| /* |
| * Copyright © 2012 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * \file link_varyings.cpp |
| * |
| * Linker functions related specifically to linking varyings between shader |
| * stages. |
| */ |
| |
| |
| #include "main/mtypes.h" |
| #include "glsl_symbol_table.h" |
| #include "glsl_parser_extras.h" |
| #include "ir_optimization.h" |
| #include "linker.h" |
| #include "link_varyings.h" |
| #include "main/macros.h" |
| #include "util/hash_table.h" |
| #include "program.h" |
| |
| |
| /** |
| * Get the varying type stripped of the outermost array if we're processing |
| * a stage whose varyings are arrays indexed by a vertex number (such as |
| * geometry shader inputs). |
| */ |
| static const glsl_type * |
| get_varying_type(const ir_variable *var, gl_shader_stage stage) |
| { |
| const glsl_type *type = var->type; |
| |
| if (!var->data.patch && |
| ((var->data.mode == ir_var_shader_out && |
| stage == MESA_SHADER_TESS_CTRL) || |
| (var->data.mode == ir_var_shader_in && |
| (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL || |
| stage == MESA_SHADER_GEOMETRY)))) { |
| assert(type->is_array()); |
| type = type->fields.array; |
| } |
| |
| return type; |
| } |
| |
| static void |
| create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name, |
| size_t name_length, unsigned *count, |
| const char *ifc_member_name, |
| const glsl_type *ifc_member_t, char ***varying_names) |
| { |
| if (t->is_interface()) { |
| size_t new_length = name_length; |
| |
| assert(ifc_member_name && ifc_member_t); |
| ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name); |
| |
| create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count, |
| NULL, NULL, varying_names); |
| } else if (t->is_record()) { |
| for (unsigned i = 0; i < t->length; i++) { |
| const char *field = t->fields.structure[i].name; |
| size_t new_length = name_length; |
| |
| ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field); |
| |
| create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name, |
| new_length, count, NULL, NULL, |
| varying_names); |
| } |
| } else if (t->without_array()->is_record() || |
| t->without_array()->is_interface() || |
| (t->is_array() && t->fields.array->is_array())) { |
| for (unsigned i = 0; i < t->length; i++) { |
| size_t new_length = name_length; |
| |
| /* Append the subscript to the current variable name */ |
| ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i); |
| |
| create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length, |
| count, ifc_member_name, ifc_member_t, |
| varying_names); |
| } |
| } else { |
| (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name); |
| } |
| } |
| |
| static bool |
| process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh, |
| struct gl_shader_program *prog, |
| unsigned *num_tfeedback_decls, |
| char ***varying_names) |
| { |
| bool has_xfb_qualifiers = false; |
| |
| /* We still need to enable transform feedback mode even if xfb_stride is |
| * only applied to a global out. Also we don't bother to propagate |
| * xfb_stride to interface block members so this will catch that case also. |
| */ |
| for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { |
| if (prog->TransformFeedback.BufferStride[j]) { |
| has_xfb_qualifiers = true; |
| break; |
| } |
| } |
| |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *var = node->as_variable(); |
| if (!var || var->data.mode != ir_var_shader_out) |
| continue; |
| |
| /* From the ARB_enhanced_layouts spec: |
| * |
| * "Any shader making any static use (after preprocessing) of any of |
| * these *xfb_* qualifiers will cause the shader to be in a |
| * transform feedback capturing mode and hence responsible for |
| * describing the transform feedback setup. This mode will capture |
| * any output selected by *xfb_offset*, directly or indirectly, to |
| * a transform feedback buffer." |
| */ |
| if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) { |
| has_xfb_qualifiers = true; |
| } |
| |
| if (var->data.explicit_xfb_offset) { |
| *num_tfeedback_decls += var->type->varying_count(); |
| has_xfb_qualifiers = true; |
| } |
| } |
| |
| if (*num_tfeedback_decls == 0) |
| return has_xfb_qualifiers; |
| |
| unsigned i = 0; |
| *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls); |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *var = node->as_variable(); |
| if (!var || var->data.mode != ir_var_shader_out) |
| continue; |
| |
| if (var->data.explicit_xfb_offset) { |
| char *name; |
| const glsl_type *type, *member_type; |
| |
| if (var->data.from_named_ifc_block) { |
| type = var->get_interface_type(); |
| /* Find the member type before it was altered by lowering */ |
| member_type = |
| type->fields.structure[type->field_index(var->name)].type; |
| name = ralloc_strdup(NULL, type->without_array()->name); |
| } else { |
| type = var->type; |
| member_type = NULL; |
| name = ralloc_strdup(NULL, var->name); |
| } |
| create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i, |
| var->name, member_type, varying_names); |
| ralloc_free(name); |
| } |
| } |
| |
| assert(i == *num_tfeedback_decls); |
| return has_xfb_qualifiers; |
| } |
| |
| /** |
| * Validate the types and qualifiers of an output from one stage against the |
| * matching input to another stage. |
| */ |
| static void |
| cross_validate_types_and_qualifiers(struct gl_shader_program *prog, |
| const ir_variable *input, |
| const ir_variable *output, |
| gl_shader_stage consumer_stage, |
| gl_shader_stage producer_stage) |
| { |
| /* Check that the types match between stages. |
| */ |
| const glsl_type *type_to_match = input->type; |
| |
| /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */ |
| const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX && |
| consumer_stage != MESA_SHADER_FRAGMENT) || |
| consumer_stage == MESA_SHADER_GEOMETRY; |
| if (extra_array_level) { |
| assert(type_to_match->is_array()); |
| type_to_match = type_to_match->fields.array; |
| } |
| |
| if (type_to_match != output->type) { |
| /* There is a bit of a special case for gl_TexCoord. This |
| * built-in is unsized by default. Applications that variable |
| * access it must redeclare it with a size. There is some |
| * language in the GLSL spec that implies the fragment shader |
| * and vertex shader do not have to agree on this size. Other |
| * driver behave this way, and one or two applications seem to |
| * rely on it. |
| * |
| * Neither declaration needs to be modified here because the array |
| * sizes are fixed later when update_array_sizes is called. |
| * |
| * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec: |
| * |
| * "Unlike user-defined varying variables, the built-in |
| * varying variables don't have a strict one-to-one |
| * correspondence between the vertex language and the |
| * fragment language." |
| */ |
| if (!output->type->is_array() || !is_gl_identifier(output->name)) { |
| linker_error(prog, |
| "%s shader output `%s' declared as type `%s', " |
| "but %s shader input declared as type `%s'\n", |
| _mesa_shader_stage_to_string(producer_stage), |
| output->name, |
| output->type->name, |
| _mesa_shader_stage_to_string(consumer_stage), |
| input->type->name); |
| return; |
| } |
| } |
| |
| /* Check that all of the qualifiers match between stages. |
| */ |
| |
| /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier |
| * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0 |
| * conformance test suite does not verify that the qualifiers must match. |
| * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for |
| * OpenGLES 3.0 drivers, so we relax the checking in all cases. |
| */ |
| if (false /* always skip the centroid check */ && |
| prog->data->Version < (prog->IsES ? 310 : 430) && |
| input->data.centroid != output->data.centroid) { |
| linker_error(prog, |
| "%s shader output `%s' %s centroid qualifier, " |
| "but %s shader input %s centroid qualifier\n", |
| _mesa_shader_stage_to_string(producer_stage), |
| output->name, |
| (output->data.centroid) ? "has" : "lacks", |
| _mesa_shader_stage_to_string(consumer_stage), |
| (input->data.centroid) ? "has" : "lacks"); |
| return; |
| } |
| |
| if (input->data.sample != output->data.sample) { |
| linker_error(prog, |
| "%s shader output `%s' %s sample qualifier, " |
| "but %s shader input %s sample qualifier\n", |
| _mesa_shader_stage_to_string(producer_stage), |
| output->name, |
| (output->data.sample) ? "has" : "lacks", |
| _mesa_shader_stage_to_string(consumer_stage), |
| (input->data.sample) ? "has" : "lacks"); |
| return; |
| } |
| |
| if (input->data.patch != output->data.patch) { |
| linker_error(prog, |
| "%s shader output `%s' %s patch qualifier, " |
| "but %s shader input %s patch qualifier\n", |
| _mesa_shader_stage_to_string(producer_stage), |
| output->name, |
| (output->data.patch) ? "has" : "lacks", |
| _mesa_shader_stage_to_string(consumer_stage), |
| (input->data.patch) ? "has" : "lacks"); |
| return; |
| } |
| |
| /* The GLSL 4.30 and GLSL ES 3.00 specifications say: |
| * |
| * "As only outputs need be declared with invariant, an output from |
| * one shader stage will still match an input of a subsequent stage |
| * without the input being declared as invariant." |
| * |
| * while GLSL 4.20 says: |
| * |
| * "For variables leaving one shader and coming into another shader, |
| * the invariant keyword has to be used in both shaders, or a link |
| * error will result." |
| * |
| * and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says: |
| * |
| * "The invariance of varyings that are declared in both the vertex |
| * and fragment shaders must match." |
| */ |
| if (input->data.invariant != output->data.invariant && |
| prog->data->Version < (prog->IsES ? 300 : 430)) { |
| linker_error(prog, |
| "%s shader output `%s' %s invariant qualifier, " |
| "but %s shader input %s invariant qualifier\n", |
| _mesa_shader_stage_to_string(producer_stage), |
| output->name, |
| (output->data.invariant) ? "has" : "lacks", |
| _mesa_shader_stage_to_string(consumer_stage), |
| (input->data.invariant) ? "has" : "lacks"); |
| return; |
| } |
| |
| /* GLSL >= 4.40 removes text requiring interpolation qualifiers |
| * to match cross stage, they must only match within the same stage. |
| * |
| * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec: |
| * |
| * "It is a link-time error if, within the same stage, the interpolation |
| * qualifiers of variables of the same name do not match. |
| * |
| * Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says: |
| * |
| * "When no interpolation qualifier is present, smooth interpolation |
| * is used." |
| * |
| * So we match variables where one is smooth and the other has no explicit |
| * qualifier. |
| */ |
| unsigned input_interpolation = input->data.interpolation; |
| unsigned output_interpolation = output->data.interpolation; |
| if (prog->IsES) { |
| if (input_interpolation == INTERP_MODE_NONE) |
| input_interpolation = INTERP_MODE_SMOOTH; |
| if (output_interpolation == INTERP_MODE_NONE) |
| output_interpolation = INTERP_MODE_SMOOTH; |
| } |
