| /* |
| * Copyright © 2016 Red Hat. |
| * Copyright © 2016 Bas Nieuwenhuizen |
| * |
| * based in part on anv driver which is: |
| * Copyright © 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| #include "util/mesa-sha1.h" |
| #include "util/u_atomic.h" |
| #include "radv_debug.h" |
| #include "radv_private.h" |
| #include "radv_shader.h" |
| #include "radv_shader_helper.h" |
| #include "nir/nir.h" |
| #include "nir/nir_builder.h" |
| #include "spirv/nir_spirv.h" |
| |
| #include <llvm-c/Core.h> |
| #include <llvm-c/TargetMachine.h> |
| #include <llvm-c/Support.h> |
| |
| #include "sid.h" |
| #include "ac_binary.h" |
| #include "ac_llvm_util.h" |
| #include "ac_nir_to_llvm.h" |
| #include "ac_rtld.h" |
| #include "vk_format.h" |
| #include "util/debug.h" |
| #include "ac_exp_param.h" |
| |
| #include "aco_interface.h" |
| |
| #include "util/string_buffer.h" |
| |
| static const struct nir_shader_compiler_options nir_options_llvm = { |
| .vertex_id_zero_based = true, |
| .lower_scmp = true, |
| .lower_flrp16 = true, |
| .lower_flrp32 = true, |
| .lower_flrp64 = true, |
| .lower_device_index_to_zero = true, |
| .lower_fsat = true, |
| .lower_fdiv = true, |
| .lower_bitfield_insert_to_bitfield_select = true, |
| .lower_bitfield_extract = true, |
| .lower_sub = true, |
| .lower_pack_snorm_2x16 = true, |
| .lower_pack_snorm_4x8 = true, |
| .lower_pack_unorm_2x16 = true, |
| .lower_pack_unorm_4x8 = true, |
| .lower_unpack_snorm_2x16 = true, |
| .lower_unpack_snorm_4x8 = true, |
| .lower_unpack_unorm_2x16 = true, |
| .lower_unpack_unorm_4x8 = true, |
| .lower_extract_byte = true, |
| .lower_extract_word = true, |
| .lower_ffma = true, |
| .lower_fpow = true, |
| .lower_mul_2x32_64 = true, |
| .lower_rotate = true, |
| .max_unroll_iterations = 32, |
| .use_interpolated_input_intrinsics = true, |
| }; |
| |
| static const struct nir_shader_compiler_options nir_options_aco = { |
| .vertex_id_zero_based = true, |
| .lower_scmp = true, |
| .lower_flrp16 = true, |
| .lower_flrp32 = true, |
| .lower_flrp64 = true, |
| .lower_device_index_to_zero = true, |
| .lower_fdiv = true, |
| .lower_bitfield_insert_to_bitfield_select = true, |
| .lower_bitfield_extract = true, |
| .lower_sub = true, /* TODO: set this to false once !1236 is merged */ |
| .lower_pack_snorm_2x16 = true, |
| .lower_pack_snorm_4x8 = true, |
| .lower_pack_unorm_2x16 = true, |
| .lower_pack_unorm_4x8 = true, |
| .lower_unpack_snorm_2x16 = true, |
| .lower_unpack_snorm_4x8 = true, |
| .lower_unpack_unorm_2x16 = true, |
| .lower_unpack_unorm_4x8 = true, |
| .lower_unpack_half_2x16 = true, |
| .lower_extract_byte = true, |
| .lower_extract_word = true, |
| .lower_ffma = true, |
| .lower_fpow = true, |
| .lower_mul_2x32_64 = true, |
| .lower_rotate = true, |
| .max_unroll_iterations = 32, |
| .use_interpolated_input_intrinsics = true, |
| }; |
| |
| bool |
| radv_can_dump_shader(struct radv_device *device, |
| struct radv_shader_module *module, |
| bool is_gs_copy_shader) |
| { |
| if (!(device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) |
| return false; |
| |
| /* Only dump non-meta shaders, useful for debugging purposes. */ |
| return (module && !module->nir) || is_gs_copy_shader; |
| } |
| |
| bool |
| radv_can_dump_shader_stats(struct radv_device *device, |
| struct radv_shader_module *module) |
| { |
| /* Only dump non-meta shader stats. */ |
| return device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS && |
| module && !module->nir; |
| } |
| |
| unsigned shader_io_get_unique_index(gl_varying_slot slot) |
| { |
| /* handle patch indices separate */ |
| if (slot == VARYING_SLOT_TESS_LEVEL_OUTER) |
| return 0; |
| if (slot == VARYING_SLOT_TESS_LEVEL_INNER) |
| return 1; |
| if (slot >= VARYING_SLOT_PATCH0 && slot <= VARYING_SLOT_TESS_MAX) |
| return 2 + (slot - VARYING_SLOT_PATCH0); |
| if (slot == VARYING_SLOT_POS) |
| return 0; |
| if (slot == VARYING_SLOT_PSIZ) |
| return 1; |
| if (slot == VARYING_SLOT_CLIP_DIST0) |
| return 2; |
| if (slot == VARYING_SLOT_CLIP_DIST1) |
| return 3; |
| /* 3 is reserved for clip dist as well */ |
| if (slot >= VARYING_SLOT_VAR0 && slot <= VARYING_SLOT_VAR31) |
| return 4 + (slot - VARYING_SLOT_VAR0); |
| unreachable("illegal slot in get unique index\n"); |
| } |
| |
| VkResult radv_CreateShaderModule( |
| VkDevice _device, |
| const VkShaderModuleCreateInfo* pCreateInfo, |
| const VkAllocationCallbacks* pAllocator, |
| VkShaderModule* pShaderModule) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| struct radv_shader_module *module; |
| |
| assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); |
| assert(pCreateInfo->flags == 0); |
| |
| module = vk_alloc2(&device->alloc, pAllocator, |
| sizeof(*module) + pCreateInfo->codeSize, 8, |
| VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); |
| if (module == NULL) |
| return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); |
| |
| module->nir = NULL; |
| module->size = pCreateInfo->codeSize; |
| memcpy(module->data, pCreateInfo->pCode, module->size); |
| |
| _mesa_sha1_compute(module->data, module->size, module->sha1); |
| |
| *pShaderModule = radv_shader_module_to_handle(module); |
| |
| return VK_SUCCESS; |
| } |
| |
| void radv_DestroyShaderModule( |
| VkDevice _device, |
| VkShaderModule _module, |
| const VkAllocationCallbacks* pAllocator) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_shader_module, module, _module); |
| |
| if (!module) |
| return; |
| |
| vk_free2(&device->alloc, pAllocator, module); |
| } |
| |
| void |
| radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively, |
| bool allow_copies) |
| { |
| bool progress; |
| unsigned lower_flrp = |
| (shader->options->lower_flrp16 ? 16 : 0) | |
| (shader->options->lower_flrp32 ? 32 : 0) | |
| (shader->options->lower_flrp64 ? 64 : 0); |
| |
| do { |
| progress = false; |
| |
| NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp); |
| NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp); |
| |
| NIR_PASS_V(shader, nir_lower_vars_to_ssa); |
| NIR_PASS_V(shader, nir_lower_pack); |
| |
| if (allow_copies) { |
| /* Only run this pass in the first call to |
| * radv_optimize_nir. Later calls assume that we've |
| * lowered away any copy_deref instructions and we |
| * don't want to introduce any more. |
| */ |
