blob: c0bbea0960f4933589924c75b7142f42124bedb1 [file] [log] [blame]
/*-----------------------------
* stex3d.c GL example of the mesa 3d-texture extention to simulate procedural
* texturing, it uses a perlin noise and turbulence functions.
*
* Author: Daniel Barrero
* barrero@irit.fr
* dbarrero@pegasus.uniandes.edu.co
*
* Converted to GLUT by brianp on 1/1/98
* Massive clean-up on 2002/10/23 by brianp
*
*
* cc stex3d.c -o stex3d -lglut -lMesaGLU -lMesaGL -lX11 -lXext -lm
*
*---------------------------- */
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <GL/glew.h>
#include <GL/glut.h>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
#define NOISE_TEXTURE 1
#define GRADIENT_TEXTURE 2
#define TORUS 1
#define SPHERE 2
static int tex_width=64, tex_height=64, tex_depth=64;
static float angx=0, angy=0, angz=0;
static int texgen = 2, animate = 1, smooth = 1, wireframe = 0;
static int CurTexture = NOISE_TEXTURE, CurObject = TORUS;
static void
BuildTorus(void)
{
GLint i, j;
float theta1, phi1, theta2, phi2, rings, sides;
float v0[03], v1[3], v2[3], v3[3];
float t0[03], t1[3], t2[3], t3[3];
float n0[3], n1[3], n2[3], n3[3];
float innerRadius = 0.25;
float outerRadius = 0.5;
float scalFac;
rings = 16;
sides = 12;
scalFac = 1 / (outerRadius * 2);
glNewList(TORUS, GL_COMPILE);
for (i = 0; i < rings; i++) {
theta1 = (float) i *2.0 * M_PI / rings;
theta2 = (float) (i + 1) * 2.0 * M_PI / rings;
for (j = 0; j < sides; j++) {
phi1 = (float) j *2.0 * M_PI / sides;
phi2 = (float) (j + 1) * 2.0 * M_PI / sides;
v0[0] = cos(theta1) * (outerRadius + innerRadius * cos(phi1));
v0[1] = -sin(theta1) * (outerRadius + innerRadius * cos(phi1));
v0[2] = innerRadius * sin(phi1);
v1[0] = cos(theta2) * (outerRadius + innerRadius * cos(phi1));
v1[1] = -sin(theta2) * (outerRadius + innerRadius * cos(phi1));
v1[2] = innerRadius * sin(phi1);
v2[0] = cos(theta2) * (outerRadius + innerRadius * cos(phi2));
v2[1] = -sin(theta2) * (outerRadius + innerRadius * cos(phi2));
v2[2] = innerRadius * sin(phi2);
v3[0] = cos(theta1) * (outerRadius + innerRadius * cos(phi2));
v3[1] = -sin(theta1) * (outerRadius + innerRadius * cos(phi2));
v3[2] = innerRadius * sin(phi2);
n0[0] = cos(theta1) * (cos(phi1));
n0[1] = -sin(theta1) * (cos(phi1));
n0[2] = sin(phi1);
n1[0] = cos(theta2) * (cos(phi1));
n1[1] = -sin(theta2) * (cos(phi1));
n1[2] = sin(phi1);
n2[0] = cos(theta2) * (cos(phi2));
n2[1] = -sin(theta2) * (cos(phi2));
n2[2] = sin(phi2);
n3[0] = cos(theta1) * (cos(phi2));
n3[1] = -sin(theta1) * (cos(phi2));
n3[2] = sin(phi2);
t0[0] = v0[0] * scalFac + 0.5;
t0[1] = v0[1] * scalFac + 0.5;
t0[2] = v0[2] * scalFac + 0.5;
t1[0] = v1[0] * scalFac + 0.5;
t1[1] = v1[1] * scalFac + 0.5;
t1[2] = v1[2] * scalFac + 0.5;
t2[0] = v2[0] * scalFac + 0.5;
t2[1] = v2[1] * scalFac + 0.5;
t2[2] = v2[2] * scalFac + 0.5;
t3[0] = v3[0] * scalFac + 0.5;
t3[1] = v3[1] * scalFac + 0.5;
t3[2] = v3[2] * scalFac + 0.5;
glBegin(GL_POLYGON);
glNormal3fv(n3);
glTexCoord3fv(t3);
glVertex3fv(v3);
glNormal3fv(n2);
glTexCoord3fv(t2);
glVertex3fv(v2);
glNormal3fv(n1);
glTexCoord3fv(t1);
glVertex3fv(v1);
glNormal3fv(n0);
glTexCoord3fv(t0);
glVertex3fv(v0);
glEnd();
}
}
glEndList();
}
/*--------------------------------------------------------------------
noise function over R3 - implemented by a pseudorandom tricubic spline
EXCERPTED FROM SIGGRAPH 92, COURSE 23
PROCEDURAL MODELING
Ken Perlin
