| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "util/mesa-sha1.h" |
| #include "util/u_atomic.h" |
| #include "radv_debug.h" |
| #include "radv_private.h" |
| #include "radv_shader.h" |
| #include "nir/nir.h" |
| #include "nir/nir_builder.h" |
| #include "spirv/nir_spirv.h" |
| |
| #include <llvm-c/Core.h> |
| #include <llvm-c/TargetMachine.h> |
| |
| #include "sid.h" |
| #include "gfx9d.h" |
| #include "r600d_common.h" |
| #include "ac_binary.h" |
| #include "ac_llvm_util.h" |
| #include "ac_nir_to_llvm.h" |
| #include "vk_format.h" |
| #include "util/debug.h" |
| #include "ac_exp_param.h" |
| |
| static void |
| radv_pipeline_destroy(struct radv_device *device, |
| struct radv_pipeline *pipeline, |
| const VkAllocationCallbacks* allocator) |
| { |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) |
| if (pipeline->shaders[i]) |
| radv_shader_variant_destroy(device, pipeline->shaders[i]); |
| |
| if (pipeline->gs_copy_shader) |
| radv_shader_variant_destroy(device, pipeline->gs_copy_shader); |
| |
| vk_free2(&device->alloc, allocator, pipeline); |
| } |
| |
| void radv_DestroyPipeline( |
| VkDevice _device, |
| VkPipeline _pipeline, |
| const VkAllocationCallbacks* pAllocator) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); |
| |
| if (!_pipeline) |
| return; |
| |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| } |
| |
| static void radv_dump_pipeline_stats(struct radv_device *device, struct radv_pipeline *pipeline) |
| { |
| unsigned lds_increment = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256; |
| struct radv_shader_variant *var; |
| struct ac_shader_config *conf; |
| int i; |
| FILE *file = stderr; |
| unsigned max_simd_waves; |
| unsigned lds_per_wave = 0; |
| |
| switch (device->physical_device->rad_info.family) { |
| /* These always have 8 waves: */ |
| case CHIP_POLARIS10: |
| case CHIP_POLARIS11: |
| case CHIP_POLARIS12: |
| max_simd_waves = 8; |
| break; |
| default: |
| max_simd_waves = 10; |
| } |
| |
| for (i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (!pipeline->shaders[i]) |
| continue; |
| var = pipeline->shaders[i]; |
| |
| conf = &var->config; |
| |
| if (i == MESA_SHADER_FRAGMENT) { |
| lds_per_wave = conf->lds_size * lds_increment + |
| align(var->info.fs.num_interp * 48, lds_increment); |
| } |
| |
| if (conf->num_sgprs) { |
| if (device->physical_device->rad_info.chip_class >= VI) |
| max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs); |
| else |
| max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs); |
| } |
| |
| if (conf->num_vgprs) |
| max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs); |
| |
| /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD |
| * that PS can use. |
| */ |
| if (lds_per_wave) |
| max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave); |
| |
| fprintf(file, "\n%s:\n", |
| radv_get_shader_name(var, i)); |
| if (i == MESA_SHADER_FRAGMENT) { |
| fprintf(file, "*** SHADER CONFIG ***\n" |
| "SPI_PS_INPUT_ADDR = 0x%04x\n" |
| "SPI_PS_INPUT_ENA = 0x%04x\n", |
| conf->spi_ps_input_addr, conf->spi_ps_input_ena); |
| } |
| fprintf(file, "*** SHADER STATS ***\n" |
| "SGPRS: %d\n" |
| "VGPRS: %d\n" |
| "Spilled SGPRs: %d\n" |
| "Spilled VGPRs: %d\n" |
| "Code Size: %d bytes\n" |
| "LDS: %d blocks\n" |
| "Scratch: %d bytes per wave\n" |
| "Max Waves: %d\n" |
| "********************\n\n\n", |
| conf->num_sgprs, conf->num_vgprs, |
| conf->spilled_sgprs, conf->spilled_vgprs, var->code_size, |
| conf->lds_size, conf->scratch_bytes_per_wave, |
| max_simd_waves); |
| } |
| } |
| |
| static struct radv_shader_variant * |
| radv_pipeline_compile(struct radv_pipeline *pipeline, |
| struct radv_pipeline_cache *cache, |
| struct radv_shader_module *module, |
| const char *entrypoint, |
| gl_shader_stage stage, |
| const VkSpecializationInfo *spec_info, |
| struct radv_pipeline_layout *layout, |
| const struct ac_shader_variant_key *key) |
| { |
| unsigned char sha1[20]; |
| unsigned char gs_copy_sha1[20]; |
| struct radv_shader_variant *variant; |
| nir_shader *nir; |
| void *code = NULL; |
| unsigned code_size = 0; |
| bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS); |
| |
| if (module->nir) |
| _mesa_sha1_compute(module->nir->info.name, |
| strlen(module->nir->info.name), |
| module->sha1); |
| |
| radv_hash_shader(sha1, module, entrypoint, spec_info, layout, key, 0); |
| if (stage == MESA_SHADER_GEOMETRY) |
| radv_hash_shader(gs_copy_sha1, module, entrypoint, spec_info, |
| layout, key, 1); |
| |
| variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device, |
| cache, |
| sha1); |
| |
| if (stage == MESA_SHADER_GEOMETRY) { |
| pipeline->gs_copy_shader = |
| radv_create_shader_variant_from_pipeline_cache( |
| pipeline->device, |
| cache, |
| gs_copy_sha1); |
| } |
| |
| if (variant && |
| (stage != MESA_SHADER_GEOMETRY || pipeline->gs_copy_shader)) |
| return variant; |
| |
| nir = radv_shader_compile_to_nir(pipeline->device, |
| module, entrypoint, stage, |
| spec_info, dump); |
| if (nir == NULL) |
| return NULL; |
| |
| if (!variant) { |
| variant = radv_shader_variant_create(pipeline->device, nir, |
| layout, key, &code, |
| &code_size, dump); |
| } |
| |
| if (stage == MESA_SHADER_GEOMETRY && !pipeline->gs_copy_shader) { |
| void *gs_copy_code = NULL; |
| unsigned gs_copy_code_size = 0; |
| pipeline->gs_copy_shader = radv_create_gs_copy_shader( |
| pipeline->device, nir, &gs_copy_code, |
| &gs_copy_code_size, dump, key->has_multiview_view_index); |
| |
| if (pipeline->gs_copy_shader) { |
| pipeline->gs_copy_shader = |
| radv_pipeline_cache_insert_shader(cache, |
| gs_copy_sha1, |
| pipeline->gs_copy_shader, |
| gs_copy_code, |
| gs_copy_code_size); |
| } |
| |
| free(gs_copy_code); |
| } |
| if (!module->nir) |
| ralloc_free(nir); |
| |
| if (variant) |
| variant = radv_pipeline_cache_insert_shader(cache, sha1, variant, |
| code, code_size); |
| |
| if (code) |
| free(code); |
| return variant; |
| } |
| |
| static struct ac_shader_variant_key |
| radv_compute_tes_key(bool as_es, bool export_prim_id) |
| { |
| struct ac_shader_variant_key key; |
| memset(&key, 0, sizeof(key)); |
| key.tes.as_es = as_es; |
| /* export prim id only happens when no geom shader */ |
| if (!as_es) |
| key.tes.export_prim_id = export_prim_id; |
| return key; |
| } |
| |
| static struct ac_shader_variant_key |
| radv_compute_tcs_key(unsigned primitive_mode, unsigned input_vertices) |
| { |
| struct ac_shader_variant_key key; |
| memset(&key, 0, sizeof(key)); |
| key.tcs.primitive_mode = primitive_mode; |
| key.tcs.input_vertices = input_vertices; |
| return key; |
| } |
| |
| static void |
| radv_tess_pipeline_compile(struct radv_pipeline *pipeline, |
| struct radv_pipeline_cache *cache, |
| struct radv_shader_module *tcs_module, |
| struct radv_shader_module *tes_module, |
| const char *tcs_entrypoint, |
| const char *tes_entrypoint, |
| const VkSpecializationInfo *tcs_spec_info, |
| const VkSpecializationInfo *tes_spec_info, |
| struct radv_pipeline_layout *layout, |
| unsigned input_vertices, |
| bool has_view_index) |
| { |
| unsigned char tcs_sha1[20], tes_sha1[20]; |
| struct radv_shader_variant *tes_variant = NULL, *tcs_variant = NULL; |
| nir_shader *tes_nir, *tcs_nir; |
| void *tes_code = NULL, *tcs_code = NULL; |
| unsigned tes_code_size = 0, tcs_code_size = 0; |
| struct ac_shader_variant_key tes_key; |
| struct ac_shader_variant_key tcs_key; |
| bool dump = (pipeline->device->debug_flags & RADV_DEBUG_DUMP_SHADERS); |
| |
| tes_key = radv_compute_tes_key(radv_pipeline_has_gs(pipeline), |
| pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input); |
| tes_key.has_multiview_view_index = has_view_index; |
| if (tes_module->nir) |
| _mesa_sha1_compute(tes_module->nir->info.name, |
| strlen(tes_module->nir->info.name), |
| tes_module->sha1); |
| radv_hash_shader(tes_sha1, tes_module, tes_entrypoint, tes_spec_info, layout, &tes_key, 0); |
| |
| tes_variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device, |
| cache, |
| tes_sha1); |
| |
| if (tes_variant) { |
| tcs_key = radv_compute_tcs_key(tes_variant->info.tes.primitive_mode, input_vertices); |
| |
| if (tcs_module->nir) |
| _mesa_sha1_compute(tcs_module->nir->info.name, |
| strlen(tcs_module->nir->info.name), |
| tcs_module->sha1); |
| |
| radv_hash_shader(tcs_sha1, tcs_module, tcs_entrypoint, tcs_spec_info, layout, &tcs_key, 0); |
| |
| tcs_variant = radv_create_shader_variant_from_pipeline_cache(pipeline->device, |
| cache, |
| tcs_sha1); |
| } |
| |
| if (tcs_variant && tes_variant) { |
| pipeline->shaders[MESA_SHADER_TESS_CTRL] = tcs_variant; |
| pipeline->shaders[MESA_SHADER_TESS_EVAL] = tes_variant; |
| return; |
| } |
| |
| tes_nir = radv_shader_compile_to_nir(pipeline->device, |
| tes_module, tes_entrypoint, MESA_SHADER_TESS_EVAL, |
| tes_spec_info, dump); |
| if (tes_nir == NULL) |
| return; |
| |
| tcs_nir = radv_shader_compile_to_nir(pipeline->device, |
| tcs_module, tcs_entrypoint, MESA_SHADER_TESS_CTRL, |
| tcs_spec_info, dump); |
| if (tcs_nir == NULL) |
| return; |
| |
| nir_lower_tes_patch_vertices(tes_nir, |
| tcs_nir->info.tess.tcs_vertices_out); |
| |
| tes_variant = radv_shader_variant_create(pipeline->device, tes_nir, |
| layout, &tes_key, &tes_code, |
| &tes_code_size, dump); |
| |
| tcs_key = radv_compute_tcs_key(tes_nir->info.tess.primitive_mode, input_vertices); |
| if (tcs_module->nir) |
| _mesa_sha1_compute(tcs_module->nir->info.name, |
| strlen(tcs_module->nir->info.name), |