| NIR_PASS(progress, shader, nir_opt_find_array_copies); |
| } |
| |
| NIR_PASS(progress, shader, nir_opt_copy_prop_vars); |
| NIR_PASS(progress, shader, nir_opt_dead_write_vars); |
| NIR_PASS(progress, shader, nir_remove_dead_variables, |
| nir_var_function_temp); |
| |
| NIR_PASS_V(shader, nir_lower_alu_to_scalar, NULL, NULL); |
| NIR_PASS_V(shader, nir_lower_phis_to_scalar); |
| |
| NIR_PASS(progress, shader, nir_copy_prop); |
| NIR_PASS(progress, shader, nir_opt_remove_phis); |
| NIR_PASS(progress, shader, nir_opt_dce); |
| if (nir_opt_trivial_continues(shader)) { |
| progress = true; |
| NIR_PASS(progress, shader, nir_copy_prop); |
| NIR_PASS(progress, shader, nir_opt_remove_phis); |
| NIR_PASS(progress, shader, nir_opt_dce); |
| } |
| NIR_PASS(progress, shader, nir_opt_if, true); |
| NIR_PASS(progress, shader, nir_opt_dead_cf); |
| NIR_PASS(progress, shader, nir_opt_cse); |
| NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true); |
| NIR_PASS(progress, shader, nir_opt_constant_folding); |
| NIR_PASS(progress, shader, nir_opt_algebraic); |
| |
| if (lower_flrp != 0) { |
| bool lower_flrp_progress = false; |
| NIR_PASS(lower_flrp_progress, |
| shader, |
| nir_lower_flrp, |
| lower_flrp, |
| false /* always_precise */, |
| shader->options->lower_ffma); |
| if (lower_flrp_progress) { |
| NIR_PASS(progress, shader, |
| nir_opt_constant_folding); |
| progress = true; |
| } |
| |
| /* Nothing should rematerialize any flrps, so we only |
| * need to do this lowering once. |
| */ |
| lower_flrp = 0; |
| } |
| |
| NIR_PASS(progress, shader, nir_opt_undef); |
| if (shader->options->max_unroll_iterations) { |
| NIR_PASS(progress, shader, nir_opt_loop_unroll, 0); |
| } |
| } while (progress && !optimize_conservatively); |
| |
| NIR_PASS(progress, shader, nir_opt_conditional_discard); |
| NIR_PASS(progress, shader, nir_opt_shrink_load); |
| NIR_PASS(progress, shader, nir_opt_move, nir_move_load_ubo); |
| } |
| |
| nir_shader * |
| radv_shader_compile_to_nir(struct radv_device *device, |
| struct radv_shader_module *module, |
| const char *entrypoint_name, |
| gl_shader_stage stage, |
| const VkSpecializationInfo *spec_info, |
| const VkPipelineCreateFlags flags, |
| const struct radv_pipeline_layout *layout, |
| bool use_aco) |
| { |
| nir_shader *nir; |
| const nir_shader_compiler_options *nir_options = use_aco ? &nir_options_aco : |
| &nir_options_llvm; |
| if (module->nir) { |
| /* Some things such as our meta clear/blit code will give us a NIR |
| * shader directly. In that case, we just ignore the SPIR-V entirely |
| * and just use the NIR shader */ |
| nir = module->nir; |
| nir->options = nir_options; |
| nir_validate_shader(nir, "in internal shader"); |
| |
| assert(exec_list_length(&nir->functions) == 1); |
| } else { |
| uint32_t *spirv = (uint32_t *) module->data; |
| assert(module->size % 4 == 0); |
| |
| if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) |
| radv_print_spirv(spirv, module->size, stderr); |
| |
| uint32_t num_spec_entries = 0; |
| struct nir_spirv_specialization *spec_entries = NULL; |
| if (spec_info && spec_info->mapEntryCount > 0) { |
| num_spec_entries = spec_info->mapEntryCount; |
| spec_entries = malloc(num_spec_entries * sizeof(*spec_entries)); |
| for (uint32_t i = 0; i < num_spec_entries; i++) { |
| VkSpecializationMapEntry entry = spec_info->pMapEntries[i]; |
| const void *data = spec_info->pData + entry.offset; |
| assert(data + entry.size <= spec_info->pData + spec_info->dataSize); |
| |
| spec_entries[i].id = spec_info->pMapEntries[i].constantID; |
| if (spec_info->dataSize == 8) |
| spec_entries[i].data64 = *(const uint64_t *)data; |
| else |
| spec_entries[i].data32 = *(const uint32_t *)data; |
| } |
| } |
| const struct spirv_to_nir_options spirv_options = { |
| .lower_ubo_ssbo_access_to_offsets = true, |
| .caps = { |
| .amd_gcn_shader = true, |
| .amd_shader_ballot = device->physical_device->use_shader_ballot, |
| .amd_trinary_minmax = true, |
| .derivative_group = true, |
| .descriptor_array_dynamic_indexing = true, |
| .descriptor_array_non_uniform_indexing = true, |
| .descriptor_indexing = true, |
| .device_group = true, |
| .draw_parameters = true, |
| .float16 = !device->physical_device->use_aco, |
| .float64 = true, |
| .geometry_streams = true, |
| .image_read_without_format = true, |
| .image_write_without_format = true, |
| .int8 = !device->physical_device->use_aco, |
| .int16 = !device->physical_device->use_aco, |
| .int64 = true, |
| .int64_atomics = true, |
| .multiview = true, |
| .physical_storage_buffer_address = true, |
| .post_depth_coverage = true, |
| .runtime_descriptor_array = true, |
| .shader_viewport_index_layer = true, |
| .stencil_export = true, |
| .storage_8bit = !device->physical_device->use_aco, |
| .storage_16bit = !device->physical_device->use_aco, |
| .storage_image_ms = true, |
| .subgroup_arithmetic = true, |
| .subgroup_ballot = true, |
| .subgroup_basic = true, |
| .subgroup_quad = true, |
| .subgroup_shuffle = true, |
| .subgroup_vote = true, |
| .tessellation = true, |
| .transform_feedback = true, |
| .variable_pointers = true, |
| }, |
| .ubo_addr_format = nir_address_format_32bit_index_offset, |
| .ssbo_addr_format = nir_address_format_32bit_index_offset, |
| .phys_ssbo_addr_format = nir_address_format_64bit_global, |
| .push_const_addr_format = nir_address_format_logical, |
| .shared_addr_format = nir_address_format_32bit_offset, |
| .frag_coord_is_sysval = true, |
| }; |
| nir = spirv_to_nir(spirv, module->size / 4, |
| spec_entries, num_spec_entries, |
| stage, entrypoint_name, |
| &spirv_options, nir_options); |
| assert(nir->info.stage == stage); |
| nir_validate_shader(nir, "after spirv_to_nir"); |
| |
| free(spec_entries); |
| |
| /* We have to lower away local constant initializers right before we |
| * inline functions. That way they get properly initialized at the top |
| * of the function and not at the top of its caller. |
| */ |
| NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp); |
| NIR_PASS_V(nir, nir_lower_returns); |
| NIR_PASS_V(nir, nir_inline_functions); |
| NIR_PASS_V(nir, nir_opt_deref); |
| |
| /* Pick off the single entrypoint that we want */ |
| foreach_list_typed_safe(nir_function, func, node, &nir->functions) { |
| if (func->is_entrypoint) |