| if (input_interpolation != output_interpolation && |
| prog->data->Version < 440) { |
| linker_error(prog, |
| "%s shader output `%s' specifies %s " |
| "interpolation qualifier, " |
| "but %s shader input specifies %s " |
| "interpolation qualifier\n", |
| _mesa_shader_stage_to_string(producer_stage), |
| output->name, |
| interpolation_string(output->data.interpolation), |
| _mesa_shader_stage_to_string(consumer_stage), |
| interpolation_string(input->data.interpolation)); |
| return; |
| } |
| } |
| |
| /** |
| * Validate front and back color outputs against single color input |
| */ |
| static void |
| cross_validate_front_and_back_color(struct gl_shader_program *prog, |
| const ir_variable *input, |
| const ir_variable *front_color, |
| const ir_variable *back_color, |
| gl_shader_stage consumer_stage, |
| gl_shader_stage producer_stage) |
| { |
| if (front_color != NULL && front_color->data.assigned) |
| cross_validate_types_and_qualifiers(prog, input, front_color, |
| consumer_stage, producer_stage); |
| |
| if (back_color != NULL && back_color->data.assigned) |
| cross_validate_types_and_qualifiers(prog, input, back_color, |
| consumer_stage, producer_stage); |
| } |
| |
| static unsigned |
| compute_variable_location_slot(ir_variable *var, gl_shader_stage stage) |
| { |
| unsigned location_start = VARYING_SLOT_VAR0; |
| |
| switch (stage) { |
| case MESA_SHADER_VERTEX: |
| if (var->data.mode == ir_var_shader_in) |
| location_start = VERT_ATTRIB_GENERIC0; |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| case MESA_SHADER_TESS_EVAL: |
| if (var->data.patch) |
| location_start = VARYING_SLOT_PATCH0; |
| break; |
| case MESA_SHADER_FRAGMENT: |
| if (var->data.mode == ir_var_shader_out) |
| location_start = FRAG_RESULT_DATA0; |
| break; |
| default: |
| break; |
| } |
| |
| return var->data.location - location_start; |
| } |
| |
| struct explicit_location_info { |
| ir_variable *var; |
| unsigned base_type; |
| unsigned interpolation; |
| bool centroid; |
| bool sample; |
| bool patch; |
| }; |
| |
| static bool |
| check_location_aliasing(struct explicit_location_info explicit_locations[][4], |
| ir_variable *var, |
| unsigned location, |
| unsigned component, |
| unsigned location_limit, |
| const glsl_type *type, |
| unsigned interpolation, |
| bool centroid, |
| bool sample, |
| bool patch, |
| gl_shader_program *prog, |
| gl_shader_stage stage) |
| { |
| unsigned last_comp; |
| if (type->without_array()->is_record()) { |
| /* The component qualifier can't be used on structs so just treat |
| * all component slots as used. |
| */ |
| last_comp = 4; |
| } else { |
| unsigned dmul = type->without_array()->is_64bit() ? 2 : 1; |
| last_comp = component + type->without_array()->vector_elements * dmul; |
| } |
| |
| while (location < location_limit) { |
| unsigned i = component; |
| |
| /* If there are other outputs assigned to the same location |
| * they must have the same interpolation |
| */ |
| unsigned comp = 0; |
| while (comp < 4) { |
| /* Skip the components used by this output, we only care about |
| * other outputs in the same location |
| */ |
| if (comp == i) { |
| comp = last_comp; |
| continue; |
| } |
| |
| struct explicit_location_info *info = |
| &explicit_locations[location][comp]; |
| |
| if (info->var) { |
| if (info->interpolation != interpolation) { |
| linker_error(prog, |
| "%s shader has multiple outputs at explicit " |
| "location %u with different interpolation " |
| "settings\n", |
| _mesa_shader_stage_to_string(stage), location); |
| return false; |
| } |
| |
| if (info->centroid != centroid || |
| info->sample != sample || |
| info->patch != patch) { |
| linker_error(prog, |
| "%s shader has multiple outputs at explicit " |
| "location %u with different aux storage\n", |
| _mesa_shader_stage_to_string(stage), location); |
| return false; |
| } |
| } |
| |
| comp++; |
| } |
| |
| /* Component aliasing is not allowed */ |
| while (i < last_comp) { |
| if (explicit_locations[location][i].var != NULL) { |
| linker_error(prog, |
| "%s shader has multiple outputs explicitly " |
| "assigned to location %d and component %d\n", |
| _mesa_shader_stage_to_string(stage), |
| location, component); |
| return false; |
| } |
| |
| /* Make sure all component at this location have the same type. |
| */ |
| for (unsigned j = 0; j < 4; j++) { |
| if (explicit_locations[location][j].var && |
| explicit_locations[location][j].base_type != |
| type->without_array()->base_type) { |
| linker_error(prog, |
| "Varyings sharing the same location must " |
| "have the same underlying numerical type. " |
| "Location %u component %u\n", location, component); |
| return false; |
| } |
| } |
| |
| explicit_locations[location][i].var = var; |
| explicit_locations[location][i].base_type = |
| type->without_array()->base_type; |
| explicit_locations[location][i].interpolation = interpolation; |
| explicit_locations[location][i].centroid = centroid; |
| explicit_locations[location][i].sample = sample; |
| explicit_locations[location][i].patch = patch; |
| i++; |
| |
| /* We need to do some special handling for doubles as dvec3 and |
| * dvec4 consume two consecutive locations. We don't need to |
| * worry about components beginning at anything other than 0 as |
| * the spec does not allow this for dvec3 and dvec4. |
| */ |
| if (i == 4 && last_comp > 4) { |
| last_comp = last_comp - 4; |
| /* Bump location index and reset the component index */ |
| location++; |
| i = 0; |
| } |
| } |
| |
| location++; |
| } |
| |
| return true; |
| } |
| |
| static bool |
| validate_explicit_variable_location(struct gl_context *ctx, |
| struct explicit_location_info explicit_locations[][4], |
| ir_variable *var, |
| gl_shader_program *prog, |
| gl_linked_shader *sh) |
| { |
| const glsl_type *type = get_varying_type(var, sh->Stage); |
| unsigned num_elements = type->count_attribute_slots(false); |
| unsigned idx = compute_variable_location_slot(var, sh->Stage); |
| unsigned slot_limit = idx + num_elements; |
| |
| /* Vertex shader inputs and fragment shader outputs are validated in |
| * assign_attribute_or_color_locations() so we should not attempt to |
| * validate them again here. |
| */ |
| unsigned slot_max; |
| if (var->data.mode == ir_var_shader_out) { |
| assert(sh->Stage != MESA_SHADER_FRAGMENT); |
| slot_max = |
| ctx->Const.Program[sh->Stage].MaxOutputComponents / 4; |
| } else { |
| assert(var->data.mode == ir_var_shader_in); |
| assert(sh->Stage != MESA_SHADER_VERTEX); |
| slot_max = |
| ctx->Const.Program[sh->Stage].MaxInputComponents / 4; |
| } |
| |
| if (slot_limit > slot_max) { |
| linker_error(prog, |
| "Invalid location %u in %s shader\n", |
| idx, _mesa_shader_stage_to_string(sh->Stage)); |
| return false; |
| } |
| |
| if (type->without_array()->is_interface()) { |
| for (unsigned i = 0; i < type->without_array()->length; i++) { |
| glsl_struct_field *field = &type->fields.structure[i]; |
| unsigned field_location = field->location - |
| (field->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0); |
| if (!check_location_aliasing(explicit_locations, var, |
| field_location, |
| 0, field_location + 1, |
| field->type, |
| field->interpolation, |
| field->centroid, |
| field->sample, |
| field->patch, |
| prog, sh->Stage)) { |
| return false; |
| } |
| } |
| } else if (!check_location_aliasing(explicit_locations, var, |
| idx, var->data.location_frac, |
| slot_limit, type, |
| var->data.interpolation, |
| var->data.centroid, |
| var->data.sample, |
| var->data.patch, |
| prog, sh->Stage)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Validate explicit locations for the inputs to the first stage and the |
| * outputs of the last stage in an SSO program (everything in between is |
| * validated in cross_validate_outputs_to_inputs). |
| */ |
| void |
| validate_sso_explicit_locations(struct gl_context *ctx, |
| struct gl_shader_program *prog, |
| gl_shader_stage first_stage, |
| gl_shader_stage last_stage) |
| { |
| assert(prog->SeparateShader); |
| |
| /* VS inputs and FS outputs are validated in |
| * assign_attribute_or_color_locations() |
| */ |
| bool validate_first_stage = first_stage != MESA_SHADER_VERTEX; |
| bool validate_last_stage = last_stage != MESA_SHADER_FRAGMENT; |
| if (!validate_first_stage && !validate_last_stage) |
| return; |
| |
| struct explicit_location_info explicit_locations[MAX_VARYING][4]; |
| |
| gl_shader_stage stages[2] = { first_stage, last_stage }; |
| bool validate_stage[2] = { validate_first_stage, validate_last_stage }; |
| ir_variable_mode var_direction[2] = { ir_var_shader_in, ir_var_shader_out }; |
| |
| for (unsigned i = 0; i < 2; i++) { |
| if (!validate_stage[i]) |
| continue; |
| |
| gl_shader_stage stage = stages[i]; |
| |
| gl_linked_shader *sh = prog->_LinkedShaders[stage]; |
| assert(sh); |
| |
| memset(explicit_locations, 0, sizeof(explicit_locations)); |
| |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL || |
| !var->data.explicit_location || |
| var->data.location < VARYING_SLOT_VAR0 || |
| var->data.mode != var_direction[i]) |
| continue; |
| |
| if (!validate_explicit_variable_location( |
| ctx, explicit_locations, var, prog, sh)) { |
| return; |
| } |
| } |
| } |
| } |
| |
| /** |
| * Validate that outputs from one stage match inputs of another |
| */ |
| void |
| cross_validate_outputs_to_inputs(struct gl_context *ctx, |
| struct gl_shader_program *prog, |
| gl_linked_shader *producer, |
| gl_linked_shader *consumer) |
| { |
| glsl_symbol_table parameters; |
| struct explicit_location_info explicit_locations[MAX_VARYING][4] = { 0 }; |
| |
| /* Find all shader outputs in the "producer" stage. |
| */ |
| foreach_in_list(ir_instruction, node, producer->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL || var->data.mode != ir_var_shader_out) |
| continue; |
| |
| if (!var->data.explicit_location |
| || var->data.location < VARYING_SLOT_VAR0) |
| parameters.add_variable(var); |
| else { |
| /* User-defined varyings with explicit locations are handled |
| * differently because they do not need to have matching names. |
| */ |
| if (!validate_explicit_variable_location(ctx, |
| explicit_locations, |
| var, prog, producer)) { |
| return; |
| } |
| } |
| } |
| |
| |
| /* Find all shader inputs in the "consumer" stage. Any variables that have |
| * matching outputs already in the symbol table must have the same type and |
| * qualifiers. |
| * |
| * Exception: if the consumer is the geometry shader, then the inputs |
| * should be arrays and the type of the array element should match the type |
| * of the corresponding producer output. |
| */ |
| foreach_in_list(ir_instruction, node, consumer->ir) { |
| ir_variable *const input = node->as_variable(); |
| |
| if (input == NULL || input->data.mode != ir_var_shader_in) |
| continue; |
| |
| if (strcmp(input->name, "gl_Color") == 0 && input->data.used) { |
| const ir_variable *const front_color = |
| parameters.get_variable("gl_FrontColor"); |
| |
| const ir_variable *const back_color = |
| parameters.get_variable("gl_BackColor"); |
| |
| cross_validate_front_and_back_color(prog, input, |
