radv_tex_mipfilter(VkSamplerMipmapMode mode)
{
switch (mode) {
case VK_SAMPLER_MIPMAP_MODE_NEAREST:
return V_008F38_SQ_TEX_Z_FILTER_POINT;
case VK_SAMPLER_MIPMAP_MODE_LINEAR:
return V_008F38_SQ_TEX_Z_FILTER_LINEAR;
default:
return V_008F38_SQ_TEX_Z_FILTER_NONE;
}
}
static unsigned
radv_tex_bordercolor(VkBorderColor bcolor)
{
switch (bcolor) {
case VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK:
case VK_BORDER_COLOR_INT_TRANSPARENT_BLACK:
return V_008F3C_SQ_TEX_BORDER_COLOR_TRANS_BLACK;
case VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK:
case VK_BORDER_COLOR_INT_OPAQUE_BLACK:
return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_BLACK;
case VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE:
case VK_BORDER_COLOR_INT_OPAQUE_WHITE:
return V_008F3C_SQ_TEX_BORDER_COLOR_OPAQUE_WHITE;
default:
break;
}
return 0;
}
static unsigned
radv_tex_aniso_filter(unsigned filter)
{
if (filter < 2)
return 0;
if (filter < 4)
return 1;
if (filter < 8)
return 2;
if (filter < 16)
return 3;
return 4;
}
static void
radv_init_sampler(struct radv_device *device,
struct radv_sampler *sampler,
const VkSamplerCreateInfo *pCreateInfo)
{
uint32_t max_aniso = pCreateInfo->anisotropyEnable && pCreateInfo->maxAnisotropy > 1.0 ?
(uint32_t) pCreateInfo->maxAnisotropy : 0;
uint32_t max_aniso_ratio = radv_tex_aniso_filter(max_aniso);
bool is_vi = (device->physical_device->rad_info.chip_class >= VI);
sampler->state[0] = (S_008F30_CLAMP_X(radv_tex_wrap(pCreateInfo->addressModeU)) |
S_008F30_CLAMP_Y(radv_tex_wrap(pCreateInfo->addressModeV)) |
S_008F30_CLAMP_Z(radv_tex_wrap(pCreateInfo->addressModeW)) |
S_008F30_MAX_ANISO_RATIO(max_aniso_ratio) |
S_008F30_DEPTH_COMPARE_FUNC(radv_tex_compare(pCreateInfo->compareOp)) |
S_008F30_FORCE_UNNORMALIZED(pCreateInfo->unnormalizedCoordinates ? 1 : 0) |
S_008F30_ANISO_THRESHOLD(max_aniso_ratio >> 1) |
S_008F30_ANISO_BIAS(max_aniso_ratio) |
S_008F30_DISABLE_CUBE_WRAP(0) |
S_008F30_COMPAT_MODE(is_vi));
sampler->state[1] = (S_008F34_MIN_LOD(S_FIXED(CLAMP(pCreateInfo->minLod, 0, 15), 8)) |
S_008F34_MAX_LOD(S_FIXED(CLAMP(pCreateInfo->maxLod, 0, 15), 8)) |
S_008F34_PERF_MIP(max_aniso_ratio ? max_aniso_ratio + 6 : 0));
sampler->state[2] = (S_008F38_LOD_BIAS(S_FIXED(CLAMP(pCreateInfo->mipLodBias, -16, 16), 8)) |
S_008F38_XY_MAG_FILTER(radv_tex_filter(pCreateInfo->magFilter, max_aniso)) |
S_008F38_XY_MIN_FILTER(radv_tex_filter(pCreateInfo->minFilter, max_aniso)) |
S_008F38_MIP_FILTER(radv_tex_mipfilter(pCreateInfo->mipmapMode)) |
S_008F38_MIP_POINT_PRECLAMP(0) |
S_008F38_DISABLE_LSB_CEIL(1) |
S_008F38_FILTER_PREC_FIX(1) |
S_008F38_ANISO_OVERRIDE(is_vi));
sampler->state[3] = (S_008F3C_BORDER_COLOR_PTR(0) |
S_008F3C_BORDER_COLOR_TYPE(radv_tex_bordercolor(pCreateInfo->borderColor)));
}
VkResult radv_CreateSampler(
VkDevice _device,
const VkSamplerCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkSampler* pSampler)
{
RADV_FROM_HANDLE(radv_device, device, _device);
struct radv_sampler *sampler;
assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
sampler = vk_alloc2(&device->alloc, pAllocator, sizeof(*sampler), 8,
VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
if (!sampler)
return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
radv_init_sampler(device, sampler, pCreateInfo);
*pSampler = radv_sampler_to_handle(sampler);
return VK_SUCCESS;
}
void radv_DestroySampler(
VkDevice _device,
VkSampler _sampler,
const VkAllocationCallbacks* pAllocator)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_sampler, sampler, _sampler);
if (!sampler)
return;
vk_free2(&device->alloc, pAllocator, sampler);
}
/* vk_icd.h does not declare this function, so we declare it here to
* suppress Wmissing-prototypes.