| tcs_module->sha1); |
| |
| radv_hash_shader(tcs_sha1, tcs_module, tcs_entrypoint, tcs_spec_info, layout, &tcs_key, 0); |
| |
| tcs_variant = radv_shader_variant_create(pipeline->device, tcs_nir, |
| layout, &tcs_key, &tcs_code, |
| &tcs_code_size, dump); |
| |
| if (!tes_module->nir) |
| ralloc_free(tes_nir); |
| |
| if (!tcs_module->nir) |
| ralloc_free(tcs_nir); |
| |
| if (tes_variant) |
| tes_variant = radv_pipeline_cache_insert_shader(cache, tes_sha1, tes_variant, |
| tes_code, tes_code_size); |
| |
| if (tcs_variant) |
| tcs_variant = radv_pipeline_cache_insert_shader(cache, tcs_sha1, tcs_variant, |
| tcs_code, tcs_code_size); |
| |
| if (tes_code) |
| free(tes_code); |
| if (tcs_code) |
| free(tcs_code); |
| pipeline->shaders[MESA_SHADER_TESS_CTRL] = tcs_variant; |
| pipeline->shaders[MESA_SHADER_TESS_EVAL] = tes_variant; |
| return; |
| } |
| |
| static VkResult |
| radv_pipeline_scratch_init(struct radv_device *device, |
| struct radv_pipeline *pipeline) |
| { |
| unsigned scratch_bytes_per_wave = 0; |
| unsigned max_waves = 0; |
| unsigned min_waves = 1; |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; ++i) { |
| if (pipeline->shaders[i]) { |
| unsigned max_stage_waves = device->scratch_waves; |
| |
| scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave, |
| pipeline->shaders[i]->config.scratch_bytes_per_wave); |
| |
| max_stage_waves = MIN2(max_stage_waves, |
| 4 * device->physical_device->rad_info.num_good_compute_units * |
| (256 / pipeline->shaders[i]->config.num_vgprs)); |
| max_waves = MAX2(max_waves, max_stage_waves); |
| } |
| } |
| |
| if (pipeline->shaders[MESA_SHADER_COMPUTE]) { |
| unsigned group_size = pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[0] * |
| pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[1] * |
| pipeline->shaders[MESA_SHADER_COMPUTE]->info.cs.block_size[2]; |
| min_waves = MAX2(min_waves, round_up_u32(group_size, 64)); |
| } |
| |
| if (scratch_bytes_per_wave) |
| max_waves = MIN2(max_waves, 0xffffffffu / scratch_bytes_per_wave); |
| |
| if (scratch_bytes_per_wave && max_waves < min_waves) { |
| /* Not really true at this moment, but will be true on first |
| * execution. Avoid having hanging shaders. */ |
| return VK_ERROR_OUT_OF_DEVICE_MEMORY; |
| } |
| pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave; |
| pipeline->max_waves = max_waves; |
| return VK_SUCCESS; |
| } |
| |
| static uint32_t si_translate_blend_function(VkBlendOp op) |
| { |
| switch (op) { |
| case VK_BLEND_OP_ADD: |
| return V_028780_COMB_DST_PLUS_SRC; |
| case VK_BLEND_OP_SUBTRACT: |
| return V_028780_COMB_SRC_MINUS_DST; |
| case VK_BLEND_OP_REVERSE_SUBTRACT: |
| return V_028780_COMB_DST_MINUS_SRC; |
| case VK_BLEND_OP_MIN: |
| return V_028780_COMB_MIN_DST_SRC; |
| case VK_BLEND_OP_MAX: |
| return V_028780_COMB_MAX_DST_SRC; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t si_translate_blend_factor(VkBlendFactor factor) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_ZERO: |
| return V_028780_BLEND_ZERO; |
| case VK_BLEND_FACTOR_ONE: |
| return V_028780_BLEND_ONE; |
| case VK_BLEND_FACTOR_SRC_COLOR: |
| return V_028780_BLEND_SRC_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: |
| return V_028780_BLEND_ONE_MINUS_SRC_COLOR; |
| case VK_BLEND_FACTOR_DST_COLOR: |
| return V_028780_BLEND_DST_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: |
| return V_028780_BLEND_ONE_MINUS_DST_COLOR; |
| case VK_BLEND_FACTOR_SRC_ALPHA: |
| return V_028780_BLEND_SRC_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_SRC_ALPHA; |
| case VK_BLEND_FACTOR_DST_ALPHA: |
| return V_028780_BLEND_DST_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_DST_ALPHA; |
| case VK_BLEND_FACTOR_CONSTANT_COLOR: |
| return V_028780_BLEND_CONSTANT_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: |
| return V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR; |
| case VK_BLEND_FACTOR_CONSTANT_ALPHA: |
| return V_028780_BLEND_CONSTANT_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: |
| return V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA; |
| case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: |
| return V_028780_BLEND_SRC_ALPHA_SATURATE; |
| case VK_BLEND_FACTOR_SRC1_COLOR: |
| return V_028780_BLEND_SRC1_COLOR; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: |
| return V_028780_BLEND_INV_SRC1_COLOR; |
| case VK_BLEND_FACTOR_SRC1_ALPHA: |
| return V_028780_BLEND_SRC1_ALPHA; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: |
| return V_028780_BLEND_INV_SRC1_ALPHA; |
| default: |
| return 0; |
| } |
| } |
| |
| static uint32_t si_translate_blend_opt_function(VkBlendOp op) |
| { |
| switch (op) { |
| case VK_BLEND_OP_ADD: |
| return V_028760_OPT_COMB_ADD; |
| case VK_BLEND_OP_SUBTRACT: |
| return V_028760_OPT_COMB_SUBTRACT; |
| case VK_BLEND_OP_REVERSE_SUBTRACT: |
| return V_028760_OPT_COMB_REVSUBTRACT; |
| case VK_BLEND_OP_MIN: |
| return V_028760_OPT_COMB_MIN; |
| case VK_BLEND_OP_MAX: |
| return V_028760_OPT_COMB_MAX; |
| default: |
| return V_028760_OPT_COMB_BLEND_DISABLED; |
| } |
| } |
| |
| static uint32_t si_translate_blend_opt_factor(VkBlendFactor factor, bool is_alpha) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_ZERO: |
| return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL; |
| case VK_BLEND_FACTOR_ONE: |
| return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE; |
| case VK_BLEND_FACTOR_SRC_COLOR: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0 |
| : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1 |
| : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1; |
| case VK_BLEND_FACTOR_SRC_ALPHA: |
| return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0; |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: |
| return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1; |
| case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: |
| return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE |
| : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| default: |
| return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| } |
| } |
| |
| /** |
| * Get rid of DST in the blend factors by commuting the operands: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| static void si_blend_remove_dst(unsigned *func, unsigned *src_factor, |
| unsigned *dst_factor, unsigned expected_dst, |
| unsigned replacement_src) |
| { |
| if (*src_factor == expected_dst && |
| *dst_factor == VK_BLEND_FACTOR_ZERO) { |
| *src_factor = VK_BLEND_FACTOR_ZERO; |
| *dst_factor = replacement_src; |
| |
| /* Commuting the operands requires reversing subtractions. */ |
| if (*func == VK_BLEND_OP_SUBTRACT) |
| *func = VK_BLEND_OP_REVERSE_SUBTRACT; |
| else if (*func == VK_BLEND_OP_REVERSE_SUBTRACT) |
| *func = VK_BLEND_OP_SUBTRACT; |
| } |
| } |
| |
| static bool si_blend_factor_uses_dst(unsigned factor) |
| { |
| return factor == VK_BLEND_FACTOR_DST_COLOR || |
| factor == VK_BLEND_FACTOR_DST_ALPHA || |
| factor == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| factor == VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA || |
| factor == VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR; |
| } |
| |
| static bool is_dual_src(VkBlendFactor factor) |
| { |
| switch (factor) { |
| case VK_BLEND_FACTOR_SRC1_COLOR: |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: |
| case VK_BLEND_FACTOR_SRC1_ALPHA: |
| case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static unsigned si_choose_spi_color_format(VkFormat vk_format, |
| bool blend_enable, |
| bool blend_need_alpha) |
| { |
| const struct vk_format_description *desc = vk_format_description(vk_format); |
| unsigned format, ntype, swap; |
| |
| /* Alpha is needed for alpha-to-coverage. |
| * Blending may be with or without alpha. |
| */ |
| unsigned normal = 0; /* most optimal, may not support blending or export alpha */ |
| unsigned alpha = 0; /* exports alpha, but may not support blending */ |
| unsigned blend = 0; /* supports blending, but may not export alpha */ |
| unsigned blend_alpha = 0; /* least optimal, supports blending and exports alpha */ |
| |
| format = radv_translate_colorformat(vk_format); |
| ntype = radv_translate_color_numformat(vk_format, desc, |
| vk_format_get_first_non_void_channel(vk_format)); |
| swap = radv_translate_colorswap(vk_format, false); |
| |
| /* Choose the SPI color formats. These are required values for Stoney/RB+. |
| * Other chips have multiple choices, though they are not necessarily better. |
| */ |
| switch (format) { |
| case V_028C70_COLOR_5_6_5: |
| case V_028C70_COLOR_1_5_5_5: |
| case V_028C70_COLOR_5_5_5_1: |
| case V_028C70_COLOR_4_4_4_4: |
| case V_028C70_COLOR_10_11_11: |
| case V_028C70_COLOR_11_11_10: |
| case V_028C70_COLOR_8: |
| case V_028C70_COLOR_8_8: |
| case V_028C70_COLOR_8_8_8_8: |
| case V_028C70_COLOR_10_10_10_2: |
| case V_028C70_COLOR_2_10_10_10: |
| if (ntype == V_028C70_NUMBER_UINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_SINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; |
| else |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; |
| break; |
| |
| case V_028C70_COLOR_16: |
| case V_028C70_COLOR_16_16: |
| case V_028C70_COLOR_16_16_16_16: |
| if (ntype == V_028C70_NUMBER_UNORM || |
| ntype == V_028C70_NUMBER_SNORM) { |
| /* UNORM16 and SNORM16 don't support blending */ |
| if (ntype == V_028C70_NUMBER_UNORM) |
| normal = alpha = V_028714_SPI_SHADER_UNORM16_ABGR; |
| else |