| front_color, back_color, |
| consumer->Stage, producer->Stage); |
| } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) { |
| const ir_variable *const front_color = |
| parameters.get_variable("gl_FrontSecondaryColor"); |
| |
| const ir_variable *const back_color = |
| parameters.get_variable("gl_BackSecondaryColor"); |
| |
| cross_validate_front_and_back_color(prog, input, |
| front_color, back_color, |
| consumer->Stage, producer->Stage); |
| } else { |
| /* The rules for connecting inputs and outputs change in the presence |
| * of explicit locations. In this case, we no longer care about the |
| * names of the variables. Instead, we care only about the |
| * explicitly assigned location. |
| */ |
| ir_variable *output = NULL; |
| if (input->data.explicit_location |
| && input->data.location >= VARYING_SLOT_VAR0) { |
| |
| const glsl_type *type = get_varying_type(input, consumer->Stage); |
| unsigned num_elements = type->count_attribute_slots(false); |
| unsigned idx = |
| compute_variable_location_slot(input, consumer->Stage); |
| unsigned slot_limit = idx + num_elements; |
| |
| while (idx < slot_limit) { |
| if (idx >= MAX_VARYING) { |
| linker_error(prog, |
| "Invalid location %u in %s shader\n", idx, |
| _mesa_shader_stage_to_string(consumer->Stage)); |
| return; |
| } |
| |
| output = explicit_locations[idx][input->data.location_frac].var; |
| |
| if (output == NULL || |
| input->data.location != output->data.location) { |
| linker_error(prog, |
| "%s shader input `%s' with explicit location " |
| "has no matching output\n", |
| _mesa_shader_stage_to_string(consumer->Stage), |
| input->name); |
| break; |
| } |
| idx++; |
| } |
| } else { |
| output = parameters.get_variable(input->name); |
| } |
| |
| if (output != NULL) { |
| /* Interface blocks have their own validation elsewhere so don't |
| * try validating them here. |
| */ |
| if (!(input->get_interface_type() && |
| output->get_interface_type())) |
| cross_validate_types_and_qualifiers(prog, input, output, |
| consumer->Stage, |
| producer->Stage); |
| } else { |
| /* Check for input vars with unmatched output vars in prev stage |
| * taking into account that interface blocks could have a matching |
| * output but with different name, so we ignore them. |
| */ |
| assert(!input->data.assigned); |
| if (input->data.used && !input->get_interface_type() && |
| !input->data.explicit_location && !prog->SeparateShader) |
| linker_error(prog, |
| "%s shader input `%s' " |
| "has no matching output in the previous stage\n", |
| _mesa_shader_stage_to_string(consumer->Stage), |
| input->name); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Demote shader inputs and outputs that are not used in other stages, and |
| * remove them via dead code elimination. |
| */ |
| static void |
| remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object, |
| gl_linked_shader *sh, |
| enum ir_variable_mode mode) |
| { |
| if (is_separate_shader_object) |
| return; |
| |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL || var->data.mode != int(mode)) |
| continue; |
| |
| /* A shader 'in' or 'out' variable is only really an input or output if |
| * its value is used by other shader stages. This will cause the |
| * variable to have a location assigned. |
| */ |
| if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) { |
| assert(var->data.mode != ir_var_temporary); |
| |
| /* Assign zeros to demoted inputs to allow more optimizations. */ |
| if (var->data.mode == ir_var_shader_in && !var->constant_value) |
| var->constant_value = ir_constant::zero(var, var->type); |
| |
| var->data.mode = ir_var_auto; |
| } |
| } |
| |
| /* Eliminate code that is now dead due to unused inputs/outputs being |
| * demoted. |
| */ |
| while (do_dead_code(sh->ir, false)) |
| ; |
| |
| } |
| |
| /** |
| * Initialize this object based on a string that was passed to |
| * glTransformFeedbackVaryings. |
| * |
| * If the input is mal-formed, this call still succeeds, but it sets |
| * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var() |
| * will fail to find any matching variable. |
| */ |
| void |
| tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx, |
| const char *input) |
| { |
| /* We don't have to be pedantic about what is a valid GLSL variable name, |
| * because any variable with an invalid name can't exist in the IR anyway. |
| */ |
| |
| this->location = -1; |
| this->orig_name = input; |
| this->lowered_builtin_array_variable = none; |
| this->skip_components = 0; |
| this->next_buffer_separator = false; |
| this->matched_candidate = NULL; |
| this->stream_id = 0; |
| this->buffer = 0; |
| this->offset = 0; |
| |
| if (ctx->Extensions.ARB_transform_feedback3) { |
| /* Parse gl_NextBuffer. */ |
| if (strcmp(input, "gl_NextBuffer") == 0) { |
| this->next_buffer_separator = true; |
| return; |
| } |
| |
| /* Parse gl_SkipComponents. */ |
| if (strcmp(input, "gl_SkipComponents1") == 0) |
| this->skip_components = 1; |
| else if (strcmp(input, "gl_SkipComponents2") == 0) |
| this->skip_components = 2; |
| else if (strcmp(input, "gl_SkipComponents3") == 0) |
| this->skip_components = 3; |
| else if (strcmp(input, "gl_SkipComponents4") == 0) |
| this->skip_components = 4; |
| |
| if (this->skip_components) |
| return; |
| } |
| |
| /* Parse a declaration. */ |
| const char *base_name_end; |
| long subscript = parse_program_resource_name(input, &base_name_end); |
| this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input); |
| if (this->var_name == NULL) { |
| _mesa_error_no_memory(__func__); |
| return; |
| } |
| |
| if (subscript >= 0) { |
| this->array_subscript = subscript; |
| this->is_subscripted = true; |
| } else { |
| this->is_subscripted = false; |
| } |
| |
| /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this |
| * class must behave specially to account for the fact that gl_ClipDistance |
| * is converted from a float[8] to a vec4[2]. |
| */ |
| if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance && |
| strcmp(this->var_name, "gl_ClipDistance") == 0) { |
| this->lowered_builtin_array_variable = clip_distance; |
| } |
| if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance && |
| strcmp(this->var_name, "gl_CullDistance") == 0) { |
| this->lowered_builtin_array_variable = cull_distance; |
| } |
| |
| if (ctx->Const.LowerTessLevel && |
| (strcmp(this->var_name, "gl_TessLevelOuter") == 0)) |
| this->lowered_builtin_array_variable = tess_level_outer; |
| if (ctx->Const.LowerTessLevel && |
| (strcmp(this->var_name, "gl_TessLevelInner") == 0)) |
| this->lowered_builtin_array_variable = tess_level_inner; |
| } |
| |
| |
| /** |
| * Determine whether two tfeedback_decl objects refer to the same variable and |
| * array index (if applicable). |
| */ |
| bool |
| tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y) |
| { |
| assert(x.is_varying() && y.is_varying()); |
| |
| if (strcmp(x.var_name, y.var_name) != 0) |
| return false; |
| if (x.is_subscripted != y.is_subscripted) |
| return false; |
| if (x.is_subscripted && x.array_subscript != y.array_subscript) |
| return false; |
| return true; |
| } |
| |
| |
| /** |
| * Assign a location and stream ID for this tfeedback_decl object based on the |
| * transform feedback candidate found by find_candidate. |
| * |
| * If an error occurs, the error is reported through linker_error() and false |
| * is returned. |
| */ |
| bool |
| tfeedback_decl::assign_location(struct gl_context *ctx, |
| struct gl_shader_program *prog) |
| { |
| assert(this->is_varying()); |
| |
| unsigned fine_location |
| = this->matched_candidate->toplevel_var->data.location * 4 |
| + this->matched_candidate->toplevel_var->data.location_frac |
| + this->matched_candidate->offset; |
| const unsigned dmul = |
| this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1; |
| |
| if (this->matched_candidate->type->is_array()) { |
| /* Array variable */ |
| const unsigned matrix_cols = |
| this->matched_candidate->type->fields.array->matrix_columns; |
| const unsigned vector_elements = |
| this->matched_candidate->type->fields.array->vector_elements; |
| unsigned actual_array_size; |
| switch (this->lowered_builtin_array_variable) { |
| case clip_distance: |
| actual_array_size = prog->last_vert_prog ? |
| prog->last_vert_prog->info.clip_distance_array_size : 0; |
| break; |
| case cull_distance: |
| actual_array_size = prog->last_vert_prog ? |
| prog->last_vert_prog->info.cull_distance_array_size : 0; |
| break; |
| case tess_level_outer: |
| actual_array_size = 4; |
| break; |
| case tess_level_inner: |
| actual_array_size = 2; |
| break; |
| case none: |
| default: |
| actual_array_size = this->matched_candidate->type->array_size(); |
| break; |
| } |
| |
| if (this->is_subscripted) { |
| /* Check array bounds. */ |
| if (this->array_subscript >= actual_array_size) { |
| linker_error(prog, "Transform feedback varying %s has index " |
| "%i, but the array size is %u.", |
| this->orig_name, this->array_subscript, |
| actual_array_size); |
| return false; |
| } |
| unsigned array_elem_size = this->lowered_builtin_array_variable ? |
| 1 : vector_elements * matrix_cols * dmul; |
| fine_location += array_elem_size * this->array_subscript; |
| this->size = 1; |
| } else { |
| this->size = actual_array_size; |
| } |
| this->vector_elements = vector_elements; |
| this->matrix_columns = matrix_cols; |
| if (this->lowered_builtin_array_variable) |
| this->type = GL_FLOAT; |
| else |
| this->type = this->matched_candidate->type->fields.array->gl_type; |
| } else { |
| /* Regular variable (scalar, vector, or matrix) */ |
| if (this->is_subscripted) { |
| linker_error(prog, "Transform feedback varying %s requested, " |
| "but %s is not an array.", |
| this->orig_name, this->var_name); |
| return false; |
| } |
| this->size = 1; |
| this->vector_elements = this->matched_candidate->type->vector_elements; |
| this->matrix_columns = this->matched_candidate->type->matrix_columns; |
| this->type = this->matched_candidate->type->gl_type; |
| } |
| this->location = fine_location / 4; |
| this->location_frac = fine_location % 4; |
| |
| /* From GL_EXT_transform_feedback: |
| * A program will fail to link if: |
| * |
| * * the total number of components to capture in any varying |
| * variable in <varyings> is greater than the constant |
| * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the |
| * buffer mode is SEPARATE_ATTRIBS_EXT; |
| */ |
| if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS && |
| this->num_components() > |
| ctx->Const.MaxTransformFeedbackSeparateComponents) { |
| linker_error(prog, "Transform feedback varying %s exceeds " |
| "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.", |
| this->orig_name); |
| return false; |
| } |
| |
| /* Only transform feedback varyings can be assigned to non-zero streams, |
| * so assign the stream id here. |
| */ |
| this->stream_id = this->matched_candidate->toplevel_var->data.stream; |
| |
| unsigned array_offset = this->array_subscript * 4 * dmul; |
| unsigned struct_offset = this->matched_candidate->offset * 4 * dmul; |