*/
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion);
PUBLIC VKAPI_ATTR VkResult VKAPI_CALL
vk_icdNegotiateLoaderICDInterfaceVersion(uint32_t *pSupportedVersion)
{
/* For the full details on loader interface versioning, see
* <https://github.com/KhronosGroup/Vulkan-LoaderAndValidationLayers/blob/master/loader/LoaderAndLayerInterface.md>.
* What follows is a condensed summary, to help you navigate the large and
* confusing official doc.
*
* - Loader interface v0 is incompatible with later versions. We don't
* support it.
*
* - In loader interface v1:
* - The first ICD entrypoint called by the loader is
* vk_icdGetInstanceProcAddr(). The ICD must statically expose this
* entrypoint.
* - The ICD must statically expose no other Vulkan symbol unless it is
* linked with -Bsymbolic.
* - Each dispatchable Vulkan handle created by the ICD must be
* a pointer to a struct whose first member is VK_LOADER_DATA. The
* ICD must initialize VK_LOADER_DATA.loadMagic to ICD_LOADER_MAGIC.
* - The loader implements vkCreate{PLATFORM}SurfaceKHR() and
* vkDestroySurfaceKHR(). The ICD must be capable of working with
* such loader-managed surfaces.
*
* - Loader interface v2 differs from v1 in:
* - The first ICD entrypoint called by the loader is
* vk_icdNegotiateLoaderICDInterfaceVersion(). The ICD must
* statically expose this entrypoint.
*
* - Loader interface v3 differs from v2 in:
* - The ICD must implement vkCreate{PLATFORM}SurfaceKHR(),
* vkDestroySurfaceKHR(), and other API which uses VKSurfaceKHR,
* because the loader no longer does so.
*/
*pSupportedVersion = MIN2(*pSupportedVersion, 3u);
return VK_SUCCESS;
}
VkResult radv_GetMemoryFdKHR(VkDevice _device,
const VkMemoryGetFdInfoKHR *pGetFdInfo,
int *pFD)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_device_memory, memory, pGetFdInfo->memory);
assert(pGetFdInfo->sType == VK_STRUCTURE_TYPE_MEMORY_GET_FD_INFO_KHR);
/* We support only one handle type. */
assert(pGetFdInfo->handleType ==
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
bool ret = radv_get_memory_fd(device, memory, pFD);
if (ret == false)
return VK_ERROR_OUT_OF_DEVICE_MEMORY;
return VK_SUCCESS;
}
VkResult radv_GetMemoryFdPropertiesKHR(VkDevice _device,
VkExternalMemoryHandleTypeFlagBitsKHR handleType,
int fd,
VkMemoryFdPropertiesKHR *pMemoryFdProperties)
{
/* The valid usage section for this function says:
*
* "handleType must not be one of the handle types defined as opaque."
*
* Since we only handle opaque handles for now, there are no FD properties.
*/
return VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR;
}
VkResult radv_ImportSemaphoreFdKHR(VkDevice _device,
const VkImportSemaphoreFdInfoKHR *pImportSemaphoreFdInfo)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, pImportSemaphoreFdInfo->semaphore);
uint32_t syncobj_handle = 0;
assert(pImportSemaphoreFdInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
int ret = device->ws->import_syncobj(device->ws, pImportSemaphoreFdInfo->fd, &syncobj_handle);
if (ret != 0)
return VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR;
if (pImportSemaphoreFdInfo->flags & VK_SEMAPHORE_IMPORT_TEMPORARY_BIT_KHR) {
sem->temp_syncobj = syncobj_handle;
} else {
sem->syncobj = syncobj_handle;
}
close(pImportSemaphoreFdInfo->fd);
return VK_SUCCESS;
}
VkResult radv_GetSemaphoreFdKHR(VkDevice _device,
const VkSemaphoreGetFdInfoKHR *pGetFdInfo,
int *pFd)
{
RADV_FROM_HANDLE(radv_device, device, _device);
RADV_FROM_HANDLE(radv_semaphore, sem, pGetFdInfo->semaphore);
int ret;
uint32_t syncobj_handle;
assert(pGetFdInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR);
if (sem->temp_syncobj)
syncobj_handle = sem->temp_syncobj;
else
syncobj_handle = sem->syncobj;
ret = device->ws->export_syncobj(device->ws, syncobj_handle, pFd);
if (ret)
return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
return VK_SUCCESS;
}
void radv_GetPhysicalDeviceExternalSemaphorePropertiesKHR(
VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceExternalSemaphoreInfoKHR* pExternalSemaphoreInfo,
VkExternalSemaphorePropertiesKHR* pExternalSemaphoreProperties)
{
if (pExternalSemaphoreInfo->handleType == VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR) {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
pExternalSemaphoreProperties->compatibleHandleTypes = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BIT_KHR;
pExternalSemaphoreProperties->externalSemaphoreFeatures = VK_EXTERNAL_SEMAPHORE_FEATURE_EXPORTABLE_BIT_KHR |
VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR;
} else {
pExternalSemaphoreProperties->exportFromImportedHandleTypes = 0;
pExternalSemaphoreProperties->compatibleHandleTypes = 0;
pExternalSemaphoreProperties->externalSemaphoreFeatures = 0;
}
}