| normal = alpha = V_028714_SPI_SHADER_SNORM16_ABGR; |
| |
| /* Use 32 bits per channel for blending. */ |
| if (format == V_028C70_COLOR_16) { |
| if (swap == V_028C70_SWAP_STD) { /* R */ |
| blend = V_028714_SPI_SHADER_32_R; |
| blend_alpha = V_028714_SPI_SHADER_32_AR; |
| } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| } else if (format == V_028C70_COLOR_16_16) { |
| if (swap == V_028C70_SWAP_STD) { /* RG */ |
| blend = V_028714_SPI_SHADER_32_GR; |
| blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (swap == V_028C70_SWAP_ALT) /* RA */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| } else /* 16_16_16_16 */ |
| blend = blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (ntype == V_028C70_NUMBER_UINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_UINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_SINT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_SINT16_ABGR; |
| else if (ntype == V_028C70_NUMBER_FLOAT) |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_FP16_ABGR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32: |
| if (swap == V_028C70_SWAP_STD) { /* R */ |
| blend = normal = V_028714_SPI_SHADER_32_R; |
| alpha = blend_alpha = V_028714_SPI_SHADER_32_AR; |
| } else if (swap == V_028C70_SWAP_ALT_REV) /* A */ |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32_32: |
| if (swap == V_028C70_SWAP_STD) { /* RG */ |
| blend = normal = V_028714_SPI_SHADER_32_GR; |
| alpha = blend_alpha = V_028714_SPI_SHADER_32_ABGR; |
| } else if (swap == V_028C70_SWAP_ALT) /* RA */ |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_AR; |
| else |
| assert(0); |
| break; |
| |
| case V_028C70_COLOR_32_32_32_32: |
| case V_028C70_COLOR_8_24: |
| case V_028C70_COLOR_24_8: |
| case V_028C70_COLOR_X24_8_32_FLOAT: |
| alpha = blend = blend_alpha = normal = V_028714_SPI_SHADER_32_ABGR; |
| break; |
| |
| default: |
| unreachable("unhandled blend format"); |
| } |
| |
| if (blend_enable && blend_need_alpha) |
| return blend_alpha; |
| else if(blend_need_alpha) |
| return alpha; |
| else if(blend_enable) |
| return blend; |
| else |
| return normal; |
| } |
| |
| static unsigned si_get_cb_shader_mask(unsigned spi_shader_col_format) |
| { |
| unsigned i, cb_shader_mask = 0; |
| |
| for (i = 0; i < 8; i++) { |
| switch ((spi_shader_col_format >> (i * 4)) & 0xf) { |
| case V_028714_SPI_SHADER_ZERO: |
| break; |
| case V_028714_SPI_SHADER_32_R: |
| cb_shader_mask |= 0x1 << (i * 4); |
| break; |
| case V_028714_SPI_SHADER_32_GR: |
| cb_shader_mask |= 0x3 << (i * 4); |
| break; |
| case V_028714_SPI_SHADER_32_AR: |
| cb_shader_mask |= 0x9 << (i * 4); |
| break; |
| case V_028714_SPI_SHADER_FP16_ABGR: |
| case V_028714_SPI_SHADER_UNORM16_ABGR: |
| case V_028714_SPI_SHADER_SNORM16_ABGR: |
| case V_028714_SPI_SHADER_UINT16_ABGR: |
| case V_028714_SPI_SHADER_SINT16_ABGR: |
| case V_028714_SPI_SHADER_32_ABGR: |
| cb_shader_mask |= 0xf << (i * 4); |
| break; |
| default: |
| assert(0); |
| } |
| } |
| return cb_shader_mask; |
| } |
| |
| static void |
| radv_pipeline_compute_spi_color_formats(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| uint32_t blend_enable, |
| uint32_t blend_need_alpha, |
| bool single_cb_enable, |
| bool blend_mrt0_is_dual_src) |
| { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| struct radv_blend_state *blend = &pipeline->graphics.blend; |
| unsigned col_format = 0; |
| |
| for (unsigned i = 0; i < (single_cb_enable ? 1 : subpass->color_count); ++i) { |
| unsigned cf; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) { |
| cf = V_028714_SPI_SHADER_ZERO; |
| } else { |
| struct radv_render_pass_attachment *attachment = pass->attachments + subpass->color_attachments[i].attachment; |
| |
| cf = si_choose_spi_color_format(attachment->format, |
| blend_enable & (1 << i), |
| blend_need_alpha & (1 << i)); |
| } |
| |
| col_format |= cf << (4 * i); |
| } |
| |
| blend->cb_shader_mask = si_get_cb_shader_mask(col_format); |
| |
| if (blend_mrt0_is_dual_src) |
| col_format |= (col_format & 0xf) << 4; |
| blend->spi_shader_col_format = col_format; |
| } |
| |
| static bool |
| format_is_int8(VkFormat format) |
| { |
| const struct vk_format_description *desc = vk_format_description(format); |
| int channel = vk_format_get_first_non_void_channel(format); |
| |
| return channel >= 0 && desc->channel[channel].pure_integer && |
| desc->channel[channel].size == 8; |
| } |
| |
| static bool |
| format_is_int10(VkFormat format) |
| { |
| const struct vk_format_description *desc = vk_format_description(format); |
| |
| if (desc->nr_channels != 4) |
| return false; |
| for (unsigned i = 0; i < 4; i++) { |
| if (desc->channel[i].pure_integer && desc->channel[i].size == 10) |
| return true; |
| } |
| return false; |
| } |
| |
| unsigned radv_format_meta_fs_key(VkFormat format) |
| { |
| unsigned col_format = si_choose_spi_color_format(format, false, false) - 1; |
| bool is_int8 = format_is_int8(format); |
| bool is_int10 = format_is_int10(format); |
| |
| return col_format + (is_int8 ? 3 : is_int10 ? 5 : 0); |
| } |
| |
| static void |
| radv_pipeline_compute_get_int_clamp(const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| unsigned *is_int8, unsigned *is_int10) |
| { |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| *is_int8 = 0; |
| *is_int10 = 0; |
| |
| for (unsigned i = 0; i < subpass->color_count; ++i) { |
| struct radv_render_pass_attachment *attachment; |
| |
| if (subpass->color_attachments[i].attachment == VK_ATTACHMENT_UNUSED) |
| continue; |
| |
| attachment = pass->attachments + subpass->color_attachments[i].attachment; |
| |
| if (format_is_int8(attachment->format)) |
| *is_int8 |= 1 << i; |
| if (format_is_int10(attachment->format)) |
| *is_int10 |= 1 << i; |
| } |
| } |
| |
| static void |
| radv_pipeline_init_blend_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra) |
| { |
| const VkPipelineColorBlendStateCreateInfo *vkblend = pCreateInfo->pColorBlendState; |
| struct radv_blend_state *blend = &pipeline->graphics.blend; |
| unsigned mode = V_028808_CB_NORMAL; |
| uint32_t blend_enable = 0, blend_need_alpha = 0; |
| bool blend_mrt0_is_dual_src = false; |
| int i; |
| bool single_cb_enable = false; |
| |
| if (!vkblend) |
| return; |
| |
| if (extra && extra->custom_blend_mode) { |
| single_cb_enable = true; |
| mode = extra->custom_blend_mode; |
| } |
| blend->cb_color_control = 0; |
| if (vkblend->logicOpEnable) |
| blend->cb_color_control |= S_028808_ROP3(vkblend->logicOp | (vkblend->logicOp << 4)); |
| else |
| blend->cb_color_control |= S_028808_ROP3(0xcc); |
| |
| blend->db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | |
| S_028B70_ALPHA_TO_MASK_OFFSET1(2) | |
| S_028B70_ALPHA_TO_MASK_OFFSET2(2) | |
| S_028B70_ALPHA_TO_MASK_OFFSET3(2); |
| |
| blend->cb_target_mask = 0; |
| for (i = 0; i < vkblend->attachmentCount; i++) { |
| const VkPipelineColorBlendAttachmentState *att = &vkblend->pAttachments[i]; |
| unsigned blend_cntl = 0; |
| unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt; |
| VkBlendOp eqRGB = att->colorBlendOp; |
| VkBlendFactor srcRGB = att->srcColorBlendFactor; |
| VkBlendFactor dstRGB = att->dstColorBlendFactor; |
| VkBlendOp eqA = att->alphaBlendOp; |
| VkBlendFactor srcA = att->srcAlphaBlendFactor; |
| VkBlendFactor dstA = att->dstAlphaBlendFactor; |
| |
| blend->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); |
| |
| if (!att->colorWriteMask) |
| continue; |
| |
| blend->cb_target_mask |= (unsigned)att->colorWriteMask << (4 * i); |
| if (!att->blendEnable) { |
| blend->cb_blend_control[i] = blend_cntl; |
| continue; |
| } |
| |
| if (is_dual_src(srcRGB) || is_dual_src(dstRGB) || is_dual_src(srcA) || is_dual_src(dstA)) |
| if (i == 0) |
| blend_mrt0_is_dual_src = true; |
| |
| if (eqRGB == VK_BLEND_OP_MIN || eqRGB == VK_BLEND_OP_MAX) { |
| srcRGB = VK_BLEND_FACTOR_ONE; |
| dstRGB = VK_BLEND_FACTOR_ONE; |
| } |
| if (eqA == VK_BLEND_OP_MIN || eqA == VK_BLEND_OP_MAX) { |
| srcA = VK_BLEND_FACTOR_ONE; |
| dstA = VK_BLEND_FACTOR_ONE; |
| } |
| |
| /* Blending optimizations for RB+. |
| * These transformations don't change the behavior. |
| * |
| * First, get rid of DST in the blend factors: |
| * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) |
| */ |
| si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, |
| VK_BLEND_FACTOR_DST_COLOR, |
| VK_BLEND_FACTOR_SRC_COLOR); |
| |
| si_blend_remove_dst(&eqA, &srcA, &dstA, |
| VK_BLEND_FACTOR_DST_COLOR, |
| VK_BLEND_FACTOR_SRC_COLOR); |
| |
| si_blend_remove_dst(&eqA, &srcA, &dstA, |
| VK_BLEND_FACTOR_DST_ALPHA, |
| VK_BLEND_FACTOR_SRC_ALPHA); |
| |
| /* Look up the ideal settings from tables. */ |
| srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false); |
| dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false); |
| srcA_opt = si_translate_blend_opt_factor(srcA, true); |
| dstA_opt = si_translate_blend_opt_factor(dstA, true); |
| |
| /* Handle interdependencies. */ |
| if (si_blend_factor_uses_dst(srcRGB)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| if (si_blend_factor_uses_dst(srcA)) |
| dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE && |
| (dstRGB == VK_BLEND_FACTOR_ZERO || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE)) |
| dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; |
| |
| /* Set the final value. */ |
| blend->sx_mrt_blend_opt[i] = |
| S_028760_COLOR_SRC_OPT(srcRGB_opt) | |
| S_028760_COLOR_DST_OPT(dstRGB_opt) | |
| S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) | |