| func->name = ralloc_strdup(func, "main"); |
| else |
| exec_node_remove(&func->node); |
| } |
| assert(exec_list_length(&nir->functions) == 1); |
| |
| /* Make sure we lower constant initializers on output variables so that |
| * nir_remove_dead_variables below sees the corresponding stores |
| */ |
| NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out); |
| |
| /* Now that we've deleted all but the main function, we can go ahead and |
| * lower the rest of the constant initializers. |
| */ |
| NIR_PASS_V(nir, nir_lower_constant_initializers, ~0); |
| |
| /* Split member structs. We do this before lower_io_to_temporaries so that |
| * it doesn't lower system values to temporaries by accident. |
| */ |
| NIR_PASS_V(nir, nir_split_var_copies); |
| NIR_PASS_V(nir, nir_split_per_member_structs); |
| |
| if (nir->info.stage == MESA_SHADER_FRAGMENT && use_aco) |
| NIR_PASS_V(nir, nir_lower_io_to_vector, nir_var_shader_out); |
| if (nir->info.stage == MESA_SHADER_FRAGMENT) |
| NIR_PASS_V(nir, nir_lower_input_attachments, true); |
| |
| NIR_PASS_V(nir, nir_remove_dead_variables, |
| nir_var_shader_in | nir_var_shader_out | nir_var_system_value); |
| |
| NIR_PASS_V(nir, nir_propagate_invariant); |
| |
| NIR_PASS_V(nir, nir_lower_system_values); |
| NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays); |
| NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout); |
| } |
| |
| /* Vulkan uses the separate-shader linking model */ |
| nir->info.separate_shader = true; |
| |
| nir_shader_gather_info(nir, nir_shader_get_entrypoint(nir)); |
| |
| static const nir_lower_tex_options tex_options = { |
| .lower_txp = ~0, |
| .lower_tg4_offsets = true, |
| }; |
| |
| nir_lower_tex(nir, &tex_options); |
| |
| nir_lower_vars_to_ssa(nir); |
| |
| if (nir->info.stage == MESA_SHADER_VERTEX || |
| nir->info.stage == MESA_SHADER_GEOMETRY || |
| nir->info.stage == MESA_SHADER_FRAGMENT) { |
| NIR_PASS_V(nir, nir_lower_io_to_temporaries, |
| nir_shader_get_entrypoint(nir), true, true); |
| } else if (nir->info.stage == MESA_SHADER_TESS_EVAL) { |
| NIR_PASS_V(nir, nir_lower_io_to_temporaries, |
| nir_shader_get_entrypoint(nir), true, false); |
| } |
| |
| nir_split_var_copies(nir); |
| |
| nir_lower_global_vars_to_local(nir); |
| nir_remove_dead_variables(nir, nir_var_function_temp); |
| nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) { |
| .subgroup_size = 64, |
| .ballot_bit_size = 64, |
| .lower_to_scalar = 1, |
| .lower_subgroup_masks = 1, |
| .lower_shuffle = 1, |
| .lower_shuffle_to_32bit = 1, |
| .lower_vote_eq_to_ballot = 1, |
| }); |
| |
| nir_lower_load_const_to_scalar(nir); |
| |
| if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)) |
| radv_optimize_nir(nir, false, true); |
| |
| /* We call nir_lower_var_copies() after the first radv_optimize_nir() |
| * to remove any copies introduced by nir_opt_find_array_copies(). |
| */ |
| nir_lower_var_copies(nir); |
| |
| /* Lower large variables that are always constant with load_constant |
| * intrinsics, which get turned into PC-relative loads from a data |
| * section next to the shader. |
| */ |
| NIR_PASS_V(nir, nir_opt_large_constants, |
| glsl_get_natural_size_align_bytes, 16); |
| |
| /* Indirect lowering must be called after the radv_optimize_nir() loop |
| * has been called at least once. Otherwise indirect lowering can |
| * bloat the instruction count of the loop and cause it to be |
| * considered too large for unrolling. |
| */ |
| ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class); |
| radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false); |
| |
| return nir; |
| } |
| |
| static int |
| type_size_vec4(const struct glsl_type *type, bool bindless) |
| { |
| return glsl_count_attribute_slots(type, false); |
| } |
| |
| static nir_variable * |
| find_layer_in_var(nir_shader *nir) |
| { |
| nir_foreach_variable(var, &nir->inputs) { |
| if (var->data.location == VARYING_SLOT_LAYER) { |
| return var; |
| } |
| } |
| |
| nir_variable *var = |
| nir_variable_create(nir, nir_var_shader_in, glsl_int_type(), "layer id"); |
| var->data.location = VARYING_SLOT_LAYER; |
| var->data.interpolation = INTERP_MODE_FLAT; |
| return var; |
| } |
| |
| /* We use layered rendering to implement multiview, which means we need to map |
| * view_index to gl_Layer. The attachment lowering also uses needs to know the |
| * layer so that it can sample from the correct layer. The code generates a |
| * load from the layer_id sysval, but since we don't have a way to get at this |
| * information from the fragment shader, we also need to lower this to the |
| * gl_Layer varying. This pass lowers both to a varying load from the LAYER |
| * slot, before lowering io, so that nir_assign_var_locations() will give the |
| * LAYER varying the correct driver_location. |
| */ |
| |
| static bool |
| lower_view_index(nir_shader *nir) |
| { |
| bool progress = false; |
| nir_function_impl *entry = nir_shader_get_entrypoint(nir); |
| nir_builder b; |
| nir_builder_init(&b, entry); |
| |
| nir_variable *layer = NULL; |
| nir_foreach_block(block, entry) { |
| nir_foreach_instr_safe(instr, block) { |
| if (instr->type != nir_instr_type_intrinsic) |
| continue; |
| |
| nir_intrinsic_instr *load = nir_instr_as_intrinsic(instr); |
| if (load->intrinsic != nir_intrinsic_load_view_index && |
| load->intrinsic != nir_intrinsic_load_layer_id) |
| continue; |
| |
| if (!layer) |
| layer = find_layer_in_var(nir); |
| |
| b.cursor = nir_before_instr(instr); |
| nir_ssa_def *def = nir_load_var(&b, layer); |
| nir_ssa_def_rewrite_uses(&load->dest.ssa, |
| nir_src_for_ssa(def)); |
| |
| nir_instr_remove(instr); |
| progress = true; |
| } |
| } |
| |
| return progress; |
| } |
| |
| void |
| radv_lower_fs_io(nir_shader *nir) |
| { |
| NIR_PASS_V(nir, lower_view_index); |
| nir_assign_io_var_locations(&nir->inputs, &nir->num_inputs, |
| MESA_SHADER_FRAGMENT); |
| |
| NIR_PASS_V(nir, nir_lower_io, nir_var_shader_in, type_size_vec4, 0); |
| |
| /* This pass needs actual constants */ |
| nir_opt_constant_folding(nir); |
| |
| NIR_PASS_V(nir, nir_io_add_const_offset_to_base, nir_var_shader_in); |
| } |
| |
| |
| void * |
| radv_alloc_shader_memory(struct radv_device *device, |
| struct radv_shader_variant *shader) |
| { |
| mtx_lock(&device->shader_slab_mutex); |