| this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer; |
| this->offset = this->matched_candidate->toplevel_var->data.offset + |
| array_offset + struct_offset; |
| |
| return true; |
| } |
| |
| |
| unsigned |
| tfeedback_decl::get_num_outputs() const |
| { |
| if (!this->is_varying()) { |
| return 0; |
| } |
| return (this->num_components() + this->location_frac + 3)/4; |
| } |
| |
| |
| /** |
| * Update gl_transform_feedback_info to reflect this tfeedback_decl. |
| * |
| * If an error occurs, the error is reported through linker_error() and false |
| * is returned. |
| */ |
| bool |
| tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog, |
| struct gl_transform_feedback_info *info, |
| unsigned buffer, unsigned buffer_index, |
| const unsigned max_outputs, bool *explicit_stride, |
| bool has_xfb_qualifiers) const |
| { |
| unsigned xfb_offset = 0; |
| unsigned size = this->size; |
| /* Handle gl_SkipComponents. */ |
| if (this->skip_components) { |
| info->Buffers[buffer].Stride += this->skip_components; |
| size = this->skip_components; |
| goto store_varying; |
| } |
| |
| if (this->next_buffer_separator) { |
| size = 0; |
| goto store_varying; |
| } |
| |
| if (has_xfb_qualifiers) { |
| xfb_offset = this->offset / 4; |
| } else { |
| xfb_offset = info->Buffers[buffer].Stride; |
| } |
| info->Varyings[info->NumVarying].Offset = xfb_offset * 4; |
| |
| { |
| unsigned location = this->location; |
| unsigned location_frac = this->location_frac; |
| unsigned num_components = this->num_components(); |
| while (num_components > 0) { |
| unsigned output_size = MIN2(num_components, 4 - location_frac); |
| assert((info->NumOutputs == 0 && max_outputs == 0) || |
| info->NumOutputs < max_outputs); |
| |
| /* From the ARB_enhanced_layouts spec: |
| * |
| * "If such a block member or variable is not written during a shader |
| * invocation, the buffer contents at the assigned offset will be |
| * undefined. Even if there are no static writes to a variable or |
| * member that is assigned a transform feedback offset, the space is |
| * still allocated in the buffer and still affects the stride." |
| */ |
| if (this->is_varying_written()) { |
| info->Outputs[info->NumOutputs].ComponentOffset = location_frac; |
| info->Outputs[info->NumOutputs].OutputRegister = location; |
| info->Outputs[info->NumOutputs].NumComponents = output_size; |
| info->Outputs[info->NumOutputs].StreamId = stream_id; |
| info->Outputs[info->NumOutputs].OutputBuffer = buffer; |
| info->Outputs[info->NumOutputs].DstOffset = xfb_offset; |
| ++info->NumOutputs; |
| } |
| info->Buffers[buffer].Stream = this->stream_id; |
| xfb_offset += output_size; |
| |
| num_components -= output_size; |
| location++; |
| location_frac = 0; |
| } |
| } |
| |
| if (explicit_stride && explicit_stride[buffer]) { |
| if (this->is_64bit() && info->Buffers[buffer].Stride % 2) { |
| linker_error(prog, "invalid qualifier xfb_stride=%d must be a " |
| "multiple of 8 as its applied to a type that is or " |
| "contains a double.", |
| info->Buffers[buffer].Stride * 4); |
| return false; |
| } |
| |
| if ((this->offset / 4) / info->Buffers[buffer].Stride != |
| (xfb_offset - 1) / info->Buffers[buffer].Stride) { |
| linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for " |
| "buffer (%d)", xfb_offset * 4, |
| info->Buffers[buffer].Stride * 4, buffer); |
| return false; |
| } |
| } else { |
| info->Buffers[buffer].Stride = xfb_offset; |
| } |
| |
| /* From GL_EXT_transform_feedback: |
| * A program will fail to link if: |
| * |
| * * the total number of components to capture is greater than |
| * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT |
| * and the buffer mode is INTERLEAVED_ATTRIBS_EXT. |
| * |
| * From GL_ARB_enhanced_layouts: |
| * |
| * "The resulting stride (implicit or explicit) must be less than or |
| * equal to the implementation-dependent constant |
| * gl_MaxTransformFeedbackInterleavedComponents." |
| */ |
| if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS || |
| has_xfb_qualifiers) && |
| info->Buffers[buffer].Stride > |
| ctx->Const.MaxTransformFeedbackInterleavedComponents) { |
| linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS " |
| "limit has been exceeded."); |
| return false; |
| } |
| |
| store_varying: |
| info->Varyings[info->NumVarying].Name = ralloc_strdup(prog, |
| this->orig_name); |
| info->Varyings[info->NumVarying].Type = this->type; |
| info->Varyings[info->NumVarying].Size = size; |
| info->Varyings[info->NumVarying].BufferIndex = buffer_index; |
| info->NumVarying++; |
| info->Buffers[buffer].NumVaryings++; |
| |
| return true; |
| } |
| |
| |
| const tfeedback_candidate * |
| tfeedback_decl::find_candidate(gl_shader_program *prog, |
| hash_table *tfeedback_candidates) |
| { |
| const char *name = this->var_name; |
| switch (this->lowered_builtin_array_variable) { |
| case none: |
| name = this->var_name; |
| break; |
| case clip_distance: |
| name = "gl_ClipDistanceMESA"; |
| break; |
| case cull_distance: |
| name = "gl_CullDistanceMESA"; |
| break; |
| case tess_level_outer: |
| name = "gl_TessLevelOuterMESA"; |
| break; |
| case tess_level_inner: |
| name = "gl_TessLevelInnerMESA"; |
| break; |
| } |
| hash_entry *entry = _mesa_hash_table_search(tfeedback_candidates, name); |
| |
| this->matched_candidate = entry ? |
| (const tfeedback_candidate *) entry->data : NULL; |
| |
| if (!this->matched_candidate) { |
| /* From GL_EXT_transform_feedback: |
| * A program will fail to link if: |
| * |
| * * any variable name specified in the <varyings> array is not |
| * declared as an output in the geometry shader (if present) or |
| * the vertex shader (if no geometry shader is present); |
| */ |
| linker_error(prog, "Transform feedback varying %s undeclared.", |
| this->orig_name); |
| } |
| |
| return this->matched_candidate; |
| } |
| |
| |
| /** |
| * Parse all the transform feedback declarations that were passed to |
| * glTransformFeedbackVaryings() and store them in tfeedback_decl objects. |
| * |
| * If an error occurs, the error is reported through linker_error() and false |
| * is returned. |
| */ |
| static bool |
| parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog, |
| const void *mem_ctx, unsigned num_names, |
| char **varying_names, tfeedback_decl *decls) |
| { |
| for (unsigned i = 0; i < num_names; ++i) { |
| decls[i].init(ctx, mem_ctx, varying_names[i]); |
| |
| if (!decls[i].is_varying()) |
| continue; |
| |
| /* From GL_EXT_transform_feedback: |
| * A program will fail to link if: |
| * |
| * * any two entries in the <varyings> array specify the same varying |
| * variable; |
| * |
| * We interpret this to mean "any two entries in the <varyings> array |
| * specify the same varying variable and array index", since transform |
| * feedback of arrays would be useless otherwise. |
| */ |
| for (unsigned j = 0; j < i; ++j) { |
| if (!decls[j].is_varying()) |
| continue; |
| |
| if (tfeedback_decl::is_same(decls[i], decls[j])) { |
| linker_error(prog, "Transform feedback varying %s specified " |
| "more than once.", varying_names[i]); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| |
| static int |
| cmp_xfb_offset(const void * x_generic, const void * y_generic) |
| { |
| tfeedback_decl *x = (tfeedback_decl *) x_generic; |
| tfeedback_decl *y = (tfeedback_decl *) y_generic; |
| |
| if (x->get_buffer() != y->get_buffer()) |
| return x->get_buffer() - y->get_buffer(); |
| return x->get_offset() - y->get_offset(); |
| } |
| |
| /** |
| * Store transform feedback location assignments into |
| * prog->sh.LinkedTransformFeedback based on the data stored in |
| * tfeedback_decls. |
| * |
| * If an error occurs, the error is reported through linker_error() and false |
| * is returned. |
| */ |
| static bool |
| store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog, |
| unsigned num_tfeedback_decls, |
| tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers) |
| { |
| if (!prog->last_vert_prog) |
| return true; |
| |
| /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for |
| * tracking the number of buffers doesn't overflow. |
| */ |
| assert(ctx->Const.MaxTransformFeedbackBuffers < 32); |
| |
| bool separate_attribs_mode = |
| prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS; |
| |
| struct gl_program *xfb_prog = prog->last_vert_prog; |
| xfb_prog->sh.LinkedTransformFeedback = |
| rzalloc(xfb_prog, struct gl_transform_feedback_info); |
| |
| /* The xfb_offset qualifier does not have to be used in increasing order |
| * however some drivers expect to receive the list of transform feedback |
| * declarations in order so sort it now for convenience. |
| */ |
| if (has_xfb_qualifiers) |
| qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls), |
| cmp_xfb_offset); |
| |
| xfb_prog->sh.LinkedTransformFeedback->Varyings = |
| rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info, |
| num_tfeedback_decls); |
| |
| unsigned num_outputs = 0; |
| for (unsigned i = 0; i < num_tfeedback_decls; ++i) { |
| if (tfeedback_decls[i].is_varying_written()) |
| num_outputs += tfeedback_decls[i].get_num_outputs(); |
| } |
| |
| xfb_prog->sh.LinkedTransformFeedback->Outputs = |
| rzalloc_array(xfb_prog, struct gl_transform_feedback_output, |
| num_outputs); |
| |
| unsigned num_buffers = 0; |
| unsigned buffers = 0; |
| |
| if (!has_xfb_qualifiers && separate_attribs_mode) { |
| /* GL_SEPARATE_ATTRIBS */ |
| for (unsigned i = 0; i < num_tfeedback_decls; ++i) { |
| if (!tfeedback_decls[i].store(ctx, prog, |
| xfb_prog->sh.LinkedTransformFeedback, |
| num_buffers, num_buffers, num_outputs, |
| NULL, has_xfb_qualifiers)) |
| return false; |
| |
| buffers |= 1 << num_buffers; |
| num_buffers++; |
| } |
| } |
| else { |
| /* GL_INVERLEAVED_ATTRIBS */ |
| int buffer_stream_id = -1; |
| unsigned buffer = |
| num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0; |
| bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false }; |
| |
| /* Apply any xfb_stride global qualifiers */ |
| if (has_xfb_qualifiers) { |
| for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { |
| if (prog->TransformFeedback.BufferStride[j]) { |
| buffers |= 1 << j; |
| explicit_stride[j] = true; |
| xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride = |
| prog->TransformFeedback.BufferStride[j] / 4; |
| } |
| } |
| } |
| |
| for (unsigned i = 0; i < num_tfeedback_decls; ++i) { |
| if (has_xfb_qualifiers && |
| buffer != tfeedback_decls[i].get_buffer()) { |
| /* we have moved to the next buffer so reset stream id */ |
| buffer_stream_id = -1; |
| num_buffers++; |
| } |
| |
| if (tfeedback_decls[i].is_next_buffer_separator()) { |
| if (!tfeedback_decls[i].store(ctx, prog, |
| xfb_prog->sh.LinkedTransformFeedback, |
| buffer, num_buffers, num_outputs, |
| explicit_stride, has_xfb_qualifiers)) |
| return false; |
| num_buffers++; |
| buffer_stream_id = -1; |
| continue; |
| } else if (tfeedback_decls[i].is_varying()) { |
| if (buffer_stream_id == -1) { |
| /* First varying writing to this buffer: remember its stream */ |
| buffer_stream_id = (int) tfeedback_decls[i].get_stream_id(); |
| } else if (buffer_stream_id != |