| S_028760_ALPHA_SRC_OPT(srcA_opt) | |
| S_028760_ALPHA_DST_OPT(dstA_opt) | |
| S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA)); |
| blend_cntl |= S_028780_ENABLE(1); |
| |
| blend_cntl |= S_028780_COLOR_COMB_FCN(si_translate_blend_function(eqRGB)); |
| blend_cntl |= S_028780_COLOR_SRCBLEND(si_translate_blend_factor(srcRGB)); |
| blend_cntl |= S_028780_COLOR_DESTBLEND(si_translate_blend_factor(dstRGB)); |
| if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { |
| blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); |
| blend_cntl |= S_028780_ALPHA_COMB_FCN(si_translate_blend_function(eqA)); |
| blend_cntl |= S_028780_ALPHA_SRCBLEND(si_translate_blend_factor(srcA)); |
| blend_cntl |= S_028780_ALPHA_DESTBLEND(si_translate_blend_factor(dstA)); |
| } |
| blend->cb_blend_control[i] = blend_cntl; |
| |
| blend_enable |= 1 << i; |
| |
| if (srcRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA || |
| srcRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| dstRGB == VK_BLEND_FACTOR_SRC_ALPHA_SATURATE || |
| srcRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA || |
| dstRGB == VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA) |
| blend_need_alpha |= 1 << i; |
| } |
| for (i = vkblend->attachmentCount; i < 8; i++) { |
| blend->cb_blend_control[i] = 0; |
| blend->sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); |
| } |
| |
| /* disable RB+ for now */ |
| if (pipeline->device->physical_device->has_rbplus) |
| blend->cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1); |
| |
| if (blend->cb_target_mask) |
| blend->cb_color_control |= S_028808_MODE(mode); |
| else |
| blend->cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE); |
| |
| radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, |
| blend_enable, blend_need_alpha, single_cb_enable, blend_mrt0_is_dual_src); |
| } |
| |
| static uint32_t si_translate_stencil_op(enum VkStencilOp op) |
| { |
| switch (op) { |
| case VK_STENCIL_OP_KEEP: |
| return V_02842C_STENCIL_KEEP; |
| case VK_STENCIL_OP_ZERO: |
| return V_02842C_STENCIL_ZERO; |
| case VK_STENCIL_OP_REPLACE: |
| return V_02842C_STENCIL_REPLACE_TEST; |
| case VK_STENCIL_OP_INCREMENT_AND_CLAMP: |
| return V_02842C_STENCIL_ADD_CLAMP; |
| case VK_STENCIL_OP_DECREMENT_AND_CLAMP: |
| return V_02842C_STENCIL_SUB_CLAMP; |
| case VK_STENCIL_OP_INVERT: |
| return V_02842C_STENCIL_INVERT; |
| case VK_STENCIL_OP_INCREMENT_AND_WRAP: |
| return V_02842C_STENCIL_ADD_WRAP; |
| case VK_STENCIL_OP_DECREMENT_AND_WRAP: |
| return V_02842C_STENCIL_SUB_WRAP; |
| default: |
| return 0; |
| } |
| } |
| static void |
| radv_pipeline_init_depth_stencil_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra) |
| { |
| const VkPipelineDepthStencilStateCreateInfo *vkds = pCreateInfo->pDepthStencilState; |
| struct radv_depth_stencil_state *ds = &pipeline->graphics.ds; |
| |
| memset(ds, 0, sizeof(*ds)); |
| if (!vkds) |
| return; |
| |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| if (subpass->depth_stencil_attachment.attachment == VK_ATTACHMENT_UNUSED) |
| return; |
| |
| struct radv_render_pass_attachment *attachment = pass->attachments + subpass->depth_stencil_attachment.attachment; |
| bool has_depth_attachment = vk_format_is_depth(attachment->format); |
| bool has_stencil_attachment = vk_format_is_stencil(attachment->format); |
| |
| if (has_depth_attachment) { |
| ds->db_depth_control = S_028800_Z_ENABLE(vkds->depthTestEnable ? 1 : 0) | |
| S_028800_Z_WRITE_ENABLE(vkds->depthWriteEnable ? 1 : 0) | |
| S_028800_ZFUNC(vkds->depthCompareOp) | |
| S_028800_DEPTH_BOUNDS_ENABLE(vkds->depthBoundsTestEnable ? 1 : 0); |
| } |
| |
| if (has_stencil_attachment && vkds->stencilTestEnable) { |
| ds->db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1); |
| ds->db_depth_control |= S_028800_STENCILFUNC(vkds->front.compareOp); |
| ds->db_stencil_control |= S_02842C_STENCILFAIL(si_translate_stencil_op(vkds->front.failOp)); |
| ds->db_stencil_control |= S_02842C_STENCILZPASS(si_translate_stencil_op(vkds->front.passOp)); |
| ds->db_stencil_control |= S_02842C_STENCILZFAIL(si_translate_stencil_op(vkds->front.depthFailOp)); |
| |
| ds->db_depth_control |= S_028800_STENCILFUNC_BF(vkds->back.compareOp); |
| ds->db_stencil_control |= S_02842C_STENCILFAIL_BF(si_translate_stencil_op(vkds->back.failOp)); |
| ds->db_stencil_control |= S_02842C_STENCILZPASS_BF(si_translate_stencil_op(vkds->back.passOp)); |
| ds->db_stencil_control |= S_02842C_STENCILZFAIL_BF(si_translate_stencil_op(vkds->back.depthFailOp)); |
| } |
| |
| if (extra) { |
| |
| ds->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear); |
| ds->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear); |
| |
| ds->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->db_resummarize); |
| ds->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->db_flush_depth_inplace); |
| ds->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->db_flush_stencil_inplace); |
| ds->db_render_override2 |= S_028010_DISABLE_ZMASK_EXPCLEAR_OPTIMIZATION(extra->db_depth_disable_expclear); |
| ds->db_render_override2 |= S_028010_DISABLE_SMEM_EXPCLEAR_OPTIMIZATION(extra->db_stencil_disable_expclear); |
| } |
| } |
| |
| static uint32_t si_translate_fill(VkPolygonMode func) |
| { |
| switch(func) { |
| case VK_POLYGON_MODE_FILL: |
| return V_028814_X_DRAW_TRIANGLES; |
| case VK_POLYGON_MODE_LINE: |
| return V_028814_X_DRAW_LINES; |
| case VK_POLYGON_MODE_POINT: |
| return V_028814_X_DRAW_POINTS; |
| default: |
| assert(0); |
| return V_028814_X_DRAW_POINTS; |
| } |
| } |
| static void |
| radv_pipeline_init_raster_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineRasterizationStateCreateInfo *vkraster = pCreateInfo->pRasterizationState; |
| struct radv_raster_state *raster = &pipeline->graphics.raster; |
| |
| memset(raster, 0, sizeof(*raster)); |
| |
| raster->spi_interp_control = |
| S_0286D4_FLAT_SHADE_ENA(1) | |
| S_0286D4_PNT_SPRITE_ENA(1) | |
| S_0286D4_PNT_SPRITE_OVRD_X(V_0286D4_SPI_PNT_SPRITE_SEL_S) | |
| S_0286D4_PNT_SPRITE_OVRD_Y(V_0286D4_SPI_PNT_SPRITE_SEL_T) | |
| S_0286D4_PNT_SPRITE_OVRD_Z(V_0286D4_SPI_PNT_SPRITE_SEL_0) | |
| S_0286D4_PNT_SPRITE_OVRD_W(V_0286D4_SPI_PNT_SPRITE_SEL_1) | |
| S_0286D4_PNT_SPRITE_TOP_1(0); // vulkan is top to bottom - 1.0 at bottom |
| |
| |
| raster->pa_cl_clip_cntl = S_028810_PS_UCP_MODE(3) | |
| S_028810_DX_CLIP_SPACE_DEF(1) | // vulkan uses DX conventions. |
| S_028810_ZCLIP_NEAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) | |
| S_028810_ZCLIP_FAR_DISABLE(vkraster->depthClampEnable ? 1 : 0) | |
| S_028810_DX_RASTERIZATION_KILL(vkraster->rasterizerDiscardEnable ? 1 : 0) | |
| S_028810_DX_LINEAR_ATTR_CLIP_ENA(1); |
| |
| raster->pa_su_vtx_cntl = |
| S_028BE4_PIX_CENTER(1) | // TODO verify |
| S_028BE4_ROUND_MODE(V_028BE4_X_ROUND_TO_EVEN) | |
| S_028BE4_QUANT_MODE(V_028BE4_X_16_8_FIXED_POINT_1_256TH); |
| |
| raster->pa_su_sc_mode_cntl = |
| S_028814_FACE(vkraster->frontFace) | |
| S_028814_CULL_FRONT(!!(vkraster->cullMode & VK_CULL_MODE_FRONT_BIT)) | |
| S_028814_CULL_BACK(!!(vkraster->cullMode & VK_CULL_MODE_BACK_BIT)) | |
| S_028814_POLY_MODE(vkraster->polygonMode != VK_POLYGON_MODE_FILL) | |
| S_028814_POLYMODE_FRONT_PTYPE(si_translate_fill(vkraster->polygonMode)) | |
| S_028814_POLYMODE_BACK_PTYPE(si_translate_fill(vkraster->polygonMode)) | |
| S_028814_POLY_OFFSET_FRONT_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | |
| S_028814_POLY_OFFSET_BACK_ENABLE(vkraster->depthBiasEnable ? 1 : 0) | |
| S_028814_POLY_OFFSET_PARA_ENABLE(vkraster->depthBiasEnable ? 1 : 0); |
| |
| } |
| |
| static void |
| radv_pipeline_init_multisample_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| const VkPipelineMultisampleStateCreateInfo *vkms = pCreateInfo->pMultisampleState; |
| struct radv_blend_state *blend = &pipeline->graphics.blend; |
| struct radv_multisample_state *ms = &pipeline->graphics.ms; |
| unsigned num_tile_pipes = pipeline->device->physical_device->rad_info.num_tile_pipes; |
| int ps_iter_samples = 1; |
| uint32_t mask = 0xffff; |
| |
| if (vkms) |
| ms->num_samples = vkms->rasterizationSamples; |
| else |
| ms->num_samples = 1; |
| |
| if (vkms && vkms->sampleShadingEnable) { |
| ps_iter_samples = ceil(vkms->minSampleShading * ms->num_samples); |
| } else if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.info.ps.force_persample) { |
| ps_iter_samples = ms->num_samples; |
| } |
| |
| ms->pa_sc_line_cntl = S_028BDC_DX10_DIAMOND_TEST_ENA(1); |
| ms->pa_sc_aa_config = 0; |
| ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | |
| S_028804_STATIC_ANCHOR_ASSOCIATIONS(1); |
| ms->pa_sc_mode_cntl_1 = |
| S_028A4C_WALK_FENCE_ENABLE(1) | //TODO linear dst fixes |
| S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) | |
| /* always 1: */ |
| S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | |
| S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | |
| S_028A4C_TILE_WALK_ORDER_ENABLE(1) | |
| S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | |
| EG_S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | |
| EG_S_028A4C_FORCE_EOV_REZ_ENABLE(1); |
| ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pipeline->device->physical_device->rad_info.chip_class >= GFX9); |
| |
| if (ms->num_samples > 1) { |
| unsigned log_samples = util_logbase2(ms->num_samples); |
| unsigned log_ps_iter_samples = util_logbase2(util_next_power_of_two(ps_iter_samples)); |
| ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1); |