| list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) { |
| uint64_t offset = 0; |
| list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) { |
| if (s->bo_offset - offset >= shader->code_size) { |
| shader->bo = slab->bo; |
| shader->bo_offset = offset; |
| list_addtail(&shader->slab_list, &s->slab_list); |
| mtx_unlock(&device->shader_slab_mutex); |
| return slab->ptr + offset; |
| } |
| offset = align_u64(s->bo_offset + s->code_size, 256); |
| } |
| if (slab->size - offset >= shader->code_size) { |
| shader->bo = slab->bo; |
| shader->bo_offset = offset; |
| list_addtail(&shader->slab_list, &slab->shaders); |
| mtx_unlock(&device->shader_slab_mutex); |
| return slab->ptr + offset; |
| } |
| } |
| |
| mtx_unlock(&device->shader_slab_mutex); |
| struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab)); |
| |
| slab->size = 256 * 1024; |
| slab->bo = device->ws->buffer_create(device->ws, slab->size, 256, |
| RADEON_DOMAIN_VRAM, |
| RADEON_FLAG_NO_INTERPROCESS_SHARING | |
| (device->physical_device->rad_info.cpdma_prefetch_writes_memory ? |
| 0 : RADEON_FLAG_READ_ONLY), |
| RADV_BO_PRIORITY_SHADER); |
| slab->ptr = (char*)device->ws->buffer_map(slab->bo); |
| list_inithead(&slab->shaders); |
| |
| mtx_lock(&device->shader_slab_mutex); |
| list_add(&slab->slabs, &device->shader_slabs); |
| |
| shader->bo = slab->bo; |
| shader->bo_offset = 0; |
| list_add(&shader->slab_list, &slab->shaders); |
| mtx_unlock(&device->shader_slab_mutex); |
| return slab->ptr; |
| } |
| |
| void |
| radv_destroy_shader_slabs(struct radv_device *device) |
| { |
| list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) { |
| device->ws->buffer_destroy(slab->bo); |
| free(slab); |
| } |
| mtx_destroy(&device->shader_slab_mutex); |
| } |
| |
| /* For the UMR disassembler. */ |
| #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */ |
| #define DEBUGGER_NUM_MARKERS 5 |
| |
| static unsigned |
| radv_get_shader_binary_size(size_t code_size) |
| { |
| return code_size + DEBUGGER_NUM_MARKERS * 4; |
| } |
| |
| static void radv_postprocess_config(const struct radv_physical_device *pdevice, |
| const struct ac_shader_config *config_in, |
| const struct radv_shader_info *info, |
| gl_shader_stage stage, |
| struct ac_shader_config *config_out) |
| { |
| bool scratch_enabled = config_in->scratch_bytes_per_wave > 0; |
| unsigned vgpr_comp_cnt = 0; |
| unsigned num_input_vgprs = info->num_input_vgprs; |
| |
| if (stage == MESA_SHADER_FRAGMENT) { |
| num_input_vgprs = 0; |
| if (G_0286CC_PERSP_SAMPLE_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 2; |
| if (G_0286CC_PERSP_CENTER_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 2; |
| if (G_0286CC_PERSP_CENTROID_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 2; |
| if (G_0286CC_PERSP_PULL_MODEL_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 3; |
| if (G_0286CC_LINEAR_SAMPLE_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 2; |
| if (G_0286CC_LINEAR_CENTER_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 2; |
| if (G_0286CC_LINEAR_CENTROID_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 2; |
| if (G_0286CC_LINE_STIPPLE_TEX_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| if (G_0286CC_POS_X_FLOAT_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| if (G_0286CC_POS_Y_FLOAT_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| if (G_0286CC_POS_Z_FLOAT_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| if (G_0286CC_POS_W_FLOAT_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| if (G_0286CC_FRONT_FACE_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| if (G_0286CC_ANCILLARY_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| if (G_0286CC_SAMPLE_COVERAGE_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| if (G_0286CC_POS_FIXED_PT_ENA(config_in->spi_ps_input_addr)) |
| num_input_vgprs += 1; |
| } |
| |
| unsigned num_vgprs = MAX2(config_in->num_vgprs, num_input_vgprs); |
| /* +3 for scratch wave offset and VCC */ |
| unsigned num_sgprs = MAX2(config_in->num_sgprs, info->num_input_sgprs + 3); |
| |
| *config_out = *config_in; |
| config_out->num_vgprs = num_vgprs; |
| config_out->num_sgprs = num_sgprs; |
| |
| /* Enable 64-bit and 16-bit denormals, because there is no performance |
| * cost. |
| * |
| * If denormals are enabled, all floating-point output modifiers are |
| * ignored. |
| * |
| * Don't enable denormals for 32-bit floats, because: |
| * - Floating-point output modifiers would be ignored by the hw. |
| * - Some opcodes don't support denormals, such as v_mad_f32. We would |
| * have to stop using those. |
| * - GFX6 & GFX7 would be very slow. |
| */ |
| config_out->float_mode |= V_00B028_FP_64_DENORMS; |
| |
| config_out->rsrc2 = S_00B12C_USER_SGPR(info->num_user_sgprs) | |
| S_00B12C_SCRATCH_EN(scratch_enabled); |
| |
| if (!pdevice->use_ngg_streamout) { |
| config_out->rsrc2 |= S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | |
| S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) | |
| S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | |
| S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) | |
| S_00B12C_SO_EN(!!info->so.num_outputs); |
| } |
| |
| config_out->rsrc1 = S_00B848_VGPRS((num_vgprs - 1) / |
| (info->wave_size == 32 ? 8 : 4)) | |
| S_00B848_DX10_CLAMP(1) | |
| S_00B848_FLOAT_MODE(config_out->float_mode); |
| |
| if (pdevice->rad_info.chip_class >= GFX10) { |
| config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX10(info->num_user_sgprs >> 5); |
| } else { |
| config_out->rsrc1 |= S_00B228_SGPRS((num_sgprs - 1) / 8); |
| config_out->rsrc2 |= S_00B22C_USER_SGPR_MSB_GFX9(info->num_user_sgprs >> 5); |
| } |
| |
| switch (stage) { |
| case MESA_SHADER_TESS_EVAL: |
| if (info->is_ngg) { |
| config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); |
| config_out->rsrc2 |= S_00B22C_OC_LDS_EN(1); |
| } else if (info->tes.as_es) { |
| assert(pdevice->rad_info.chip_class <= GFX8); |
| vgpr_comp_cnt = info->uses_prim_id ? 3 : 2; |
| |
| config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1); |
| } else { |
| bool enable_prim_id = info->tes.export_prim_id || info->uses_prim_id; |
| vgpr_comp_cnt = enable_prim_id ? 3 : 2; |
| |
| config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); |
| config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1); |