| (int) tfeedback_decls[i].get_stream_id()) { |
| /* Varying writes to the same buffer from a different stream */ |
| linker_error(prog, |
| "Transform feedback can't capture varyings belonging " |
| "to different vertex streams in a single buffer. " |
| "Varying %s writes to buffer from stream %u, other " |
| "varyings in the same buffer write from stream %u.", |
| tfeedback_decls[i].name(), |
| tfeedback_decls[i].get_stream_id(), |
| buffer_stream_id); |
| return false; |
| } |
| } |
| |
| if (has_xfb_qualifiers) { |
| buffer = tfeedback_decls[i].get_buffer(); |
| } else { |
| buffer = num_buffers; |
| } |
| buffers |= 1 << buffer; |
| |
| if (!tfeedback_decls[i].store(ctx, prog, |
| xfb_prog->sh.LinkedTransformFeedback, |
| buffer, num_buffers, num_outputs, |
| explicit_stride, has_xfb_qualifiers)) |
| return false; |
| } |
| } |
| |
| assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs); |
| |
| xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers; |
| return true; |
| } |
| |
| namespace { |
| |
| /** |
| * Data structure recording the relationship between outputs of one shader |
| * stage (the "producer") and inputs of another (the "consumer"). |
| */ |
| class varying_matches |
| { |
| public: |
| varying_matches(bool disable_varying_packing, bool xfb_enabled, |
| bool enhanced_layouts_enabled, |
| gl_shader_stage producer_stage, |
| gl_shader_stage consumer_stage); |
| ~varying_matches(); |
| void record(ir_variable *producer_var, ir_variable *consumer_var); |
| unsigned assign_locations(struct gl_shader_program *prog, |
| uint8_t *components, |
| uint64_t reserved_slots); |
| void store_locations() const; |
| |
| private: |
| bool is_varying_packing_safe(const glsl_type *type, |
| const ir_variable *var); |
| |
| /** |
| * If true, this driver disables varying packing, so all varyings need to |
| * be aligned on slot boundaries, and take up a number of slots equal to |
| * their number of matrix columns times their array size. |
| * |
| * Packing may also be disabled because our current packing method is not |
| * safe in SSO or versions of OpenGL where interpolation qualifiers are not |
| * guaranteed to match across stages. |
| */ |
| const bool disable_varying_packing; |
| |
| /** |
| * If true, this driver has transform feedback enabled. The transform |
| * feedback code requires at least some packing be done even when varying |
| * packing is disabled, fortunately where transform feedback requires |
| * packing it's safe to override the disabled setting. See |
| * is_varying_packing_safe(). |
| */ |
| const bool xfb_enabled; |
| |
| const bool enhanced_layouts_enabled; |
| |
| /** |
| * Enum representing the order in which varyings are packed within a |
| * packing class. |
| * |
| * Currently we pack vec4's first, then vec2's, then scalar values, then |
| * vec3's. This order ensures that the only vectors that are at risk of |
| * having to be "double parked" (split between two adjacent varying slots) |
| * are the vec3's. |
| */ |
| enum packing_order_enum { |
| PACKING_ORDER_VEC4, |
| PACKING_ORDER_VEC2, |
| PACKING_ORDER_SCALAR, |
| PACKING_ORDER_VEC3, |
| }; |
| |
| static unsigned compute_packing_class(const ir_variable *var); |
| static packing_order_enum compute_packing_order(const ir_variable *var); |
| static int match_comparator(const void *x_generic, const void *y_generic); |
| static int xfb_comparator(const void *x_generic, const void *y_generic); |
| |
| /** |
| * Structure recording the relationship between a single producer output |
| * and a single consumer input. |
| */ |
| struct match { |
| /** |
| * Packing class for this varying, computed by compute_packing_class(). |
| */ |
| unsigned packing_class; |
| |
| /** |
| * Packing order for this varying, computed by compute_packing_order(). |
| */ |
| packing_order_enum packing_order; |
| unsigned num_components; |
| |
| /** |
| * The output variable in the producer stage. |
| */ |
| ir_variable *producer_var; |
| |
| /** |
| * The input variable in the consumer stage. |
| */ |
| ir_variable *consumer_var; |
| |
| /** |
| * The location which has been assigned for this varying. This is |
| * expressed in multiples of a float, with the first generic varying |
| * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the |
| * value 0. |
| */ |
| unsigned generic_location; |
| } *matches; |
| |
| /** |
| * The number of elements in the \c matches array that are currently in |
| * use. |
| */ |
| unsigned num_matches; |
| |
| /** |
| * The number of elements that were set aside for the \c matches array when |
| * it was allocated. |
| */ |
| unsigned matches_capacity; |
| |
| gl_shader_stage producer_stage; |
| gl_shader_stage consumer_stage; |
| }; |
| |
| } /* anonymous namespace */ |
| |
| varying_matches::varying_matches(bool disable_varying_packing, |
| bool xfb_enabled, |
| bool enhanced_layouts_enabled, |
| gl_shader_stage producer_stage, |
| gl_shader_stage consumer_stage) |
| : disable_varying_packing(disable_varying_packing), |
| xfb_enabled(xfb_enabled), |
| enhanced_layouts_enabled(enhanced_layouts_enabled), |
| producer_stage(producer_stage), |
| consumer_stage(consumer_stage) |
| { |
| /* Note: this initial capacity is rather arbitrarily chosen to be large |
| * enough for many cases without wasting an unreasonable amount of space. |
| * varying_matches::record() will resize the array if there are more than |
| * this number of varyings. |
| */ |
| this->matches_capacity = 8; |
| this->matches = (match *) |
| malloc(sizeof(*this->matches) * this->matches_capacity); |
| this->num_matches = 0; |
| } |
| |
| |
| varying_matches::~varying_matches() |
| { |
| free(this->matches); |
| } |
| |
| |
| /** |
| * Packing is always safe on individual arrays, structures, and matrices. It |
| * is also safe if the varying is only used for transform feedback. |
| */ |
| bool |
| varying_matches::is_varying_packing_safe(const glsl_type *type, |
| const ir_variable *var) |
| { |
| if (consumer_stage == MESA_SHADER_TESS_EVAL || |
| consumer_stage == MESA_SHADER_TESS_CTRL || |
| producer_stage == MESA_SHADER_TESS_CTRL) |
| return false; |
| |
| return xfb_enabled && (type->is_array() || type->is_record() || |
| type->is_matrix() || var->data.is_xfb_only); |
| } |
| |
| |
| /** |
| * Record the given producer/consumer variable pair in the list of variables |
| * that should later be assigned locations. |
| * |
| * It is permissible for \c consumer_var to be NULL (this happens if a |
| * variable is output by the producer and consumed by transform feedback, but |
| * not consumed by the consumer). |
| * |
| * If \c producer_var has already been paired up with a consumer_var, or |
| * producer_var is part of fixed pipeline functionality (and hence already has |
| * a location assigned), this function has no effect. |
| * |
| * Note: as a side effect this function may change the interpolation type of |
| * \c producer_var, but only when the change couldn't possibly affect |
| * rendering. |
| */ |
| void |
| varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var) |
| { |
| assert(producer_var != NULL || consumer_var != NULL); |
| |
| if ((producer_var && (!producer_var->data.is_unmatched_generic_inout || |
| producer_var->data.explicit_location)) || |
| (consumer_var && (!consumer_var->data.is_unmatched_generic_inout || |
| consumer_var->data.explicit_location))) { |
| /* Either a location already exists for this variable (since it is part |
| * of fixed functionality), or it has already been recorded as part of a |
| * previous match. |
| */ |
| return; |
| } |
| |
| bool needs_flat_qualifier = consumer_var == NULL && |
| (producer_var->type->contains_integer() || |
| producer_var->type->contains_double()); |
| |
| if (!disable_varying_packing && |
| (needs_flat_qualifier || |
| (consumer_stage != MESA_SHADER_NONE && consumer_stage != MESA_SHADER_FRAGMENT))) { |
| /* Since this varying is not being consumed by the fragment shader, its |
| * interpolation type varying cannot possibly affect rendering. |
| * Also, this variable is non-flat and is (or contains) an integer |
| * or a double. |
| * If the consumer stage is unknown, don't modify the interpolation |
| * type as it could affect rendering later with separate shaders. |
| * |
| * lower_packed_varyings requires all integer varyings to flat, |
| * regardless of where they appear. We can trivially satisfy that |
| * requirement by changing the interpolation type to flat here. |
| */ |
| if (producer_var) { |
| producer_var->data.centroid = false; |
| producer_var->data.sample = false; |
| producer_var->data.interpolation = INTERP_MODE_FLAT; |
| } |
| |
| if (consumer_var) { |
| consumer_var->data.centroid = false; |
| consumer_var->data.sample = false; |
| consumer_var->data.interpolation = INTERP_MODE_FLAT; |
| } |
| } |
| |
| if (this->num_matches == this->matches_capacity) { |
| this->matches_capacity *= 2; |
| this->matches = (match *) |
| realloc(this->matches, |
| sizeof(*this->matches) * this->matches_capacity); |
| } |
| |
| /* We must use the consumer to compute the packing class because in GL4.4+ |
| * there is no guarantee interpolation qualifiers will match across stages. |
| * |
| * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec: |
| * |
| * "The type and presence of interpolation qualifiers of variables with |
| * the same name declared in all linked shaders for the same cross-stage |
| * interface must match, otherwise the link command will fail. |
| * |
| * When comparing an output from one stage to an input of a subsequent |
| * stage, the input and output don't match if their interpolation |
| * qualifiers (or lack thereof) are not the same." |
| * |
| * This text was also in at least revison 7 of the 4.40 spec but is no |
| * longer in revision 9 and not in the 4.50 spec. |
| */ |
| const ir_variable *const var = (consumer_var != NULL) |
| ? consumer_var : producer_var; |
| const gl_shader_stage stage = (consumer_var != NULL) |
| ? consumer_stage : producer_stage; |
| const glsl_type *type = get_varying_type(var, stage); |
| |
| if (producer_var && consumer_var && |
| consumer_var->data.must_be_shader_input) { |
| producer_var->data.must_be_shader_input = 1; |
| } |
| |
| this->matches[this->num_matches].packing_class |
| = this->compute_packing_class(var); |
| this->matches[this->num_matches].packing_order |
| = this->compute_packing_order(var); |
| if ((this->disable_varying_packing && !is_varying_packing_safe(type, var)) || |
| var->data.must_be_shader_input) { |
| unsigned slots = type->count_attribute_slots(false); |
| this->matches[this->num_matches].num_components = slots * 4; |
| } else { |
| this->matches[this->num_matches].num_components |
| = type->component_slots(); |
| } |
| |
| this->matches[this->num_matches].producer_var = producer_var; |
| this->matches[this->num_matches].consumer_var = consumer_var; |
| this->num_matches++; |
| if (producer_var) |
| producer_var->data.is_unmatched_generic_inout = 0; |
| if (consumer_var) |
| consumer_var->data.is_unmatched_generic_inout = 0; |
| } |
| |
| |
| /** |