| ms->pa_sc_line_cntl |= S_028BDC_EXPAND_LINE_WIDTH(1); /* CM_R_028BDC_PA_SC_LINE_CNTL */ |
| ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_samples) | |
| S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) | |
| S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | |
| S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); |
| ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) | |
| S_028BE0_MAX_SAMPLE_DIST(radv_cayman_get_maxdist(log_samples)) | |
| S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples); /* CM_R_028BE0_PA_SC_AA_CONFIG */ |
| ms->pa_sc_mode_cntl_1 |= EG_S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1); |
| } |
| |
| if (vkms) { |
| if (vkms->alphaToCoverageEnable) |
| blend->db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1); |
| |
| if (vkms->pSampleMask) |
| mask = vkms->pSampleMask[0] & 0xffff; |
| } |
| |
| ms->pa_sc_aa_mask[0] = mask | (mask << 16); |
| ms->pa_sc_aa_mask[1] = mask | (mask << 16); |
| } |
| |
| static bool |
| radv_prim_can_use_guardband(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return false; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return true; |
| default: |
| unreachable("unhandled primitive type"); |
| } |
| } |
| |
| static uint32_t |
| si_translate_prim(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| return V_008958_DI_PT_POINTLIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| return V_008958_DI_PT_LINELIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| return V_008958_DI_PT_LINESTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| return V_008958_DI_PT_TRILIST; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| return V_008958_DI_PT_TRISTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| return V_008958_DI_PT_TRIFAN; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| return V_008958_DI_PT_LINELIST_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return V_008958_DI_PT_LINESTRIP_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| return V_008958_DI_PT_TRILIST_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| return V_008958_DI_PT_TRISTRIP_ADJ; |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return V_008958_DI_PT_PATCH; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_conv_gl_prim_to_gs_out(unsigned gl_prim) |
| { |
| switch (gl_prim) { |
| case 0: /* GL_POINTS */ |
| return V_028A6C_OUTPRIM_TYPE_POINTLIST; |
| case 1: /* GL_LINES */ |
| case 3: /* GL_LINE_STRIP */ |
| case 0xA: /* GL_LINE_STRIP_ADJACENCY_ARB */ |
| case 0x8E7A: /* GL_ISOLINES */ |
| return V_028A6C_OUTPRIM_TYPE_LINESTRIP; |
| |
| case 4: /* GL_TRIANGLES */ |
| case 0xc: /* GL_TRIANGLES_ADJACENCY_ARB */ |
| case 5: /* GL_TRIANGLE_STRIP */ |
| case 7: /* GL_QUADS */ |
| return V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static uint32_t |
| si_conv_prim_to_gs_out(enum VkPrimitiveTopology topology) |
| { |
| switch (topology) { |
| case VK_PRIMITIVE_TOPOLOGY_POINT_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_PATCH_LIST: |
| return V_028A6C_OUTPRIM_TYPE_POINTLIST; |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY: |
| return V_028A6C_OUTPRIM_TYPE_LINESTRIP; |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY: |
| case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY: |
| return V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| default: |
| assert(0); |
| return 0; |
| } |
| } |
| |
| static unsigned si_map_swizzle(unsigned swizzle) |
| { |
| switch (swizzle) { |
| case VK_SWIZZLE_Y: |
| return V_008F0C_SQ_SEL_Y; |
| case VK_SWIZZLE_Z: |
| return V_008F0C_SQ_SEL_Z; |
| case VK_SWIZZLE_W: |
| return V_008F0C_SQ_SEL_W; |
| case VK_SWIZZLE_0: |
| return V_008F0C_SQ_SEL_0; |
| case VK_SWIZZLE_1: |
| return V_008F0C_SQ_SEL_1; |
| default: /* VK_SWIZZLE_X */ |
| return V_008F0C_SQ_SEL_X; |
| } |
| } |
| |
| static void |
| radv_pipeline_init_dynamic_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| radv_cmd_dirty_mask_t states = RADV_CMD_DIRTY_DYNAMIC_ALL; |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass]; |
| |
| pipeline->dynamic_state = default_dynamic_state; |
| |
| if (pCreateInfo->pDynamicState) { |
| /* Remove all of the states that are marked as dynamic */ |
| uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; |
| for (uint32_t s = 0; s < count; s++) |
| states &= ~(1 << pCreateInfo->pDynamicState->pDynamicStates[s]); |
| } |
| |
| struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; |
| |
| /* Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pViewportState is [...] NULL if the pipeline |
| * has rasterization disabled. |
| */ |
| if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable) { |
| assert(pCreateInfo->pViewportState); |
| |
| dynamic->viewport.count = pCreateInfo->pViewportState->viewportCount; |
| if (states & (1 << VK_DYNAMIC_STATE_VIEWPORT)) { |
| typed_memcpy(dynamic->viewport.viewports, |
| pCreateInfo->pViewportState->pViewports, |
| pCreateInfo->pViewportState->viewportCount); |
| } |
| |
| dynamic->scissor.count = pCreateInfo->pViewportState->scissorCount; |
| if (states & (1 << VK_DYNAMIC_STATE_SCISSOR)) { |
| typed_memcpy(dynamic->scissor.scissors, |
| pCreateInfo->pViewportState->pScissors, |
| pCreateInfo->pViewportState->scissorCount); |
| } |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_LINE_WIDTH)) { |
| assert(pCreateInfo->pRasterizationState); |
| dynamic->line_width = pCreateInfo->pRasterizationState->lineWidth; |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BIAS)) { |
| assert(pCreateInfo->pRasterizationState); |
| dynamic->depth_bias.bias = |
| pCreateInfo->pRasterizationState->depthBiasConstantFactor; |
| dynamic->depth_bias.clamp = |
| pCreateInfo->pRasterizationState->depthBiasClamp; |
| dynamic->depth_bias.slope = |
| pCreateInfo->pRasterizationState->depthBiasSlopeFactor; |
| } |
| |
| /* Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pColorBlendState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is |
| * created against does not use any color attachments. |
| */ |
| bool uses_color_att = false; |
| for (unsigned i = 0; i < subpass->color_count; ++i) { |
| if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) { |
| uses_color_att = true; |
| break; |
| } |
| } |
| |
| if (uses_color_att && states & (1 << VK_DYNAMIC_STATE_BLEND_CONSTANTS)) { |
| assert(pCreateInfo->pColorBlendState); |
| typed_memcpy(dynamic->blend_constants, |
| pCreateInfo->pColorBlendState->blendConstants, 4); |
| } |
| |
| /* If there is no depthstencil attachment, then don't read |
| * pDepthStencilState. The Vulkan spec states that pDepthStencilState may |
| * be NULL in this case. Even if pDepthStencilState is non-NULL, there is |
| * no need to override the depthstencil defaults in |
| * radv_pipeline::dynamic_state when there is no depthstencil attachment. |
| * |
| * Section 9.2 of the Vulkan 1.0.15 spec says: |
| * |
| * pDepthStencilState is [...] NULL if the pipeline has rasterization |
| * disabled or if the subpass of the render pass the pipeline is created |
| * against does not use a depth/stencil attachment. |
| */ |
| if (!pCreateInfo->pRasterizationState->rasterizerDiscardEnable && |
| subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) { |
| assert(pCreateInfo->pDepthStencilState); |
| |
| if (states & (1 << VK_DYNAMIC_STATE_DEPTH_BOUNDS)) { |
| dynamic->depth_bounds.min = |
| pCreateInfo->pDepthStencilState->minDepthBounds; |
| dynamic->depth_bounds.max = |
| pCreateInfo->pDepthStencilState->maxDepthBounds; |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK)) { |
| dynamic->stencil_compare_mask.front = |
| pCreateInfo->pDepthStencilState->front.compareMask; |
| dynamic->stencil_compare_mask.back = |
| pCreateInfo->pDepthStencilState->back.compareMask; |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_STENCIL_WRITE_MASK)) { |
| dynamic->stencil_write_mask.front = |
| pCreateInfo->pDepthStencilState->front.writeMask; |
| dynamic->stencil_write_mask.back = |
| pCreateInfo->pDepthStencilState->back.writeMask; |
| } |
| |
| if (states & (1 << VK_DYNAMIC_STATE_STENCIL_REFERENCE)) { |
| dynamic->stencil_reference.front = |
| pCreateInfo->pDepthStencilState->front.reference; |
| dynamic->stencil_reference.back = |
| pCreateInfo->pDepthStencilState->back.reference; |
| } |
| } |
| |
| pipeline->dynamic_state_mask = states; |
| } |
| |
| static struct ac_shader_variant_key |
| radv_compute_vs_key(const VkGraphicsPipelineCreateInfo *pCreateInfo, bool as_es, bool as_ls, bool export_prim_id) |
| { |
| struct ac_shader_variant_key key; |
| const VkPipelineVertexInputStateCreateInfo *input_state = |
| pCreateInfo->pVertexInputState; |
| |
| memset(&key, 0, sizeof(key)); |
| key.vs.instance_rate_inputs = 0; |
| key.vs.as_es = as_es; |
| key.vs.as_ls = as_ls; |
| key.vs.export_prim_id = export_prim_id; |
| |
| for (unsigned i = 0; i < input_state->vertexAttributeDescriptionCount; ++i) { |
| unsigned binding; |
| binding = input_state->pVertexAttributeDescriptions[i].binding; |
| if (input_state->pVertexBindingDescriptions[binding].inputRate) |
| key.vs.instance_rate_inputs |= 1u << input_state->pVertexAttributeDescriptions[i].location; |
| } |
| return key; |
| } |
| |
| static void |
| calculate_gs_ring_sizes(struct radv_pipeline *pipeline) |
| { |
| struct radv_device *device = pipeline->device; |
| unsigned num_se = device->physical_device->rad_info.max_se; |
| unsigned wave_size = 64; |
| unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ |
| unsigned gs_vertex_reuse = 16 * num_se; /* GS_VERTEX_REUSE register (per SE) */ |
| unsigned alignment = 256 * num_se; |
| /* The maximum size is 63.999 MB per SE. */ |
| unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; |
| struct ac_shader_variant_info *gs_info = &pipeline->shaders[MESA_SHADER_GEOMETRY]->info; |
| struct ac_es_output_info *es_info = radv_pipeline_has_tess(pipeline) ? |
| &pipeline->shaders[MESA_SHADER_TESS_EVAL]->info.tes.es_info : |
| &pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.es_info; |
| |
| /* Calculate the minimum size. */ |
| unsigned min_esgs_ring_size = align(es_info->esgs_itemsize * gs_vertex_reuse * |
| wave_size, alignment); |
| /* These are recommended sizes, not minimum sizes. */ |
| unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * |
| es_info->esgs_itemsize * gs_info->gs.vertices_in; |
| unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * |
| gs_info->gs.max_gsvs_emit_size * 1; // no streams in VK (gs->max_gs_stream + 1); |
| |
| min_esgs_ring_size = align(min_esgs_ring_size, alignment); |
| esgs_ring_size = align(esgs_ring_size, alignment); |
| gsvs_ring_size = align(gsvs_ring_size, alignment); |
| |
| pipeline->graphics.esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); |
| pipeline->graphics.gsvs_ring_size = MIN2(gsvs_ring_size, max_size); |
| } |
| |
| static void si_multiwave_lds_size_workaround(struct radv_device *device, |
| unsigned *lds_size) |
| { |
| /* SPI barrier management bug: |
| * Make sure we have at least 4k of LDS in use to avoid the bug. |
| * It applies to workgroup sizes of more than one wavefront. |
| */ |
| if (device->physical_device->rad_info.family == CHIP_BONAIRE || |
| device->physical_device->rad_info.family == CHIP_KABINI || |
| device->physical_device->rad_info.family == CHIP_MULLINS) |
| *lds_size = MAX2(*lds_size, 8); |
| } |
| |
| static void |
| calculate_tess_state(struct radv_pipeline *pipeline, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo) |
| { |
| unsigned num_tcs_input_cp = pCreateInfo->pTessellationState->patchControlPoints; |
| unsigned num_tcs_output_cp, num_tcs_inputs, num_tcs_outputs; |
| unsigned num_tcs_patch_outputs; |
| unsigned input_vertex_size, output_vertex_size, pervertex_output_patch_size; |
| unsigned input_patch_size, output_patch_size, output_patch0_offset; |
| unsigned lds_size, hardware_lds_size; |
| unsigned perpatch_output_offset; |
| unsigned num_patches; |
| struct radv_tessellation_state *tess = &pipeline->graphics.tess; |
| |
| /* This calculates how shader inputs and outputs among VS, TCS, and TES |
| * are laid out in LDS. */ |
| num_tcs_inputs = util_last_bit64(pipeline->shaders[MESA_SHADER_VERTEX]->info.vs.outputs_written); |
| |
| num_tcs_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.outputs_written); //tcs->outputs_written |
| num_tcs_output_cp = pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; //TCS VERTICES OUT |
| num_tcs_patch_outputs = util_last_bit64(pipeline->shaders[MESA_SHADER_TESS_CTRL]->info.tcs.patch_outputs_written); |
| |
| /* Ensure that we only need one wave per SIMD so we don't need to check |
| * resource usage. Also ensures that the number of tcs in and out |
| * vertices per threadgroup are at most 256. |
| */ |
| input_vertex_size = num_tcs_inputs * 16; |
| output_vertex_size = num_tcs_outputs * 16; |
| |
| input_patch_size = num_tcs_input_cp * input_vertex_size; |
| |
| pervertex_output_patch_size = num_tcs_output_cp * output_vertex_size; |
| output_patch_size = pervertex_output_patch_size + num_tcs_patch_outputs * 16; |
| /* Ensure that we only need one wave per SIMD so we don't need to check |
| * resource usage. Also ensures that the number of tcs in and out |
| * vertices per threadgroup are at most 256. |
| */ |
| num_patches = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp) * 4; |
| |
| /* Make sure that the data fits in LDS. This assumes the shaders only |
| * use LDS for the inputs and outputs. |
| */ |
| hardware_lds_size = pipeline->device->physical_device->rad_info.chip_class >= CIK ? 65536 : 32768; |
| num_patches = MIN2(num_patches, hardware_lds_size / (input_patch_size + output_patch_size)); |
| |
| /* Make sure the output data fits in the offchip buffer */ |
| num_patches = MIN2(num_patches, |
| (pipeline->device->tess_offchip_block_dw_size * 4) / |
| output_patch_size); |
| |
| /* Not necessary for correctness, but improves performance. The |
| * specific value is taken from the proprietary driver. |
| */ |
| num_patches = MIN2(num_patches, 40); |
| |
| /* SI bug workaround - limit LS-HS threadgroups to only one wave. */ |
| if (pipeline->device->physical_device->rad_info.chip_class == SI) { |
| unsigned one_wave = 64 / MAX2(num_tcs_input_cp, num_tcs_output_cp); |
| num_patches = MIN2(num_patches, one_wave); |
| } |
| |
| output_patch0_offset = input_patch_size * num_patches; |
| perpatch_output_offset = output_patch0_offset + pervertex_output_patch_size; |
| |
| lds_size = output_patch0_offset + output_patch_size * num_patches; |
| |
| if (pipeline->device->physical_device->rad_info.chip_class >= CIK) { |
| assert(lds_size <= 65536); |
| lds_size = align(lds_size, 512) / 512; |
| } else { |
| assert(lds_size <= 32768); |
| lds_size = align(lds_size, 256) / 256; |
| } |
| si_multiwave_lds_size_workaround(pipeline->device, &lds_size); |
| |
| tess->lds_size = lds_size; |
| |
| tess->tcs_in_layout = (input_patch_size / 4) | |
| ((input_vertex_size / 4) << 13); |
| tess->tcs_out_layout = (output_patch_size / 4) | |
| ((output_vertex_size / 4) << 13); |
| tess->tcs_out_offsets = (output_patch0_offset / 16) | |
| ((perpatch_output_offset / 16) << 16); |
| tess->offchip_layout = (pervertex_output_patch_size * num_patches << 16) | |
| (num_tcs_output_cp << 9) | num_patches; |
| |
| tess->ls_hs_config = S_028B58_NUM_PATCHES(num_patches) | |
| S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | |
| S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); |
| tess->num_patches = num_patches; |
| tess->num_tcs_input_cp = num_tcs_input_cp; |
| |
| struct radv_shader_variant *tes = pipeline->shaders[MESA_SHADER_TESS_EVAL]; |
| unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0; |
| |
| switch (tes->info.tes.primitive_mode) { |
| case GL_TRIANGLES: |
| type = V_028B6C_TESS_TRIANGLE; |
| break; |
| case GL_QUADS: |
| type = V_028B6C_TESS_QUAD; |
| break; |
| case GL_ISOLINES: |
| type = V_028B6C_TESS_ISOLINE; |
| break; |
| } |
| |
| switch (tes->info.tes.spacing) { |
| case TESS_SPACING_EQUAL: |
| partitioning = V_028B6C_PART_INTEGER; |
| break; |
| case TESS_SPACING_FRACTIONAL_ODD: |
| partitioning = V_028B6C_PART_FRAC_ODD; |
| break; |
| case TESS_SPACING_FRACTIONAL_EVEN: |
| partitioning = V_028B6C_PART_FRAC_EVEN; |
| break; |
| default: |
| break; |
| } |
| |
| if (tes->info.tes.point_mode) |
| topology = V_028B6C_OUTPUT_POINT; |
| else if (tes->info.tes.primitive_mode == GL_ISOLINES) |
| topology = V_028B6C_OUTPUT_LINE; |
| else if (tes->info.tes.ccw) |
| topology = V_028B6C_OUTPUT_TRIANGLE_CW; |
| else |
| topology = V_028B6C_OUTPUT_TRIANGLE_CCW; |
| |
| if (pipeline->device->has_distributed_tess) { |
| if (pipeline->device->physical_device->rad_info.family == CHIP_FIJI || |
| pipeline->device->physical_device->rad_info.family >= CHIP_POLARIS10) |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_TRAPEZOIDS; |
| else |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_DONUTS; |
| } else |
| distribution_mode = V_028B6C_DISTRIBUTION_MODE_NO_DIST; |
| |
| tess->tf_param = S_028B6C_TYPE(type) | |
| S_028B6C_PARTITIONING(partitioning) | |
| S_028B6C_TOPOLOGY(topology) | |
| S_028B6C_DISTRIBUTION_MODE(distribution_mode); |
| } |
| |
| static const struct radv_prim_vertex_count prim_size_table[] = { |
| [V_008958_DI_PT_NONE] = {0, 0}, |
| [V_008958_DI_PT_POINTLIST] = {1, 1}, |
| [V_008958_DI_PT_LINELIST] = {2, 2}, |
| [V_008958_DI_PT_LINESTRIP] = {2, 1}, |
| [V_008958_DI_PT_TRILIST] = {3, 3}, |
| [V_008958_DI_PT_TRIFAN] = {3, 1}, |
| [V_008958_DI_PT_TRISTRIP] = {3, 1}, |
| [V_008958_DI_PT_LINELIST_ADJ] = {4, 4}, |
| [V_008958_DI_PT_LINESTRIP_ADJ] = {4, 1}, |
| [V_008958_DI_PT_TRILIST_ADJ] = {6, 6}, |
| [V_008958_DI_PT_TRISTRIP_ADJ] = {6, 2}, |
| [V_008958_DI_PT_RECTLIST] = {3, 3}, |
| [V_008958_DI_PT_LINELOOP] = {2, 1}, |
| [V_008958_DI_PT_POLYGON] = {3, 1}, |
| [V_008958_DI_PT_2D_TRI_STRIP] = {0, 0}, |
| }; |
| |
| static uint32_t si_vgt_gs_mode(struct radv_shader_variant *gs) |
| { |
| unsigned gs_max_vert_out = gs->info.gs.vertices_out; |
| unsigned cut_mode; |
| |
| if (gs_max_vert_out <= 128) { |
| cut_mode = V_028A40_GS_CUT_128; |
| } else if (gs_max_vert_out <= 256) { |
| cut_mode = V_028A40_GS_CUT_256; |
| } else if (gs_max_vert_out <= 512) { |
| cut_mode = V_028A40_GS_CUT_512; |
| } else { |
| assert(gs_max_vert_out <= 1024); |
| cut_mode = V_028A40_GS_CUT_1024; |
| } |
| |
| return S_028A40_MODE(V_028A40_GS_SCENARIO_G) | |
| S_028A40_CUT_MODE(cut_mode)| |
| S_028A40_ES_WRITE_OPTIMIZE(1) | |
| S_028A40_GS_WRITE_OPTIMIZE(1); |
| } |
| |
| static void calculate_vgt_gs_mode(struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *vs; |
| vs = radv_pipeline_has_gs(pipeline) ? pipeline->gs_copy_shader : (radv_pipeline_has_tess(pipeline) ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]); |
| |
| struct ac_vs_output_info *outinfo = &vs->info.vs.outinfo; |
| |
| pipeline->graphics.vgt_primitiveid_en = false; |