New York University
----------------------------------------------------------------------*/
#define DOT(a,b) (a[0] * b[0] + a[1] * b[1] + a[2] * b[2])
#define B 128
static int p[B + B + 2];
static float g[B + B + 2][3];
#define setup(i,b0,b1,r0,r1) \
t = vec[i] + 10000.; \
b0 = ((int)t) & (B-1); \
b1 = (b0+1) & (B-1); \
r0 = t - (int)t; \
r1 = r0 - 1.;
static float
noise3(float vec[3])
{
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sx, sy, sz, a, b, c, d, t, u, v;
register int i, j;
setup(0, bx0, bx1, rx0, rx1);
setup(1, by0, by1, ry0, ry1);
setup(2, bz0, bz1, rz0, rz1);
i = p[bx0];
j = p[bx1];
b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];
#define at(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
#define surve(t) ( t * t * (3. - 2. * t) )
#define lerp(t, a, b) ( a + t * (b - a) )
sx = surve(rx0);
sy = surve(ry0);
sz = surve(rz0);
q = g[b00 + bz0];
u = at(rx0, ry0, rz0);
q = g[b10 + bz0];
v = at(rx1, ry0, rz0);
a = lerp(sx, u, v);
q = g[b01 + bz0];
u = at(rx0, ry1, rz0);
q = g[b11 + bz0];
v = at(rx1, ry1, rz0);
b = lerp(sx, u, v);
c = lerp(sy, a, b); /* interpolate in y at lo x */
q = g[b00 + bz1];
u = at(rx0, ry0, rz1);
q = g[b10 + bz1];
v = at(rx1, ry0, rz1);
a = lerp(sx, u, v);
q = g[b01 + bz1];
u = at(rx0, ry1, rz1);
q = g[b11 + bz1];
v = at(rx1, ry1, rz1);
b = lerp(sx, u, v);
d = lerp(sy, a, b); /* interpolate in y at hi x */
return 1.5 * lerp(sz, c, d); /* interpolate in z */
}
static void
initNoise(void)
{
/*long random(); */
int i, j, k;
float v[3], s;
/* Create an array of random gradient vectors uniformly on the unit sphere */
/*srandom(1); */
srand(1);
for (i = 0; i < B; i++) {
do { /* Choose uniformly in a cube */
for (j = 0; j < 3; j++)
v[j] = (float) ((rand() % (B + B)) - B) / B;
s = DOT(v, v);
} while (s > 1.0); /* If not in sphere try again */
s = sqrt(s);
for (j = 0; j < 3; j++) /* Else normalize */
g[i][j] = v[j] / s;
}
/* Create a pseudorandom permutation of [1..B] */
for (i = 0; i < B; i++)
p[i] = i;
for (i = B; i > 0; i -= 2) {
k = p[i];
p[i] = p[j = rand() % B];
p[j] = k;
}
/* Extend g and p arrays to allow for faster indexing */
for (i = 0; i < B + 2; i++) {
p[B + i] = p[i];
for (j = 0; j < 3; j++)
g[B + i][j] = g[i][j];
}
}
static float
turbulence(float point[3], float lofreq, float hifreq)
{
float freq, t, p[3];
p[0] = point[0] + 123.456;
p[1] = point[1];
p[2] = point[2];
t = 0;
for (freq = lofreq; freq < hifreq; freq *= 2.) {
t += fabs(noise3(p)) / freq;
p[0] *= 2.;
p[1] *= 2.;
p[2] *= 2.;
}
return t - 0.3; /* readjust to make mean value = 0.0 */
}
static void
create3Dtexture(void)
{
unsigned char *voxels = NULL;
int i, j, k;
unsigned char *vp;
float vec[3];
int tmp;
printf("creating 3d textures...\n");
voxels =
(unsigned char *)
malloc((size_t) (4 * tex_width * tex_height * tex_depth));
vp = voxels;
for (i = 0; i < tex_width; i++) {
vec[0] = i;
for (j = 0; j < tex_height; j++) {
vec[1] = j;
for (k = 0; k < tex_depth; k++) {
vec[2] = k;
tmp = (sin(k * i * j + turbulence(vec, 0.01, 1)) + 1) * 127.5;
*vp++ = 0;
*vp++ = 0;
*vp++ = tmp;
*vp++ = tmp + 128;
}
}
}
printf("setting up 3d texture...\n");
glBindTexture(GL_TEXTURE_3D, NOISE_TEXTURE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_REPEAT);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA,
tex_width, tex_height, tex_depth,
0, GL_RGBA, GL_UNSIGNED_BYTE, voxels);
free(voxels);