| * Choose locations for all of the variable matches that were previously |
| * passed to varying_matches::record(). |
| */ |
| unsigned |
| varying_matches::assign_locations(struct gl_shader_program *prog, |
| uint8_t *components, |
| uint64_t reserved_slots) |
| { |
| /* If packing has been disabled then we cannot safely sort the varyings by |
| * class as it may mean we are using a version of OpenGL where |
| * interpolation qualifiers are not guaranteed to be matching across |
| * shaders, sorting in this case could result in mismatching shader |
| * interfaces. |
| * When packing is disabled the sort orders varyings used by transform |
| * feedback first, but also depends on *undefined behaviour* of qsort to |
| * reverse the order of the varyings. See: xfb_comparator(). |
| */ |
| if (!this->disable_varying_packing) { |
| /* Sort varying matches into an order that makes them easy to pack. */ |
| qsort(this->matches, this->num_matches, sizeof(*this->matches), |
| &varying_matches::match_comparator); |
| } else { |
| /* Only sort varyings that are only used by transform feedback. */ |
| qsort(this->matches, this->num_matches, sizeof(*this->matches), |
| &varying_matches::xfb_comparator); |
| } |
| |
| unsigned generic_location = 0; |
| unsigned generic_patch_location = MAX_VARYING*4; |
| bool previous_var_xfb_only = false; |
| |
| for (unsigned i = 0; i < this->num_matches; i++) { |
| unsigned *location = &generic_location; |
| |
| const ir_variable *var; |
| const glsl_type *type; |
| bool is_vertex_input = false; |
| if (matches[i].consumer_var) { |
| var = matches[i].consumer_var; |
| type = get_varying_type(var, consumer_stage); |
| if (consumer_stage == MESA_SHADER_VERTEX) |
| is_vertex_input = true; |
| } else { |
| var = matches[i].producer_var; |
| type = get_varying_type(var, producer_stage); |
| } |
| |
| if (var->data.patch) |
| location = &generic_patch_location; |
| |
| /* Advance to the next slot if this varying has a different packing |
| * class than the previous one, and we're not already on a slot |
| * boundary. |
| * |
| * Also advance to the next slot if packing is disabled. This makes sure |
| * we don't assign varyings the same locations which is possible |
| * because we still pack individual arrays, records and matrices even |
| * when packing is disabled. Note we don't advance to the next slot if |
| * we can pack varyings together that are only used for transform |
| * feedback. |
| */ |
| if (var->data.must_be_shader_input || |
| (this->disable_varying_packing && |
| !(previous_var_xfb_only && var->data.is_xfb_only)) || |
| (i > 0 && this->matches[i - 1].packing_class |
| != this->matches[i].packing_class )) { |
| *location = ALIGN(*location, 4); |
| } |
| |
| previous_var_xfb_only = var->data.is_xfb_only; |
| |
| /* The number of components taken up by this variable. For vertex shader |
| * inputs, we use the number of slots * 4, as they have different |
| * counting rules. |
| */ |
| unsigned num_components = is_vertex_input ? |
| type->count_attribute_slots(is_vertex_input) * 4 : |
| this->matches[i].num_components; |
| |
| /* The last slot for this variable, inclusive. */ |
| unsigned slot_end = *location + num_components - 1; |
| |
| /* FIXME: We could be smarter in the below code and loop back over |
| * trying to fill any locations that we skipped because we couldn't pack |
| * the varying between an explicit location. For now just let the user |
| * hit the linking error if we run out of room and suggest they use |
| * explicit locations. |
| */ |
| while (slot_end < MAX_VARYING * 4u) { |
| const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1; |
| const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u); |
| |
| assert(slots > 0); |
| if (reserved_slots & slot_mask) { |
| *location = ALIGN(*location + 1, 4); |
| slot_end = *location + num_components - 1; |
| continue; |
| } |
| |
| break; |
| } |
| |
| if (!var->data.patch && slot_end >= MAX_VARYING * 4u) { |
| linker_error(prog, "insufficient contiguous locations available for " |
| "%s it is possible an array or struct could not be " |
| "packed between varyings with explicit locations. Try " |
| "using an explicit location for arrays and structs.", |
| var->name); |
| } |
| |
| if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) { |
| for (unsigned j = *location / 4u; j < slot_end / 4u; j++) |
| components[j] = 4; |
| components[slot_end / 4u] = (slot_end & 3) + 1; |
| } |
| |
| this->matches[i].generic_location = *location; |
| |
| *location = slot_end + 1; |
| } |
| |
| return (generic_location + 3) / 4; |
| } |
| |
| |
| /** |
| * Update the producer and consumer shaders to reflect the locations |
| * assignments that were made by varying_matches::assign_locations(). |
| */ |
| void |
| varying_matches::store_locations() const |
| { |
| /* Check is location needs to be packed with lower_packed_varyings() or if |
| * we can just use ARB_enhanced_layouts packing. |
| */ |
| bool pack_loc[MAX_VARYINGS_INCL_PATCH] = { 0 }; |
| const glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} }; |
| |
| for (unsigned i = 0; i < this->num_matches; i++) { |
| ir_variable *producer_var = this->matches[i].producer_var; |
| ir_variable *consumer_var = this->matches[i].consumer_var; |
| unsigned generic_location = this->matches[i].generic_location; |
| unsigned slot = generic_location / 4; |
| unsigned offset = generic_location % 4; |
| |
| if (producer_var) { |
| producer_var->data.location = VARYING_SLOT_VAR0 + slot; |
| producer_var->data.location_frac = offset; |
| } |
| |
| if (consumer_var) { |
| assert(consumer_var->data.location == -1); |
| consumer_var->data.location = VARYING_SLOT_VAR0 + slot; |
| consumer_var->data.location_frac = offset; |
| } |
| |
| /* Find locations suitable for native packing via |
| * ARB_enhanced_layouts. |
| */ |
| if (producer_var && consumer_var) { |
| if (enhanced_layouts_enabled) { |
| const glsl_type *type = |
| get_varying_type(producer_var, producer_stage); |
| if (type->is_array() || type->is_matrix() || type->is_record() || |
| type->is_double()) { |
| unsigned comp_slots = type->component_slots() + offset; |
| unsigned slots = comp_slots / 4; |
| if (comp_slots % 4) |
| slots += 1; |
| |
| for (unsigned j = 0; j < slots; j++) { |
| pack_loc[slot + j] = true; |
| } |
| } else if (offset + type->vector_elements > 4) { |
| pack_loc[slot] = true; |
| pack_loc[slot + 1] = true; |
| } else { |
| loc_type[slot][offset] = type; |
| } |
| } |
| } |
| } |
| |
| /* Attempt to use ARB_enhanced_layouts for more efficient packing if |
| * suitable. |
| */ |
| if (enhanced_layouts_enabled) { |
| for (unsigned i = 0; i < this->num_matches; i++) { |
| ir_variable *producer_var = this->matches[i].producer_var; |
| ir_variable *consumer_var = this->matches[i].consumer_var; |
| unsigned generic_location = this->matches[i].generic_location; |
| unsigned slot = generic_location / 4; |
| |
| if (pack_loc[slot] || !producer_var || !consumer_var) |
| continue; |
| |
| const glsl_type *type = |
| get_varying_type(producer_var, producer_stage); |
| bool type_match = true; |
| for (unsigned j = 0; j < 4; j++) { |
| if (loc_type[slot][j]) { |
| if (type->base_type != loc_type[slot][j]->base_type) |
| type_match = false; |
| } |
| } |
| |
| if (type_match) { |
| producer_var->data.explicit_location = 1; |
| consumer_var->data.explicit_location = 1; |
| producer_var->data.explicit_component = 1; |
| consumer_var->data.explicit_component = 1; |
| } |
| } |
| } |
| } |
| |
| |
| /** |
| * Compute the "packing class" of the given varying. This is an unsigned |
| * integer with the property that two variables in the same packing class can |
| * be safely backed into the same vec4. |
| */ |
| unsigned |
| varying_matches::compute_packing_class(const ir_variable *var) |
| { |
| /* Without help from the back-end, there is no way to pack together |
| * variables with different interpolation types, because |
| * lower_packed_varyings must choose exactly one interpolation type for |
| * each packed varying it creates. |
| * |
| * However, we can safely pack together floats, ints, and uints, because: |
| * |
| * - varyings of base type "int" and "uint" must use the "flat" |
| * interpolation type, which can only occur in GLSL 1.30 and above. |
| * |
| * - On platforms that support GLSL 1.30 and above, lower_packed_varyings |
| * can store flat floats as ints without losing any information (using |
| * the ir_unop_bitcast_* opcodes). |
| * |
| * Therefore, the packing class depends only on the interpolation type. |
| */ |
| unsigned packing_class = var->data.centroid | (var->data.sample << 1) | |
| (var->data.patch << 2) | |
| (var->data.must_be_shader_input << 3); |
| packing_class *= 8; |
| packing_class += var->is_interpolation_flat() |
| ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation; |
| return packing_class; |
| } |
| |
| |
| /** |
| * Compute the "packing order" of the given varying. This is a sort key we |
| * use to determine when to attempt to pack the given varying relative to |
| * other varyings in the same packing class. |
| */ |
| varying_matches::packing_order_enum |
| varying_matches::compute_packing_order(const ir_variable *var) |
| { |
| const glsl_type *element_type = var->type; |
| |
| while (element_type->is_array()) { |
| element_type = element_type->fields.array; |
| } |
| |
| switch (element_type->component_slots() % 4) { |
| case 1: return PACKING_ORDER_SCALAR; |
| case 2: return PACKING_ORDER_VEC2; |
| case 3: return PACKING_ORDER_VEC3; |
| case 0: return PACKING_ORDER_VEC4; |
| default: |
| assert(!"Unexpected value of vector_elements"); |
| return PACKING_ORDER_VEC4; |
| } |
| } |
| |
| |
| /** |
| * Comparison function passed to qsort() to sort varyings by packing_class and |
| * then by packing_order. |
| */ |
| int |
| varying_matches::match_comparator(const void *x_generic, const void *y_generic) |
| { |
| const match *x = (const match *) x_generic; |
| const match *y = (const match *) y_generic; |
| |
| if (x->packing_class != y->packing_class) |
| return x->packing_class - y->packing_class; |
| return x->packing_order - y->packing_order; |
| } |
| |
| |
| /** |
| * Comparison function passed to qsort() to sort varyings used only by |
| * transform feedback when packing of other varyings is disabled. |
| */ |
| int |
| varying_matches::xfb_comparator(const void *x_generic, const void *y_generic) |
| { |
| const match *x = (const match *) x_generic; |
| |
| if (x->producer_var != NULL && x->producer_var->data.is_xfb_only) |
| return match_comparator(x_generic, y_generic); |
| |
| /* FIXME: When the comparator returns 0 it means the elements being |
| * compared are equivalent. However the qsort documentation says: |
| * |
| * "The order of equivalent elements is undefined." |
| * |
| * In practice the sort ends up reversing the order of the varyings which |
| * means locations are also assigned in this reversed order and happens to |
| * be what we want. This is also whats happening in |
| * varying_matches::match_comparator(). |
| */ |
| return 0; |