| } |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| if (pdevice->rad_info.chip_class >= GFX9) { |
| /* We need at least 2 components for LS. |
| * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID). |
| * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. |
| */ |
| if (pdevice->rad_info.chip_class >= GFX10) { |
| vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 1; |
| } else { |
| vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1; |
| } |
| } else { |
| config_out->rsrc2 |= S_00B12C_OC_LDS_EN(1); |
| } |
| config_out->rsrc1 |= S_00B428_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) | |
| S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10); |
| break; |
| case MESA_SHADER_VERTEX: |
| if (info->is_ngg) { |
| config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); |
| } else if (info->vs.as_ls) { |
| assert(pdevice->rad_info.chip_class <= GFX8); |
| /* We need at least 2 components for LS. |
| * VGPR0-3: (VertexID, RelAutoindex, InstanceID / StepRate0, InstanceID). |
| * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. |
| */ |
| vgpr_comp_cnt = info->vs.needs_instance_id ? 2 : 1; |
| } else if (info->vs.as_es) { |
| assert(pdevice->rad_info.chip_class <= GFX8); |
| /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */ |
| vgpr_comp_cnt = info->vs.needs_instance_id ? 1 : 0; |
| } else { |
| /* VGPR0-3: (VertexID, InstanceID / StepRate0, PrimID, InstanceID) |
| * If PrimID is disabled. InstanceID / StepRate1 is loaded instead. |
| * StepRate0 is set to 1. so that VGPR3 doesn't have to be loaded. |
| */ |
| if (info->vs.needs_instance_id && pdevice->rad_info.chip_class >= GFX10) { |
| vgpr_comp_cnt = 3; |
| } else if (info->vs.export_prim_id) { |
| vgpr_comp_cnt = 2; |
| } else if (info->vs.needs_instance_id) { |
| vgpr_comp_cnt = 1; |
| } else { |
| vgpr_comp_cnt = 0; |
| } |
| |
| config_out->rsrc1 |= S_00B128_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); |
| } |
| break; |
| case MESA_SHADER_FRAGMENT: |
| config_out->rsrc1 |= S_00B028_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| config_out->rsrc1 |= S_00B228_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) | |
| S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10); |
| break; |
| case MESA_SHADER_COMPUTE: |
| config_out->rsrc1 |= S_00B848_MEM_ORDERED(pdevice->rad_info.chip_class >= GFX10) | |
| S_00B848_WGP_MODE(pdevice->rad_info.chip_class >= GFX10); |
| config_out->rsrc2 |= |
| S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) | |
| S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) | |
| S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) | |
| S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 : |
| info->cs.uses_thread_id[1] ? 1 : 0) | |
| S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) | |
| S_00B84C_LDS_SIZE(config_in->lds_size); |
| break; |
| default: |
| unreachable("unsupported shader type"); |
| break; |
| } |
| |
| if (pdevice->rad_info.chip_class >= GFX10 && info->is_ngg && |
| (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL || stage == MESA_SHADER_GEOMETRY)) { |
| unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt; |
| gl_shader_stage es_stage = stage; |
| if (stage == MESA_SHADER_GEOMETRY) |
| es_stage = info->gs.es_type; |
| |
| /* VGPR5-8: (VertexID, UserVGPR0, UserVGPR1, UserVGPR2 / InstanceID) */ |
| if (es_stage == MESA_SHADER_VERTEX) { |
| es_vgpr_comp_cnt = info->vs.needs_instance_id ? 3 : 0; |
| } else if (es_stage == MESA_SHADER_TESS_EVAL) { |
| bool enable_prim_id = info->tes.export_prim_id || info->uses_prim_id; |
| es_vgpr_comp_cnt = enable_prim_id ? 3 : 2; |
| } else |
| unreachable("Unexpected ES shader stage"); |
| |
| bool tes_triangles = stage == MESA_SHADER_TESS_EVAL && |
| info->tes.primitive_mode >= 4; /* GL_TRIANGLES */ |
| if (info->uses_invocation_id || stage == MESA_SHADER_VERTEX) { |
| gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ |
| } else if (info->uses_prim_id) { |
| gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ |
| } else if (info->gs.vertices_in >= 3 || tes_triangles) { |
| gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ |
| } else { |
| gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ |
| } |
| |
| config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt) | |
| S_00B228_WGP_MODE(1); |
| config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | |
| S_00B22C_LDS_SIZE(config_in->lds_size) | |
| S_00B22C_OC_LDS_EN(es_stage == MESA_SHADER_TESS_EVAL); |
| } else if (pdevice->rad_info.chip_class >= GFX9 && |
| stage == MESA_SHADER_GEOMETRY) { |
| unsigned es_type = info->gs.es_type; |
| unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt; |
| |
| if (es_type == MESA_SHADER_VERTEX) { |
| /* VGPR0-3: (VertexID, InstanceID / StepRate0, ...) */ |
| if (info->vs.needs_instance_id) { |
| es_vgpr_comp_cnt = pdevice->rad_info.chip_class >= GFX10 ? 3 : 1; |
| } else { |
| es_vgpr_comp_cnt = 0; |
| } |
| } else if (es_type == MESA_SHADER_TESS_EVAL) { |
| es_vgpr_comp_cnt = info->uses_prim_id ? 3 : 2; |
| } else { |
| unreachable("invalid shader ES type"); |
| } |
| |
| /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and |
| * VGPR[0:4] are always loaded. |
| */ |
| if (info->uses_invocation_id) { |
| gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ |
| } else if (info->uses_prim_id) { |
| gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ |
| } else if (info->gs.vertices_in >= 3) { |
| gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ |
| } else { |
| gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ |
| } |
| |
| config_out->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt); |
| config_out->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | |
| S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL); |
| } else if (pdevice->rad_info.chip_class >= GFX9 && |
| stage == MESA_SHADER_TESS_CTRL) { |
| config_out->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt); |
| } else { |
| config_out->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt); |
| } |
| } |
| |
| struct radv_shader_variant * |
| radv_shader_variant_create(struct radv_device *device, |
| const struct radv_shader_binary *binary, |
| bool keep_shader_info) |
| { |
| struct ac_shader_config config = {0}; |