| pipeline->graphics.vgt_gs_mode = 0; |
| |
| if (radv_pipeline_has_gs(pipeline)) { |
| pipeline->graphics.vgt_gs_mode = si_vgt_gs_mode(pipeline->shaders[MESA_SHADER_GEOMETRY]); |
| } else if (outinfo->export_prim_id) { |
| pipeline->graphics.vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A); |
| pipeline->graphics.vgt_primitiveid_en = true; |
| } |
| } |
| |
| static void calculate_pa_cl_vs_out_cntl(struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *vs; |
| vs = radv_pipeline_has_gs(pipeline) ? pipeline->gs_copy_shader : (radv_pipeline_has_tess(pipeline) ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]); |
| |
| struct ac_vs_output_info *outinfo = &vs->info.vs.outinfo; |
| |
| unsigned clip_dist_mask, cull_dist_mask, total_mask; |
| clip_dist_mask = outinfo->clip_dist_mask; |
| cull_dist_mask = outinfo->cull_dist_mask; |
| total_mask = clip_dist_mask | cull_dist_mask; |
| |
| bool misc_vec_ena = outinfo->writes_pointsize || |
| outinfo->writes_layer || |
| outinfo->writes_viewport_index; |
| pipeline->graphics.pa_cl_vs_out_cntl = |
| S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | |
| S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | |
| S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | |
| S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | |
| S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | |
| S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | |
| cull_dist_mask << 8 | |
| clip_dist_mask; |
| |
| } |
| |
| static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade) |
| { |
| uint32_t ps_input_cntl; |
| if (offset <= AC_EXP_PARAM_OFFSET_31) { |
| ps_input_cntl = S_028644_OFFSET(offset); |
| if (flat_shade) |
| ps_input_cntl |= S_028644_FLAT_SHADE(1); |
| } else { |
| /* The input is a DEFAULT_VAL constant. */ |
| assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && |
| offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); |
| offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; |
| ps_input_cntl = S_028644_OFFSET(0x20) | |
| S_028644_DEFAULT_VAL(offset); |
| } |
| return ps_input_cntl; |
| } |
| |
| static void calculate_ps_inputs(struct radv_pipeline *pipeline) |
| { |
| struct radv_shader_variant *ps, *vs; |
| struct ac_vs_output_info *outinfo; |
| |
| ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; |
| vs = radv_pipeline_has_gs(pipeline) ? pipeline->gs_copy_shader : (radv_pipeline_has_tess(pipeline) ? pipeline->shaders[MESA_SHADER_TESS_EVAL] : pipeline->shaders[MESA_SHADER_VERTEX]); |
| |
| outinfo = &vs->info.vs.outinfo; |
| |
| unsigned ps_offset = 0; |
| |
| if (ps->info.fs.prim_id_input) { |
| unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_PRIMITIVE_ID]; |
| if (vs_offset != AC_EXP_PARAM_UNDEFINED) { |
| pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true); |
| ++ps_offset; |
| } |
| } |
| |
| if (ps->info.fs.layer_input) { |
| unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_LAYER]; |
| if (vs_offset != AC_EXP_PARAM_UNDEFINED) |
| pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, true); |
| else |
| pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(AC_EXP_PARAM_DEFAULT_VAL_0000, true); |
| ++ps_offset; |
| } |
| |
| if (ps->info.fs.has_pcoord) { |
| unsigned val; |
| val = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); |
| pipeline->graphics.ps_input_cntl[ps_offset] = val; |
| ps_offset++; |
| } |
| |
| for (unsigned i = 0; i < 32 && (1u << i) <= ps->info.fs.input_mask; ++i) { |
| unsigned vs_offset; |
| bool flat_shade; |
| if (!(ps->info.fs.input_mask & (1u << i))) |
| continue; |
| |
| vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; |
| if (vs_offset == AC_EXP_PARAM_UNDEFINED) { |
| pipeline->graphics.ps_input_cntl[ps_offset] = S_028644_OFFSET(0x20); |
| ++ps_offset; |
| continue; |
| } |
| |
| flat_shade = !!(ps->info.fs.flat_shaded_mask & (1u << ps_offset)); |
| |
| pipeline->graphics.ps_input_cntl[ps_offset] = offset_to_ps_input(vs_offset, flat_shade); |
| ++ps_offset; |
| } |
| |
| pipeline->graphics.ps_input_cntl_num = ps_offset; |
| } |
| |
| VkResult |
| radv_pipeline_init(struct radv_pipeline *pipeline, |
| struct radv_device *device, |
| struct radv_pipeline_cache *cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra, |
| const VkAllocationCallbacks *alloc) |
| { |
| struct radv_shader_module fs_m = {0}; |
| VkResult result; |
| bool has_view_index = false; |
| |
| RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); |
| struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; |
| if (subpass->view_mask) |
| has_view_index = true; |
| if (alloc == NULL) |
| alloc = &device->alloc; |
| |
| pipeline->device = device; |
| pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); |
| |
| radv_pipeline_init_dynamic_state(pipeline, pCreateInfo); |
| const VkPipelineShaderStageCreateInfo *pStages[MESA_SHADER_STAGES] = { 0, }; |
| struct radv_shader_module *modules[MESA_SHADER_STAGES] = { 0, }; |
| for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { |
| gl_shader_stage stage = ffs(pCreateInfo->pStages[i].stage) - 1; |
| pStages[stage] = &pCreateInfo->pStages[i]; |
| modules[stage] = radv_shader_module_from_handle(pStages[stage]->module); |
| } |
| |
| radv_pipeline_init_blend_state(pipeline, pCreateInfo, extra); |
| |
| if (!modules[MESA_SHADER_FRAGMENT]) { |
| nir_builder fs_b; |
| nir_builder_init_simple_shader(&fs_b, NULL, MESA_SHADER_FRAGMENT, NULL); |
| fs_b.shader->info.name = ralloc_strdup(fs_b.shader, "noop_fs"); |
| fs_m.nir = fs_b.shader; |
| modules[MESA_SHADER_FRAGMENT] = &fs_m; |
| } |
| |
| if (modules[MESA_SHADER_FRAGMENT]) { |
| struct ac_shader_variant_key key = {0}; |
| key.fs.col_format = pipeline->graphics.blend.spi_shader_col_format; |
| if (pCreateInfo->pMultisampleState && |
| pCreateInfo->pMultisampleState->rasterizationSamples > 1) |
| key.fs.multisample = true; |
| |
| if (pipeline->device->physical_device->rad_info.chip_class < VI) |
| radv_pipeline_compute_get_int_clamp(pCreateInfo, &key.fs.is_int8, &key.fs.is_int10); |
| |
| const VkPipelineShaderStageCreateInfo *stage = pStages[MESA_SHADER_FRAGMENT]; |
| |
| pipeline->shaders[MESA_SHADER_FRAGMENT] = |
| radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_FRAGMENT], |
| stage ? stage->pName : "main", |
| MESA_SHADER_FRAGMENT, |
| stage ? stage->pSpecializationInfo : NULL, |
| pipeline->layout, &key); |
| pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_FRAGMENT); |
| } |
| |
| if (fs_m.nir) |
| ralloc_free(fs_m.nir); |
| |
| if (modules[MESA_SHADER_VERTEX]) { |
| bool as_es = false; |
| bool as_ls = false; |
| bool export_prim_id = false; |
| if (modules[MESA_SHADER_TESS_CTRL]) |
| as_ls = true; |
| else if (modules[MESA_SHADER_GEOMETRY]) |
| as_es = true; |
| else if (pipeline->shaders[MESA_SHADER_FRAGMENT]->info.fs.prim_id_input) |
| export_prim_id = true; |
| struct ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo, as_es, as_ls, export_prim_id); |
| key.has_multiview_view_index = has_view_index; |
| |
| pipeline->shaders[MESA_SHADER_VERTEX] = |
| radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_VERTEX], |
| pStages[MESA_SHADER_VERTEX]->pName, |
| MESA_SHADER_VERTEX, |
| pStages[MESA_SHADER_VERTEX]->pSpecializationInfo, |
| pipeline->layout, &key); |
| |
| pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_VERTEX); |
| } |
| |
| if (modules[MESA_SHADER_GEOMETRY]) { |
| struct ac_shader_variant_key key = radv_compute_vs_key(pCreateInfo, false, false, false); |
| key.has_multiview_view_index = has_view_index; |
| |
| pipeline->shaders[MESA_SHADER_GEOMETRY] = |
| radv_pipeline_compile(pipeline, cache, modules[MESA_SHADER_GEOMETRY], |
| pStages[MESA_SHADER_GEOMETRY]->pName, |
| MESA_SHADER_GEOMETRY, |
| pStages[MESA_SHADER_GEOMETRY]->pSpecializationInfo, |
| pipeline->layout, &key); |
| |
| pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_GEOMETRY); |
| } |
| |
| if (modules[MESA_SHADER_TESS_EVAL]) { |
| assert(modules[MESA_SHADER_TESS_CTRL]); |
| |
| radv_tess_pipeline_compile(pipeline, |
| cache, |
| modules[MESA_SHADER_TESS_CTRL], |
| modules[MESA_SHADER_TESS_EVAL], |
| pStages[MESA_SHADER_TESS_CTRL]->pName, |
| pStages[MESA_SHADER_TESS_EVAL]->pName, |
| pStages[MESA_SHADER_TESS_CTRL]->pSpecializationInfo, |
| pStages[MESA_SHADER_TESS_EVAL]->pSpecializationInfo, |
| pipeline->layout, |
| pCreateInfo->pTessellationState->patchControlPoints, |
| has_view_index); |
| pipeline->active_stages |= mesa_to_vk_shader_stage(MESA_SHADER_TESS_EVAL) | |
| mesa_to_vk_shader_stage(MESA_SHADER_TESS_CTRL); |
| } |
| |
| radv_pipeline_init_depth_stencil_state(pipeline, pCreateInfo, extra); |
| radv_pipeline_init_raster_state(pipeline, pCreateInfo); |
| radv_pipeline_init_multisample_state(pipeline, pCreateInfo); |
| pipeline->graphics.prim = si_translate_prim(pCreateInfo->pInputAssemblyState->topology); |
| pipeline->graphics.can_use_guardband = radv_prim_can_use_guardband(pCreateInfo->pInputAssemblyState->topology); |
| |
| if (radv_pipeline_has_gs(pipeline)) { |
| pipeline->graphics.gs_out = si_conv_gl_prim_to_gs_out(pipeline->shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); |
| pipeline->graphics.can_use_guardband = pipeline->graphics.gs_out == V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| } else { |
| pipeline->graphics.gs_out = si_conv_prim_to_gs_out(pCreateInfo->pInputAssemblyState->topology); |
| } |
| if (extra && extra->use_rectlist) { |