| } |
| |
| |
| /** |
| * Is the given variable a varying variable to be counted against the |
| * limit in ctx->Const.MaxVarying? |
| * This includes variables such as texcoords, colors and generic |
| * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord. |
| */ |
| static bool |
| var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var) |
| { |
| /* Only fragment shaders will take a varying variable as an input */ |
| if (stage == MESA_SHADER_FRAGMENT && |
| var->data.mode == ir_var_shader_in) { |
| switch (var->data.location) { |
| case VARYING_SLOT_POS: |
| case VARYING_SLOT_FACE: |
| case VARYING_SLOT_PNTC: |
| return false; |
| default: |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| /** |
| * Visitor class that generates tfeedback_candidate structs describing all |
| * possible targets of transform feedback. |
| * |
| * tfeedback_candidate structs are stored in the hash table |
| * tfeedback_candidates, which is passed to the constructor. This hash table |
| * maps varying names to instances of the tfeedback_candidate struct. |
| */ |
| class tfeedback_candidate_generator : public program_resource_visitor |
| { |
| public: |
| tfeedback_candidate_generator(void *mem_ctx, |
| hash_table *tfeedback_candidates) |
| : mem_ctx(mem_ctx), |
| tfeedback_candidates(tfeedback_candidates), |
| toplevel_var(NULL), |
| varying_floats(0) |
| { |
| } |
| |
| void process(ir_variable *var) |
| { |
| /* All named varying interface blocks should be flattened by now */ |
| assert(!var->is_interface_instance()); |
| |
| this->toplevel_var = var; |
| this->varying_floats = 0; |
| program_resource_visitor::process(var, false); |
| } |
| |
| private: |
| virtual void visit_field(const glsl_type *type, const char *name, |
| bool /* row_major */, |
| const glsl_type * /* record_type */, |
| const enum glsl_interface_packing, |
| bool /* last_field */) |
| { |
| assert(!type->without_array()->is_record()); |
| assert(!type->without_array()->is_interface()); |
| |
| tfeedback_candidate *candidate |
| = rzalloc(this->mem_ctx, tfeedback_candidate); |
| candidate->toplevel_var = this->toplevel_var; |
| candidate->type = type; |
| candidate->offset = this->varying_floats; |
| _mesa_hash_table_insert(this->tfeedback_candidates, |
| ralloc_strdup(this->mem_ctx, name), |
| candidate); |
| this->varying_floats += type->component_slots(); |
| } |
| |
| /** |
| * Memory context used to allocate hash table keys and values. |
| */ |
| void * const mem_ctx; |
| |
| /** |
| * Hash table in which tfeedback_candidate objects should be stored. |
| */ |
| hash_table * const tfeedback_candidates; |
| |
| /** |
| * Pointer to the toplevel variable that is being traversed. |
| */ |
| ir_variable *toplevel_var; |
| |
| /** |
| * Total number of varying floats that have been visited so far. This is |
| * used to determine the offset to each varying within the toplevel |
| * variable. |
| */ |
| unsigned varying_floats; |
| }; |
| |
| |
| namespace linker { |
| |
| void |
| populate_consumer_input_sets(void *mem_ctx, exec_list *ir, |
| hash_table *consumer_inputs, |
| hash_table *consumer_interface_inputs, |
| ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX]) |
| { |
| memset(consumer_inputs_with_locations, |
| 0, |
| sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX); |
| |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *const input_var = node->as_variable(); |
| |
| if (input_var != NULL && input_var->data.mode == ir_var_shader_in) { |
| /* All interface blocks should have been lowered by this point */ |
| assert(!input_var->type->is_interface()); |
| |
| if (input_var->data.explicit_location) { |
| /* assign_varying_locations only cares about finding the |
| * ir_variable at the start of a contiguous location block. |
| * |
| * - For !producer, consumer_inputs_with_locations isn't used. |
| * |
| * - For !consumer, consumer_inputs_with_locations is empty. |
| * |
| * For consumer && producer, if you were trying to set some |
| * ir_variable to the middle of a location block on the other side |
| * of producer/consumer, cross_validate_outputs_to_inputs() should |
| * be link-erroring due to either type mismatch or location |
| * overlaps. If the variables do match up, then they've got a |
| * matching data.location and you only looked at |
| * consumer_inputs_with_locations[var->data.location], not any |
| * following entries for the array/structure. |
| */ |
| consumer_inputs_with_locations[input_var->data.location] = |
| input_var; |
| } else if (input_var->get_interface_type() != NULL) { |
| char *const iface_field_name = |
| ralloc_asprintf(mem_ctx, "%s.%s", |
| input_var->get_interface_type()->without_array()->name, |
| input_var->name); |
| _mesa_hash_table_insert(consumer_interface_inputs, |
| iface_field_name, input_var); |
| } else { |
| _mesa_hash_table_insert(consumer_inputs, |
| ralloc_strdup(mem_ctx, input_var->name), |
| input_var); |
| } |
| } |
| } |
| } |
| |
| /** |
| * Find a variable from the consumer that "matches" the specified variable |
| * |
| * This function only finds inputs with names that match. There is no |
| * validation (here) that the types, etc. are compatible. |
| */ |
| ir_variable * |
| get_matching_input(void *mem_ctx, |
| const ir_variable *output_var, |
| hash_table *consumer_inputs, |
| hash_table *consumer_interface_inputs, |
| ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX]) |
| { |
| ir_variable *input_var; |
| |
| if (output_var->data.explicit_location) { |
| input_var = consumer_inputs_with_locations[output_var->data.location]; |
| } else if (output_var->get_interface_type() != NULL) { |
| char *const iface_field_name = |
| ralloc_asprintf(mem_ctx, "%s.%s", |
| output_var->get_interface_type()->without_array()->name, |
| output_var->name); |
| hash_entry *entry = _mesa_hash_table_search(consumer_interface_inputs, iface_field_name); |
| input_var = entry ? (ir_variable *) entry->data : NULL; |
| } else { |
| hash_entry *entry = _mesa_hash_table_search(consumer_inputs, output_var->name); |
| input_var = entry ? (ir_variable *) entry->data : NULL; |
| } |
| |
| return (input_var == NULL || input_var->data.mode != ir_var_shader_in) |
| ? NULL : input_var; |
| } |
| |
| } |
| |
| static int |
| io_variable_cmp(const void *_a, const void *_b) |
| { |
| const ir_variable *const a = *(const ir_variable **) _a; |
| const ir_variable *const b = *(const ir_variable **) _b; |
| |
| if (a->data.explicit_location && b->data.explicit_location) |
| return b->data.location - a->data.location; |
| |
| if (a->data.explicit_location && !b->data.explicit_location) |
| return 1; |
| |
| if (!a->data.explicit_location && b->data.explicit_location) |
| return -1; |
| |
| return -strcmp(a->name, b->name); |
| } |
| |
| /** |
| * Sort the shader IO variables into canonical order |
| */ |
| static void |
| canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode) |
| { |
| ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4]; |
| unsigned num_variables = 0; |
| |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL || var->data.mode != io_mode) |
| continue; |
| |
| /* If we have already encountered more I/O variables that could |
| * successfully link, bail. |
| */ |
| if (num_variables == ARRAY_SIZE(var_table)) |
| return; |
| |
| var_table[num_variables++] = var; |
| } |
| |
| if (num_variables == 0) |
| return; |
| |
| /* Sort the list in reverse order (io_variable_cmp handles this). Later |
| * we're going to push the variables on to the IR list as a stack, so we |
| * want the last variable (in canonical order) to be first in the list. |
| */ |
| qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp); |
| |
| /* Remove the variable from it's current location in the IR, and put it at |
| * the front. |
| */ |
| for (unsigned i = 0; i < num_variables; i++) { |
| var_table[i]->remove(); |
| ir->push_head(var_table[i]); |
| } |
| } |
| |
| /** |
| * Generate a bitfield map of the explicit locations for shader varyings. |
| * |
| * Note: For Tessellation shaders we are sitting right on the limits of the |
| * 64 bit map. Per-vertex and per-patch both have separate location domains |
| * with a max of MAX_VARYING. |
| */ |
| static uint64_t |
| reserved_varying_slot(struct gl_linked_shader *stage, |
| ir_variable_mode io_mode) |
| { |
| assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out); |
| /* Avoid an overflow of the returned value */ |
| assert(MAX_VARYINGS_INCL_PATCH <= 64); |
| |
| uint64_t slots = 0; |
| int var_slot; |
| |
| if (!stage) |
| return slots; |
| |
| foreach_in_list(ir_instruction, node, stage->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL || var->data.mode != io_mode || |
| !var->data.explicit_location || |
| var->data.location < VARYING_SLOT_VAR0) |
| continue; |
| |
| var_slot = var->data.location - VARYING_SLOT_VAR0; |
| |
| unsigned num_elements = get_varying_type(var, stage->Stage) |
| ->count_attribute_slots(io_mode == ir_var_shader_in && |
| stage->Stage == MESA_SHADER_VERTEX); |
| for (unsigned i = 0; i < num_elements; i++) { |
| if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH) |
| slots |= UINT64_C(1) << var_slot; |
| var_slot += 1; |
| } |
| } |
| |
| return slots; |
| } |
| |
| |
| /** |
| * Assign locations for all variables that are produced in one pipeline stage |
| * (the "producer") and consumed in the next stage (the "consumer"). |
| * |
| * Variables produced by the producer may also be consumed by transform |
| * feedback. |
| * |
| * \param num_tfeedback_decls is the number of declarations indicating |
| * variables that may be consumed by transform feedback. |
| * |
| * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects |
| * representing the result of parsing the strings passed to |
| * glTransformFeedbackVaryings(). assign_location() will be called for |
| * each of these objects that matches one of the outputs of the |
| * producer. |
| * |
| * When num_tfeedback_decls is nonzero, it is permissible for the consumer to |
| * be NULL. In this case, varying locations are assigned solely based on the |
| * requirements of transform feedback. |
| */ |
| static bool |
| assign_varying_locations(struct gl_context *ctx, |
| void *mem_ctx, |
| struct gl_shader_program *prog, |
| gl_linked_shader *producer, |
| gl_linked_shader *consumer, |
| unsigned num_tfeedback_decls, |
| tfeedback_decl *tfeedback_decls, |
| const uint64_t reserved_slots) |
| { |
| /* Tessellation shaders treat inputs and outputs as shared memory and can |
| * access inputs and outputs of other invocations. |
| * Therefore, they can't be lowered to temps easily (and definitely not |
| * efficiently). |
| */ |
| bool unpackable_tess = |
| (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) || |
| (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) || |
| (producer && producer->Stage == MESA_SHADER_TESS_CTRL); |
| |
| /* Transform feedback code assumes varying arrays are packed, so if the |
| * driver has disabled varying packing, make sure to at least enable |
| * packing required by transform feedback. |
| */ |