| struct ac_rtld_binary rtld_binary = {0}; |
| struct radv_shader_variant *variant = calloc(1, sizeof(struct radv_shader_variant)); |
| if (!variant) |
| return NULL; |
| |
| variant->ref_count = 1; |
| |
| if (binary->type == RADV_BINARY_TYPE_RTLD) { |
| struct ac_rtld_symbol lds_symbols[2]; |
| unsigned num_lds_symbols = 0; |
| const char *elf_data = (const char *)((struct radv_shader_binary_rtld *)binary)->data; |
| size_t elf_size = ((struct radv_shader_binary_rtld *)binary)->elf_size; |
| |
| if (device->physical_device->rad_info.chip_class >= GFX9 && |
| (binary->stage == MESA_SHADER_GEOMETRY || binary->info.is_ngg) && |
| !binary->is_gs_copy_shader) { |
| /* We add this symbol even on LLVM <= 8 to ensure that |
| * shader->config.lds_size is set correctly below. |
| */ |
| /* TODO: For some reasons, using the computed ESGS ring |
| * size randomly hangs with CTS. Just use the maximum |
| * possible LDS size for now. |
| */ |
| unsigned ngg_scratch_size = 8 * 4; |
| if (binary->info.so.num_outputs) { |
| /* Memory layout of NGG streamout scratch: |
| * [0-3]: number of generated primitives |
| * [4-7]: number of emitted primitives |
| * [8-11]: streamout offsets |
| * [12:19]: primitive offsets for stream 0 |
| * [20:27]: primitive offsets for stream 1 |
| * [28:35]: primitive offsets for stream 2 |
| * [36:43]: primitive offsets for stream 3 |
| */ |
| ngg_scratch_size = 44 * 4; |
| } |
| |
| struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; |
| sym->name = "esgs_ring"; |
| sym->size = (32 * 1024) - (binary->info.ngg_info.ngg_emit_size * 4) - ngg_scratch_size; |
| sym->align = 64 * 1024; |
| } |
| |
| if (binary->info.is_ngg && |
| binary->stage == MESA_SHADER_GEOMETRY) { |
| struct ac_rtld_symbol *sym = &lds_symbols[num_lds_symbols++]; |
| sym->name = "ngg_emit"; |
| sym->size = binary->info.ngg_info.ngg_emit_size * 4; |
| sym->align = 4; |
| } |
| |
| struct ac_rtld_open_info open_info = { |
| .info = &device->physical_device->rad_info, |
| .shader_type = binary->stage, |
| .wave_size = binary->info.wave_size, |
| .num_parts = 1, |
| .elf_ptrs = &elf_data, |
| .elf_sizes = &elf_size, |
| .num_shared_lds_symbols = num_lds_symbols, |
| .shared_lds_symbols = lds_symbols, |
| }; |
| |
| if (!ac_rtld_open(&rtld_binary, open_info)) { |
| free(variant); |
| return NULL; |
| } |
| |
| if (!ac_rtld_read_config(&rtld_binary, &config)) { |
| ac_rtld_close(&rtld_binary); |
| free(variant); |
| return NULL; |
| } |
| |
| if (rtld_binary.lds_size > 0) { |
| unsigned alloc_granularity = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256; |
| config.lds_size = align(rtld_binary.lds_size, alloc_granularity) / alloc_granularity; |
| } |
| |
| variant->code_size = rtld_binary.rx_size; |
| variant->exec_size = rtld_binary.exec_size; |
| } else { |
| assert(binary->type == RADV_BINARY_TYPE_LEGACY); |
| config = ((struct radv_shader_binary_legacy *)binary)->config; |
| variant->code_size = radv_get_shader_binary_size(((struct radv_shader_binary_legacy *)binary)->code_size); |
| variant->exec_size = ((struct radv_shader_binary_legacy *)binary)->exec_size; |
| } |
| |
| variant->info = binary->info; |
| radv_postprocess_config(device->physical_device, &config, &binary->info, |
| binary->stage, &variant->config); |
| |
| void *dest_ptr = radv_alloc_shader_memory(device, variant); |
| |
| if (binary->type == RADV_BINARY_TYPE_RTLD) { |
| struct radv_shader_binary_rtld* bin = (struct radv_shader_binary_rtld *)binary; |
| struct ac_rtld_upload_info info = { |
| .binary = &rtld_binary, |
| .rx_va = radv_buffer_get_va(variant->bo) + variant->bo_offset, |
| .rx_ptr = dest_ptr, |
| }; |
| |
| if (!ac_rtld_upload(&info)) { |
| radv_shader_variant_destroy(device, variant); |
| ac_rtld_close(&rtld_binary); |
| return NULL; |
| } |
| |
| if (keep_shader_info || |
| (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADERS)) { |
| const char *disasm_data; |
| size_t disasm_size; |
| if (!ac_rtld_get_section_by_name(&rtld_binary, ".AMDGPU.disasm", &disasm_data, &disasm_size)) { |
| radv_shader_variant_destroy(device, variant); |
| ac_rtld_close(&rtld_binary); |
| return NULL; |
| } |
| |
| variant->llvm_ir_string = bin->llvm_ir_size ? strdup((const char*)(bin->data + bin->elf_size)) : NULL; |
| variant->disasm_string = malloc(disasm_size + 1); |
| memcpy(variant->disasm_string, disasm_data, disasm_size); |
| variant->disasm_string[disasm_size] = 0; |
| } |
| |
| ac_rtld_close(&rtld_binary); |
| } else { |
| struct radv_shader_binary_legacy* bin = (struct radv_shader_binary_legacy *)binary; |
| memcpy(dest_ptr, bin->data, bin->code_size); |
| |
| /* Add end-of-code markers for the UMR disassembler. */ |
| uint32_t *ptr32 = (uint32_t *)dest_ptr + bin->code_size / 4; |
| for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++) |
| ptr32[i] = DEBUGGER_END_OF_CODE_MARKER; |
| |
| variant->llvm_ir_string = bin->llvm_ir_size ? strdup((const char*)(bin->data + bin->code_size)) : NULL; |
| variant->disasm_string = bin->disasm_size ? strdup((const char*)(bin->data + bin->code_size + bin->llvm_ir_size)) : NULL; |
| } |
| return variant; |
| } |
| |
| static char * |
| radv_dump_nir_shaders(struct nir_shader * const *shaders, |
| int shader_count) |
| { |
| char *data = NULL; |
| char *ret = NULL; |
| size_t size = 0; |
| FILE *f = open_memstream(&data, &size); |
| if (f) { |
| for (int i = 0; i < shader_count; ++i) |
| nir_print_shader(shaders[i], f); |
| fclose(f); |
| } |
| |
| ret = malloc(size + 1); |
| if (ret) { |
| memcpy(ret, data, size); |
| ret[size] = 0; |
| } |
| free(data); |
| return ret; |
| } |
| |
| static struct radv_shader_variant * |
| shader_variant_compile(struct radv_device *device, |
| struct radv_shader_module *module, |
| struct nir_shader * const *shaders, |
| int shader_count, |
| gl_shader_stage stage, |
| struct radv_shader_info *info, |
| struct radv_nir_compiler_options *options, |
| bool gs_copy_shader, |
| bool keep_shader_info, |
| bool use_aco, |
| struct radv_shader_binary **binary_out) |
| { |
| enum radeon_family chip_family = device->physical_device->rad_info.family; |
| struct radv_shader_binary *binary = NULL; |
| bool init_llvm; |
| |
| options->family = chip_family; |
| options->chip_class = device->physical_device->rad_info.chip_class; |