| pipeline->graphics.prim = V_008958_DI_PT_RECTLIST; |
| pipeline->graphics.gs_out = V_028A6C_OUTPRIM_TYPE_TRISTRIP; |
| pipeline->graphics.can_use_guardband = true; |
| } |
| pipeline->graphics.prim_restart_enable = !!pCreateInfo->pInputAssemblyState->primitiveRestartEnable; |
| /* prim vertex count will need TESS changes */ |
| pipeline->graphics.prim_vertex_count = prim_size_table[pipeline->graphics.prim]; |
| |
| /* Ensure that some export memory is always allocated, for two reasons: |
| * |
| * 1) Correctness: The hardware ignores the EXEC mask if no export |
| * memory is allocated, so KILL and alpha test do not work correctly |
| * without this. |
| * 2) Performance: Every shader needs at least a NULL export, even when |
| * it writes no color/depth output. The NULL export instruction |
| * stalls without this setting. |
| * |
| * Don't add this to CB_SHADER_MASK. |
| */ |
| struct radv_shader_variant *ps = pipeline->shaders[MESA_SHADER_FRAGMENT]; |
| if (!pipeline->graphics.blend.spi_shader_col_format) { |
| if (!ps->info.fs.writes_z && |
| !ps->info.fs.writes_stencil && |
| !ps->info.fs.writes_sample_mask) |
| pipeline->graphics.blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R; |
| } |
| |
| unsigned z_order; |
| pipeline->graphics.db_shader_control = 0; |
| if (ps->info.fs.early_fragment_test || !ps->info.fs.writes_memory) |
| z_order = V_02880C_EARLY_Z_THEN_LATE_Z; |
| else |
| z_order = V_02880C_LATE_Z; |
| |
| pipeline->graphics.db_shader_control = |
| S_02880C_Z_EXPORT_ENABLE(ps->info.fs.writes_z) | |
| S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.fs.writes_stencil) | |
| S_02880C_KILL_ENABLE(!!ps->info.fs.can_discard) | |
| S_02880C_MASK_EXPORT_ENABLE(ps->info.fs.writes_sample_mask) | |
| S_02880C_Z_ORDER(z_order) | |
| S_02880C_DEPTH_BEFORE_SHADER(ps->info.fs.early_fragment_test) | |
| S_02880C_EXEC_ON_HIER_FAIL(ps->info.fs.writes_memory) | |
| S_02880C_EXEC_ON_NOOP(ps->info.fs.writes_memory); |
| |
| if (pipeline->device->physical_device->has_rbplus) |
| pipeline->graphics.db_shader_control |= S_02880C_DUAL_QUAD_DISABLE(1); |
| |
| pipeline->graphics.shader_z_format = |
| ps->info.fs.writes_sample_mask ? V_028710_SPI_SHADER_32_ABGR : |
| ps->info.fs.writes_stencil ? V_028710_SPI_SHADER_32_GR : |
| ps->info.fs.writes_z ? V_028710_SPI_SHADER_32_R : |
| V_028710_SPI_SHADER_ZERO; |
| |
| calculate_vgt_gs_mode(pipeline); |
| calculate_pa_cl_vs_out_cntl(pipeline); |
| calculate_ps_inputs(pipeline); |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (pipeline->shaders[i]) { |
| pipeline->need_indirect_descriptor_sets |= pipeline->shaders[i]->info.need_indirect_descriptor_sets; |
| } |
| } |
| |
| uint32_t stages = 0; |
| if (radv_pipeline_has_tess(pipeline)) { |
| stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | |
| S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); |
| |
| if (radv_pipeline_has_gs(pipeline)) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | |
| S_028B54_GS_EN(1) | |
| S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); |
| else |
| stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); |
| |
| } else if (radv_pipeline_has_gs(pipeline)) |
| stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | |
| S_028B54_GS_EN(1) | |
| S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); |
| |
| if (device->physical_device->rad_info.chip_class >= GFX9) |
| stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); |
| |
| pipeline->graphics.vgt_shader_stages_en = stages; |
| |
| if (radv_pipeline_has_gs(pipeline)) |
| calculate_gs_ring_sizes(pipeline); |
| |
| if (radv_pipeline_has_tess(pipeline)) { |
| if (pipeline->graphics.prim == V_008958_DI_PT_PATCH) { |
| pipeline->graphics.prim_vertex_count.min = pCreateInfo->pTessellationState->patchControlPoints; |
| pipeline->graphics.prim_vertex_count.incr = 1; |
| } |
| calculate_tess_state(pipeline, pCreateInfo); |
| } |
| |
| const VkPipelineVertexInputStateCreateInfo *vi_info = |
| pCreateInfo->pVertexInputState; |
| struct radv_vertex_elements_info *velems = &pipeline->vertex_elements; |
| |
| for (uint32_t i = 0; i < vi_info->vertexAttributeDescriptionCount; i++) { |
| const VkVertexInputAttributeDescription *desc = |
| &vi_info->pVertexAttributeDescriptions[i]; |
| unsigned loc = desc->location; |
| const struct vk_format_description *format_desc; |
| int first_non_void; |
| uint32_t num_format, data_format; |
| format_desc = vk_format_description(desc->format); |
| first_non_void = vk_format_get_first_non_void_channel(desc->format); |
| |
| num_format = radv_translate_buffer_numformat(format_desc, first_non_void); |
| data_format = radv_translate_buffer_dataformat(format_desc, first_non_void); |
| |
| velems->rsrc_word3[loc] = S_008F0C_DST_SEL_X(si_map_swizzle(format_desc->swizzle[0])) | |
| S_008F0C_DST_SEL_Y(si_map_swizzle(format_desc->swizzle[1])) | |
| S_008F0C_DST_SEL_Z(si_map_swizzle(format_desc->swizzle[2])) | |
| S_008F0C_DST_SEL_W(si_map_swizzle(format_desc->swizzle[3])) | |
| S_008F0C_NUM_FORMAT(num_format) | |
| S_008F0C_DATA_FORMAT(data_format); |
| velems->format_size[loc] = format_desc->block.bits / 8; |
| velems->offset[loc] = desc->offset; |
| velems->binding[loc] = desc->binding; |
| velems->count = MAX2(velems->count, loc + 1); |
| } |
| |
| for (uint32_t i = 0; i < vi_info->vertexBindingDescriptionCount; i++) { |
| const VkVertexInputBindingDescription *desc = |
| &vi_info->pVertexBindingDescriptions[i]; |
| |
| pipeline->binding_stride[desc->binding] = desc->stride; |
| } |
| |
| struct ac_userdata_info *loc = radv_lookup_user_sgpr(pipeline, MESA_SHADER_VERTEX, |
| AC_UD_VS_BASE_VERTEX_START_INSTANCE); |
| if (loc->sgpr_idx != -1) { |
| pipeline->graphics.vtx_base_sgpr = radv_shader_stage_to_user_data_0(MESA_SHADER_VERTEX, radv_pipeline_has_gs(pipeline), radv_pipeline_has_tess(pipeline)); |
| pipeline->graphics.vtx_base_sgpr += loc->sgpr_idx * 4; |
| if (pipeline->shaders[MESA_SHADER_VERTEX]->info.info.vs.needs_draw_id) |
| pipeline->graphics.vtx_emit_num = 3; |
| else |
| pipeline->graphics.vtx_emit_num = 2; |
| } |
| if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) { |
| radv_dump_pipeline_stats(device, pipeline); |
| } |
| |
| result = radv_pipeline_scratch_init(device, pipeline); |
| return result; |
| } |
| |
| VkResult |
| radv_graphics_pipeline_create( |
| VkDevice _device, |
| VkPipelineCache _cache, |
| const VkGraphicsPipelineCreateInfo *pCreateInfo, |
| const struct radv_graphics_pipeline_create_info *extra, |
| const VkAllocationCallbacks *pAllocator, |
| VkPipeline *pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| struct radv_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| memset(pipeline, 0, sizeof(*pipeline)); |
| result = radv_pipeline_init(pipeline, device, cache, |
| pCreateInfo, extra, pAllocator); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(pipeline); |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult radv_CreateGraphicsPipelines( |
| VkDevice _device, |
| VkPipelineCache pipelineCache, |
| uint32_t count, |
| const VkGraphicsPipelineCreateInfo* pCreateInfos, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| unsigned i = 0; |
| |
| for (; i < count; i++) { |
| VkResult r; |
| r = radv_graphics_pipeline_create(_device, |
| pipelineCache, |
| &pCreateInfos[i], |
| NULL, pAllocator, &pPipelines[i]); |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| } |
| } |
| |
| return result; |
| } |
| |
| static VkResult radv_compute_pipeline_create( |
| VkDevice _device, |
| VkPipelineCache _cache, |
| const VkComputePipelineCreateInfo* pCreateInfo, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipeline) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); |
| RADV_FROM_HANDLE(radv_shader_module, module, pCreateInfo->stage.module); |
| struct radv_pipeline *pipeline; |
| VkResult result; |
| |
| pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (pipeline == NULL) |
| return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| memset(pipeline, 0, sizeof(*pipeline)); |
| pipeline->device = device; |
| pipeline->layout = radv_pipeline_layout_from_handle(pCreateInfo->layout); |
| |
| pipeline->shaders[MESA_SHADER_COMPUTE] = |
| radv_pipeline_compile(pipeline, cache, module, |
| pCreateInfo->stage.pName, |
| MESA_SHADER_COMPUTE, |
| pCreateInfo->stage.pSpecializationInfo, |
| pipeline->layout, NULL); |
| |
| |
| pipeline->need_indirect_descriptor_sets |= pipeline->shaders[MESA_SHADER_COMPUTE]->info.need_indirect_descriptor_sets; |
| result = radv_pipeline_scratch_init(device, pipeline); |
| if (result != VK_SUCCESS) { |
| radv_pipeline_destroy(device, pipeline, pAllocator); |
| return result; |
| } |
| |
| *pPipeline = radv_pipeline_to_handle(pipeline); |
| |
| if (device->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) { |
| radv_dump_pipeline_stats(device, pipeline); |
| } |
| return VK_SUCCESS; |
| } |
| VkResult radv_CreateComputePipelines( |
| VkDevice _device, |
| VkPipelineCache pipelineCache, |
| uint32_t count, |
| const VkComputePipelineCreateInfo* pCreateInfos, |
| const VkAllocationCallbacks* pAllocator, |
| VkPipeline* pPipelines) |
| { |
| VkResult result = VK_SUCCESS; |
| |
| unsigned i = 0; |
| for (; i < count; i++) { |
| VkResult r; |
| r = radv_compute_pipeline_create(_device, pipelineCache, |
| &pCreateInfos[i], |
| pAllocator, &pPipelines[i]); |
| if (r != VK_SUCCESS) { |
| result = r; |
| pPipelines[i] = VK_NULL_HANDLE; |
| } |
| } |
| |
| return result; |
| } |