printf("finished setting up 3d texture image.\n");
}
static void
printHelp(void)
{
printf("\nUsage: stex3d <cmd line options>\n");
printf(" cmd line options:\n");
printf(" -wxxx Width of the texture (Default=64)\n");
printf(" -hxxx Height of the texture (Default=64)\n");
printf(" -dxxx Depth of the texture (Default=64)\n");
printf(" Keyboard Options:\n");
printf(" up/down rotate around X\n");
printf(" left/right rotate around Y\n");
printf(" z/Z rotate around Z\n");
printf(" a toggle animation\n");
printf(" s toggle smooth shading\n");
printf(" t toggle texgen mode\n");
printf(" o toggle object: torus/sphere\n");
printf(" i toggle texture image: noise/gradient\n");
}
static GLenum
parseCmdLine(int argc, char **argv)
{
GLint i;
for (i = 1; i < argc; i++) {
if (strcmp(argv[i], "-help") == 0) {
printHelp();
return GL_FALSE;
}
else if (strstr(argv[i], "-w") != NULL) {
tex_width = atoi((argv[i]) + 2);
}
else if (strstr(argv[i], "-h") != NULL) {
tex_height = atoi((argv[i]) + 2);
}
else if (strstr(argv[i], "-d") != NULL) {
tex_depth = atoi((argv[i]) + 2);
}
else {
printf("%s (Bad option).\n", argv[i]);
printHelp();
return GL_FALSE;
}
}
if (tex_width == 0 || tex_height == 0 || tex_depth == 0) {
printf("%s (Bad option).\n", "size parameters can't be 0");
printHelp();
return GL_FALSE;
}
return GL_TRUE;
}
static void
drawScene(void)
{
static const GLfloat sPlane[4] = { 0.5, 0, 0, -.5 };
static const GLfloat tPlane[4] = { 0, 0.5, 0, -.5 };
static const GLfloat rPlane[4] = { 0, 0, 0.5, -.5 };
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
if (texgen == 2) {
glTexGenfv(GL_S, GL_EYE_PLANE, sPlane);
glTexGenfv(GL_T, GL_EYE_PLANE, tPlane);
glTexGenfv(GL_R, GL_EYE_PLANE, rPlane);
}
glRotatef(angx, 1.0, 0.0, 0.0);
glRotatef(angy, 0.0, 1.0, 0.0);
glRotatef(angz, 0.0, 0.0, 1.0);
if (texgen == 1) {
glTexGenfv(GL_S, GL_EYE_PLANE, sPlane);
glTexGenfv(GL_T, GL_EYE_PLANE, tPlane);
glTexGenfv(GL_R, GL_EYE_PLANE, rPlane);
}
if (texgen) {
glEnable(GL_TEXTURE_GEN_S);
glEnable(GL_TEXTURE_GEN_T);
glEnable(GL_TEXTURE_GEN_R);
}
else {
glDisable(GL_TEXTURE_GEN_S);
glDisable(GL_TEXTURE_GEN_T);
glDisable(GL_TEXTURE_GEN_R);
}
glCallList(CurObject);
glPopMatrix();
glutSwapBuffers();
}
static void
resize(int w, int h)
{
float ar = (float) w / (float) h;
float ax = 0.6 * ar;
float ay = 0.6;
glViewport(0, 0, (GLint) w, (GLint) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(-ax, ax, -ay, ay, 2, 20);
/*glOrtho(-2, 2, -2, 2, -10, 10);*/
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0, 0, -4);
}
static void
Idle(void)
{
float t = glutGet(GLUT_ELAPSED_TIME);
angx = 0.01 * t;
angy = 0.03 * t;
angz += 0;
glutPostRedisplay();
}
static void
SpecialKey(int k, int x, int y)
{
switch (k) {
case GLUT_KEY_UP:
angx += 5.0;
break;
case GLUT_KEY_DOWN:
angx -= 5.0;
break;
case GLUT_KEY_LEFT:
angy += 5.0;
break;
case GLUT_KEY_RIGHT:
angy -= 5.0;
break;
default:
return;
}
glutPostRedisplay();
}
static void
KeyHandler(unsigned char key, int x, int y)
{
static const char *mode[] = {
"glTexCoord3f (no texgen)",
"texgen fixed to object coords",
"texgen fixed to eye coords"
};
(void) x;
(void) y;
switch (key) {
case 27:
case 'q':
case 'Q': /* quit game. */
exit(0);
break;
case 'z':
angz += 10;
break;
case 'Z':
angz -= 10;
break;
case 's':
smooth = !smooth;
if (smooth)
glShadeModel(GL_SMOOTH);
else
glShadeModel(GL_FLAT);
break;
case 't':
texgen++;
if (texgen > 2)