| options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader); |
| options->dump_preoptir = options->dump_shader && |
| device->instance->debug_flags & RADV_DEBUG_PREOPTIR; |
| options->record_llvm_ir = keep_shader_info; |
| options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR; |
| options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size; |
| options->address32_hi = device->physical_device->rad_info.address32_hi; |
| options->has_ls_vgpr_init_bug = device->physical_device->rad_info.has_ls_vgpr_init_bug; |
| options->use_ngg_streamout = device->physical_device->use_ngg_streamout; |
| |
| if ((stage == MESA_SHADER_GEOMETRY && !options->key.vs_common_out.as_ngg) || |
| gs_copy_shader) |
| options->wave_size = 64; |
| else if (stage == MESA_SHADER_COMPUTE) |
| options->wave_size = device->physical_device->cs_wave_size; |
| else if (stage == MESA_SHADER_FRAGMENT) |
| options->wave_size = device->physical_device->ps_wave_size; |
| else |
| options->wave_size = device->physical_device->ge_wave_size; |
| |
| init_llvm = !use_aco || options->dump_shader; |
| #ifndef NDEBUG |
| init_llvm |= options->record_llvm_ir; |
| #endif |
| if (init_llvm) |
| ac_init_llvm_once(); |
| |
| if (use_aco) { |
| aco_compile_shader(shader_count, shaders, &binary, info, options); |
| binary->info = *info; |
| } else { |
| enum ac_target_machine_options tm_options = 0; |
| struct ac_llvm_compiler ac_llvm; |
| bool thread_compiler; |
| |
| if (options->supports_spill) |
| tm_options |= AC_TM_SUPPORTS_SPILL; |
| if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED) |
| tm_options |= AC_TM_SISCHED; |
| if (options->check_ir) |
| tm_options |= AC_TM_CHECK_IR; |
| if (device->instance->debug_flags & RADV_DEBUG_NO_LOAD_STORE_OPT) |
| tm_options |= AC_TM_NO_LOAD_STORE_OPT; |
| |
| thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM); |
| radv_init_llvm_compiler(&ac_llvm, |
| thread_compiler, |
| chip_family, tm_options, |
| options->wave_size); |
| |
| if (gs_copy_shader) { |
| assert(shader_count == 1); |
| radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary, |
| info, options); |
| } else { |
| radv_compile_nir_shader(&ac_llvm, &binary, info, |
| shaders, shader_count, options); |
| } |
| |
| binary->info = *info; |
| radv_destroy_llvm_compiler(&ac_llvm, thread_compiler); |
| } |
| |
| struct radv_shader_variant *variant = radv_shader_variant_create(device, binary, |
| keep_shader_info); |
| if (!variant) { |
| free(binary); |
| return NULL; |
| } |
| |
| if (options->dump_shader) { |
| fprintf(stderr, "disasm:\n%s\n", variant->disasm_string); |
| } |
| |
| |
| if (keep_shader_info) { |
| variant->nir_string = radv_dump_nir_shaders(shaders, shader_count); |
| if (!gs_copy_shader && !module->nir) { |
| variant->spirv = (uint32_t *)module->data; |
| variant->spirv_size = module->size; |
| } |
| } |
| |
| if (binary_out) |
| *binary_out = binary; |
| else |
| free(binary); |
| |
| return variant; |
| } |
| |
| struct radv_shader_variant * |
| radv_shader_variant_compile(struct radv_device *device, |
| struct radv_shader_module *module, |
| struct nir_shader *const *shaders, |
| int shader_count, |
| struct radv_pipeline_layout *layout, |
| const struct radv_shader_variant_key *key, |
| struct radv_shader_info *info, |
| bool keep_shader_info, |
| bool use_aco, |
| struct radv_shader_binary **binary_out) |
| { |
| struct radv_nir_compiler_options options = {0}; |
| |
| options.layout = layout; |
| if (key) |
| options.key = *key; |
| |
| options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH); |
| options.supports_spill = true; |
| options.robust_buffer_access = device->robust_buffer_access; |
| |
| return shader_variant_compile(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage, info, |
| &options, false, keep_shader_info, use_aco, binary_out); |
| } |
| |
| struct radv_shader_variant * |
| radv_create_gs_copy_shader(struct radv_device *device, |
| struct nir_shader *shader, |
| struct radv_shader_info *info, |
| struct radv_shader_binary **binary_out, |
| bool keep_shader_info, |
| bool multiview) |
| { |
| struct radv_nir_compiler_options options = {0}; |
| |
| options.key.has_multiview_view_index = multiview; |
| |
| return shader_variant_compile(device, NULL, &shader, 1, MESA_SHADER_VERTEX, |
| info, &options, true, keep_shader_info, false, binary_out); |
| } |
| |
| void |
| radv_shader_variant_destroy(struct radv_device *device, |
| struct radv_shader_variant *variant) |
| { |
| if (!p_atomic_dec_zero(&variant->ref_count)) |
| return; |
| |
| mtx_lock(&device->shader_slab_mutex); |
| list_del(&variant->slab_list); |
| mtx_unlock(&device->shader_slab_mutex); |
| |
| free(variant->nir_string); |
| free(variant->disasm_string); |
| free(variant->llvm_ir_string); |
| free(variant); |
| } |
| |
| const char * |
| radv_get_shader_name(struct radv_shader_info *info, |
| gl_shader_stage stage) |
| { |
| switch (stage) { |
| case MESA_SHADER_VERTEX: |
| if (info->vs.as_ls) |
| return "Vertex Shader as LS"; |
| else if (info->vs.as_es) |
| return "Vertex Shader as ES"; |
| else if (info->is_ngg) |
| return "Vertex Shader as ESGS"; |
| else |
| return "Vertex Shader as VS"; |
| case MESA_SHADER_TESS_CTRL: |
| return "Tessellation Control Shader"; |
| case MESA_SHADER_TESS_EVAL: |
| if (info->tes.as_es) |
| return "Tessellation Evaluation Shader as ES"; |
| else if (info->is_ngg) |
| return "Tessellation Evaluation Shader as ESGS"; |
| else |
| return "Tessellation Evaluation Shader as VS"; |
| case MESA_SHADER_GEOMETRY: |
| return "Geometry Shader"; |
| case MESA_SHADER_FRAGMENT: |
| return "Pixel Shader"; |
| case MESA_SHADER_COMPUTE: |
| return "Compute Shader"; |
| default: |
| return "Unknown shader"; |
| }; |
| } |
| |
| unsigned |
| radv_get_max_workgroup_size(enum chip_class chip_class, |
| gl_shader_stage stage, |
| const unsigned *sizes) |
| { |
| switch (stage) { |
| case MESA_SHADER_TESS_CTRL: |
| return chip_class >= GFX7 ? 128 : 64; |
| case MESA_SHADER_GEOMETRY: |
| return chip_class >= GFX9 ? 128 : 64; |
| case MESA_SHADER_COMPUTE: |
| break; |
| default: |
| return 0; |
| } |
| |
| unsigned max_workgroup_size = sizes[0] * sizes[1] * sizes[2]; |
| return max_workgroup_size; |
| } |
| |
| unsigned |
| radv_get_max_waves(struct radv_device *device, |
| struct radv_shader_variant *variant, |
| gl_shader_stage stage) |
| { |
| enum chip_class chip_class = device->physical_device->rad_info.chip_class; |
| unsigned lds_increment = chip_class >= GFX7 ? 512 : 256; |
| uint8_t wave_size = variant->info.wave_size; |
| struct ac_shader_config *conf = &variant->config; |
| unsigned max_simd_waves; |
| unsigned lds_per_wave = 0; |
| |
| max_simd_waves = device->physical_device->rad_info.max_wave64_per_simd; |
| |
| if (stage == MESA_SHADER_FRAGMENT) { |
| lds_per_wave = conf->lds_size * lds_increment + |
| align(variant->info.ps.num_interp * 48, |
| lds_increment); |
| } else if (stage == MESA_SHADER_COMPUTE) { |
| unsigned max_workgroup_size = |
| radv_get_max_workgroup_size(chip_class, stage, variant->info.cs.block_size); |
| lds_per_wave = (conf->lds_size * lds_increment) / |
| DIV_ROUND_UP(max_workgroup_size, wave_size); |
| } |
| |
| if (conf->num_sgprs) |
| max_simd_waves = |
| MIN2(max_simd_waves, |
| device->physical_device->rad_info.num_physical_sgprs_per_simd / |
| conf->num_sgprs); |
| |
| if (conf->num_vgprs) |
| max_simd_waves = |
| MIN2(max_simd_waves, |
| RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs); |
| |
| /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD |
| * that PS can use. |
| */ |
| if (lds_per_wave) |
| max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave); |
| |
| return max_simd_waves; |
| } |
| |
| static void |
| generate_shader_stats(struct radv_device *device, |
| struct radv_shader_variant *variant, |
| gl_shader_stage stage, |
| struct _mesa_string_buffer *buf) |
| { |
| struct ac_shader_config *conf = &variant->config; |
| unsigned max_simd_waves = radv_get_max_waves(device, variant, stage); |
| |
| if (stage == MESA_SHADER_FRAGMENT) { |
| _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n" |
| "SPI_PS_INPUT_ADDR = 0x%04x\n" |
| "SPI_PS_INPUT_ENA = 0x%04x\n", |
| conf->spi_ps_input_addr, conf->spi_ps_input_ena); |
| } |
| |
| _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n" |
| "SGPRS: %d\n" |
| "VGPRS: %d\n" |
| "Spilled SGPRs: %d\n" |
| "Spilled VGPRs: %d\n" |
| "PrivMem VGPRS: %d\n" |
| "Code Size: %d bytes\n" |
| "LDS: %d blocks\n" |
| "Scratch: %d bytes per wave\n" |
| "Max Waves: %d\n" |
| "********************\n\n\n", |
| conf->num_sgprs, conf->num_vgprs, |
| conf->spilled_sgprs, conf->spilled_vgprs, |
| variant->info.private_mem_vgprs, variant->exec_size, |
| conf->lds_size, conf->scratch_bytes_per_wave, |
| max_simd_waves); |
| } |
| |
| void |
| radv_shader_dump_stats(struct radv_device *device, |
| struct radv_shader_variant *variant, |
| gl_shader_stage stage, |
| FILE *file) |
| { |
| struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256); |
| |
| generate_shader_stats(device, variant, stage, buf); |
| |
| fprintf(file, "\n%s:\n", radv_get_shader_name(&variant->info, stage)); |
| fprintf(file, "%s", buf->buf); |
| |
| _mesa_string_buffer_destroy(buf); |
| } |
| |
| VkResult |
| radv_GetShaderInfoAMD(VkDevice _device, |
| VkPipeline _pipeline, |
| VkShaderStageFlagBits shaderStage, |
| VkShaderInfoTypeAMD infoType, |
| size_t* pInfoSize, |
| void* pInfo) |
| { |
| RADV_FROM_HANDLE(radv_device, device, _device); |
| RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); |
| gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage); |
| struct radv_shader_variant *variant = pipeline->shaders[stage]; |
| struct _mesa_string_buffer *buf; |
| VkResult result = VK_SUCCESS; |
| |
| /* Spec doesn't indicate what to do if the stage is invalid, so just |
| * return no info for this. */ |
| if (!variant) |
| return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT); |
| |
| switch (infoType) { |
| case VK_SHADER_INFO_TYPE_STATISTICS_AMD: |
| if (!pInfo) { |
| *pInfoSize = sizeof(VkShaderStatisticsInfoAMD); |
| } else { |
| unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= GFX7 ? 512 : 256; |
| struct ac_shader_config *conf = &variant->config; |
| |
| VkShaderStatisticsInfoAMD statistics = {}; |
| statistics.shaderStageMask = shaderStage; |
| statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS; |
| statistics.numPhysicalSgprs = device->physical_device->rad_info.num_physical_sgprs_per_simd; |
| statistics.numAvailableSgprs = statistics.numPhysicalSgprs; |
| |
| if (stage == MESA_SHADER_COMPUTE) { |
| unsigned *local_size = variant->info.cs.block_size; |
| unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2]; |
| |
| statistics.numAvailableVgprs = statistics.numPhysicalVgprs / |
| ceil((double)workgroup_size / statistics.numPhysicalVgprs); |
| |
| statistics.computeWorkGroupSize[0] = local_size[0]; |
| statistics.computeWorkGroupSize[1] = local_size[1]; |
| statistics.computeWorkGroupSize[2] = local_size[2]; |
| } else { |
| statistics.numAvailableVgprs = statistics.numPhysicalVgprs; |
| } |
| |
| statistics.resourceUsage.numUsedVgprs = conf->num_vgprs; |
| statistics.resourceUsage.numUsedSgprs = conf->num_sgprs; |
| statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768; |
| statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier; |
| statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave; |
| |
| size_t size = *pInfoSize; |
| *pInfoSize = sizeof(statistics); |
| |
| memcpy(pInfo, &statistics, MIN2(size, *pInfoSize)); |
| |
| if (size < *pInfoSize) |
| result = VK_INCOMPLETE; |
| } |
| |
| break; |
| case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD: |
| buf = _mesa_string_buffer_create(NULL, 1024); |
| |
| _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(&variant->info, stage)); |
| _mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string); |
| _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string); |
| generate_shader_stats(device, variant, stage, buf); |
| |
| /* Need to include the null terminator. */ |
| size_t length = buf->length + 1; |
| |
| if (!pInfo) { |
| *pInfoSize = length; |
| } else { |
| size_t size = *pInfoSize; |
| *pInfoSize = length; |
| |
| memcpy(pInfo, buf->buf, MIN2(size, length)); |
| |
| if (size < length) |
| result = VK_INCOMPLETE; |
| } |
| |
| _mesa_string_buffer_destroy(buf); |
| break; |
| default: |
| /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */ |
| result = VK_ERROR_FEATURE_NOT_PRESENT; |
| break; |
| } |
| |
| return result; |
| } |