texgen = 0;
printf("Texgen: %s\n", mode[texgen]);
break;
case 'o':
if (CurObject == TORUS)
CurObject = SPHERE;
else
CurObject = TORUS;
break;
case 'i':
if (CurTexture == NOISE_TEXTURE)
CurTexture = GRADIENT_TEXTURE;
else
CurTexture = NOISE_TEXTURE;
glBindTexture(GL_TEXTURE_3D, CurTexture);
break;
case 'a':
animate = !animate;
if (animate)
glutIdleFunc(Idle);
else
glutIdleFunc(NULL);
break;
case 'w':
wireframe = !wireframe;
if (wireframe)
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
break;
default:
break;
}
glutPostRedisplay();
}
static void
create3Dgradient(void)
{
unsigned char *v;
int i, j, k;
unsigned char *voxels = NULL;
voxels = (unsigned char *) malloc(4 * tex_width * tex_height * tex_depth);
v = voxels;
for (i = 0; i < tex_depth; i++) {
for (j = 0; j < tex_height; j++) {
for (k = 0; k < tex_width; k++) {
GLint r = (255 * i) / (tex_depth - 1);
GLint g = (255 * j) / (tex_height - 1);
GLint b = (255 * k) / (tex_width - 1);
*v++ = r;
*v++ = g;
*v++ = b;
*v++ = 255;
}
}
}
glBindTexture(GL_TEXTURE_3D, GRADIENT_TEXTURE);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_WRAP_R, GL_REPEAT);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glTexImage3D(GL_TEXTURE_3D, 0, GL_RGBA,
tex_width, tex_height, tex_depth,
0, GL_RGBA, GL_UNSIGNED_BYTE, voxels);
free(voxels);
}
static void
init(void)
{
static const GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
static const GLfloat mat_shininess[] = { 25.0 };
static const GLfloat gray[] = { 0.6, 0.6, 0.6, 0.0 };
static const GLfloat white[] = { 1.0, 1.0, 1.0, 0.0 };
static const GLfloat light_position[] = { 0.0, 1.0, 1.0, 0.0 };
int max;
/* see if we have OpenGL 1.2 or later, for 3D texturing */
{
const char *version = (const char *) glGetString(GL_VERSION);
if (strncmp(version, "1.0", 3) == 0 || strncmp(version, "1.1", 3) == 0) {
printf("Sorry, OpenGL 1.2 or later is required\n");
exit(1);
}
}
printf("GL_RENDERER: %s\n", (char *) glGetString(GL_RENDERER));
glGetIntegerv(GL_MAX_3D_TEXTURE_SIZE, &max);
printf("GL_MAX_3D_TEXTURE_SIZE: %d\n", max);
printf("Current 3D texture size: %d x %d x %d\n",
tex_width, tex_height, tex_depth);
/* init light */
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHT1, GL_POSITION, light_position);
glLightfv(GL_LIGHT1, GL_AMBIENT, gray);
glLightfv(GL_LIGHT1, GL_DIFFUSE, white);
glLightfv(GL_LIGHT1, GL_SPECULAR, white);
glColorMaterial(GL_FRONT, GL_DIFFUSE);
glEnable(GL_COLOR_MATERIAL);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT1);
glClearColor(.5, .5, .5, 0);
{
GLUquadricObj *q;
q = gluNewQuadric();
gluQuadricTexture( q, GL_TRUE );
glNewList(SPHERE, GL_COMPILE);
gluSphere( q, 0.95, 30, 15 );
glEndList();
gluDeleteQuadric(q);
}
BuildTorus();
create3Dgradient();
initNoise();
create3Dtexture();
glEnable(GL_TEXTURE_3D);
/*
glBlendFunc(GL_SRC_COLOR, GL_SRC_ALPHA);
glEnable(GL_BLEND);
*/
glEnable(GL_DEPTH_TEST);
glColor3f(0.6, 0.7, 0.8);
}
int
main(int argc, char **argv)
{
glutInit(&argc, argv);
if (parseCmdLine(argc, argv) == GL_FALSE) {
exit(0);
}
glutInitWindowPosition(0, 0);
glutInitWindowSize(400, 400);
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH);
if (glutCreateWindow("stex3d") <= 0) {
exit(0);
}
glewInit();
init();
printHelp();
glutReshapeFunc(resize);
glutKeyboardFunc(KeyHandler);
glutSpecialFunc(SpecialKey);
glutDisplayFunc(drawScene);
if (animate)
glutIdleFunc(Idle);
glutMainLoop();
return 0;
}