| bool xfb_enabled = |
| ctx->Extensions.EXT_transform_feedback && !unpackable_tess; |
| |
| /* Disable packing on outward facing interfaces for SSO because in ES we |
| * need to retain the unpacked varying information for draw time |
| * validation. |
| * |
| * Packing is still enabled on individual arrays, structs, and matrices as |
| * these are required by the transform feedback code and it is still safe |
| * to do so. We also enable packing when a varying is only used for |
| * transform feedback and its not a SSO. |
| */ |
| bool disable_varying_packing = |
| ctx->Const.DisableVaryingPacking || unpackable_tess; |
| if (prog->SeparateShader && (producer == NULL || consumer == NULL)) |
| disable_varying_packing = true; |
| |
| varying_matches matches(disable_varying_packing, xfb_enabled, |
| ctx->Extensions.ARB_enhanced_layouts, |
| producer ? producer->Stage : MESA_SHADER_NONE, |
| consumer ? consumer->Stage : MESA_SHADER_NONE); |
| hash_table *tfeedback_candidates = |
| _mesa_hash_table_create(NULL, _mesa_key_hash_string, |
| _mesa_key_string_equal); |
| hash_table *consumer_inputs = |
| _mesa_hash_table_create(NULL, _mesa_key_hash_string, |
| _mesa_key_string_equal); |
| hash_table *consumer_interface_inputs = |
| _mesa_hash_table_create(NULL, _mesa_key_hash_string, |
| _mesa_key_string_equal); |
| ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = { |
| NULL, |
| }; |
| |
| unsigned consumer_vertices = 0; |
| if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY) |
| consumer_vertices = prog->Geom.VerticesIn; |
| |
| /* Operate in a total of four passes. |
| * |
| * 1. Sort inputs / outputs into a canonical order. This is necessary so |
| * that inputs / outputs of separable shaders will be assigned |
| * predictable locations regardless of the order in which declarations |
| * appeared in the shader source. |
| * |
| * 2. Assign locations for any matching inputs and outputs. |
| * |
| * 3. Mark output variables in the producer that do not have locations as |
| * not being outputs. This lets the optimizer eliminate them. |
| * |
| * 4. Mark input variables in the consumer that do not have locations as |
| * not being inputs. This lets the optimizer eliminate them. |
| */ |
| if (consumer) |
| canonicalize_shader_io(consumer->ir, ir_var_shader_in); |
| |
| if (producer) |
| canonicalize_shader_io(producer->ir, ir_var_shader_out); |
| |
| if (consumer) |
| linker::populate_consumer_input_sets(mem_ctx, consumer->ir, |
| consumer_inputs, |
| consumer_interface_inputs, |
| consumer_inputs_with_locations); |
| |
| if (producer) { |
| foreach_in_list(ir_instruction, node, producer->ir) { |
| ir_variable *const output_var = node->as_variable(); |
| |
| if (output_var == NULL || output_var->data.mode != ir_var_shader_out) |
| continue; |
| |
| /* Only geometry shaders can use non-zero streams */ |
| assert(output_var->data.stream == 0 || |
| (output_var->data.stream < MAX_VERTEX_STREAMS && |
| producer->Stage == MESA_SHADER_GEOMETRY)); |
| |
| if (num_tfeedback_decls > 0) { |
| tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates); |
| g.process(output_var); |
| } |
| |
| ir_variable *const input_var = |
| linker::get_matching_input(mem_ctx, output_var, consumer_inputs, |
| consumer_interface_inputs, |
| consumer_inputs_with_locations); |
| |
| /* If a matching input variable was found, add this output (and the |
| * input) to the set. If this is a separable program and there is no |
| * consumer stage, add the output. |
| * |
| * Always add TCS outputs. They are shared by all invocations |
| * within a patch and can be used as shared memory. |
| */ |
| if (input_var || (prog->SeparateShader && consumer == NULL) || |
| producer->Stage == MESA_SHADER_TESS_CTRL) { |
| matches.record(output_var, input_var); |
| } |
| |
| /* Only stream 0 outputs can be consumed in the next stage */ |
| if (input_var && output_var->data.stream != 0) { |
| linker_error(prog, "output %s is assigned to stream=%d but " |
| "is linked to an input, which requires stream=0", |
| output_var->name, output_var->data.stream); |
| return false; |
| } |
| } |
| } else { |
| /* If there's no producer stage, then this must be a separable program. |
| * For example, we may have a program that has just a fragment shader. |
| * Later this program will be used with some arbitrary vertex (or |
| * geometry) shader program. This means that locations must be assigned |
| * for all the inputs. |
| */ |
| foreach_in_list(ir_instruction, node, consumer->ir) { |
| ir_variable *const input_var = node->as_variable(); |
| |
| if (input_var == NULL || input_var->data.mode != ir_var_shader_in) |
| continue; |
| |
| matches.record(NULL, input_var); |
| } |
| } |
| |
| for (unsigned i = 0; i < num_tfeedback_decls; ++i) { |
| if (!tfeedback_decls[i].is_varying()) |
| continue; |
| |
| const tfeedback_candidate *matched_candidate |
| = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates); |
| |
| if (matched_candidate == NULL) { |
| _mesa_hash_table_destroy(tfeedback_candidates, NULL); |
| return false; |
| } |
| |
| /* Mark xfb varyings as always active */ |
| matched_candidate->toplevel_var->data.always_active_io = 1; |
| |
| /* Mark any corresponding inputs as always active also. We must do this |
| * because we have a NIR pass that lowers vectors to scalars and another |
| * that removes unused varyings. |
| * We don't split varyings marked as always active because there is no |
| * point in doing so. This means we need to mark both sides of the |
| * interface as always active otherwise we will have a mismatch and |
| * start removing things we shouldn't. |
| */ |
| ir_variable *const input_var = |
| linker::get_matching_input(mem_ctx, matched_candidate->toplevel_var, |
| consumer_inputs, |
| consumer_interface_inputs, |
| consumer_inputs_with_locations); |
| if (input_var) |
| input_var->data.always_active_io = 1; |
| |
| if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) { |
| matched_candidate->toplevel_var->data.is_xfb_only = 1; |
| matches.record(matched_candidate->toplevel_var, NULL); |
| } |
| } |
| |
| _mesa_hash_table_destroy(consumer_inputs, NULL); |
| _mesa_hash_table_destroy(consumer_interface_inputs, NULL); |
| |
| uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0}; |
| const unsigned slots_used = matches.assign_locations( |
| prog, components, reserved_slots); |
| matches.store_locations(); |
| |
| for (unsigned i = 0; i < num_tfeedback_decls; ++i) { |
| if (!tfeedback_decls[i].is_varying()) |
| continue; |
| |
| if (!tfeedback_decls[i].assign_location(ctx, prog)) { |
| _mesa_hash_table_destroy(tfeedback_candidates, NULL); |
| return false; |
| } |
| } |
| _mesa_hash_table_destroy(tfeedback_candidates, NULL); |
| |
| if (consumer && producer) { |
| foreach_in_list(ir_instruction, node, consumer->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var && var->data.mode == ir_var_shader_in && |
| var->data.is_unmatched_generic_inout) { |
| if (!prog->IsES && prog->data->Version <= 120) { |
| /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec: |
| * |
| * Only those varying variables used (i.e. read) in |
| * the fragment shader executable must be written to |
| * by the vertex shader executable; declaring |
| * superfluous varying variables in a vertex shader is |
| * permissible. |
| * |
| * We interpret this text as meaning that the VS must |
| * write the variable for the FS to read it. See |
| * "glsl1-varying read but not written" in piglit. |
| */ |
| linker_error(prog, "%s shader varying %s not written " |
| "by %s shader\n.", |
| _mesa_shader_stage_to_string(consumer->Stage), |
| var->name, |
| _mesa_shader_stage_to_string(producer->Stage)); |
| } else { |
| linker_warning(prog, "%s shader varying %s not written " |
| "by %s shader\n.", |
| _mesa_shader_stage_to_string(consumer->Stage), |
| var->name, |
| _mesa_shader_stage_to_string(producer->Stage)); |
| } |
| } |
| } |
| |
| /* Now that validation is done its safe to remove unused varyings. As |
| * we have both a producer and consumer its safe to remove unused |
| * varyings even if the program is a SSO because the stages are being |
| * linked together i.e. we have a multi-stage SSO. |
| */ |
| remove_unused_shader_inputs_and_outputs(false, producer, |
| ir_var_shader_out); |
| remove_unused_shader_inputs_and_outputs(false, consumer, |
| ir_var_shader_in); |
| } |
| |
| if (producer) { |
| lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_out, |
| 0, producer, disable_varying_packing, |
| xfb_enabled); |
| } |
| |
| if (consumer) { |
| lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_in, |
| consumer_vertices, consumer, |
| disable_varying_packing, xfb_enabled); |
| } |
| |
| return true; |
| } |
| |
| static bool |
| check_against_output_limit(struct gl_context *ctx, |
| struct gl_shader_program *prog, |
| gl_linked_shader *producer, |
| unsigned num_explicit_locations) |
| { |
| unsigned output_vectors = num_explicit_locations; |
| |
| foreach_in_list(ir_instruction, node, producer->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var && !var->data.explicit_location && |
| var->data.mode == ir_var_shader_out && |
| var_counts_against_varying_limit(producer->Stage, var)) { |
| /* outputs for fragment shader can't be doubles */ |
| output_vectors += var->type->count_attribute_slots(false); |
| } |
| } |
| |
| assert(producer->Stage != MESA_SHADER_FRAGMENT); |
| unsigned max_output_components = |
| ctx->Const.Program[producer->Stage].MaxOutputComponents; |
| |
| const unsigned output_components = output_vectors * 4; |
| if (output_components > max_output_components) { |
| if (ctx->API == API_OPENGLES2 || prog->IsES) |
| linker_error(prog, "%s shader uses too many output vectors " |
| "(%u > %u)\n", |
| _mesa_shader_stage_to_string(producer->Stage), |
| output_vectors, |
| max_output_components / 4); |
| else |
| linker_error(prog, "%s shader uses too many output components " |
| "(%u > %u)\n", |
| _mesa_shader_stage_to_string(producer->Stage), |
| output_components, |
| max_output_components); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool |
| check_against_input_limit(struct gl_context *ctx, |
| struct gl_shader_program *prog, |
| gl_linked_shader *consumer, |
| unsigned num_explicit_locations) |
| { |
| unsigned input_vectors = num_explicit_locations; |
| |
| foreach_in_list(ir_instruction, node, consumer->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var && !var->data.explicit_location && |
| var->data.mode == ir_var_shader_in && |
| var_counts_against_varying_limit(consumer->Stage, var)) { |
| /* vertex inputs aren't varying counted */ |
| input_vectors += var->type->count_attribute_slots(false); |
| } |
| } |
| |
| assert(consumer->Stage != MESA_SHADER_VERTEX); |
| unsigned max_input_components = |
| ctx->Const.Program[consumer->Stage].MaxInputComponents; |
| |
| const unsigned input_components = input_vectors * 4; |
| if (input_components > max_input_components) { |
| if (ctx->API == API_OPENGLES2 || prog->IsES) |
| linker_error(prog, "%s shader uses too many input vectors " |
| "(%u > %u)\n", |
| _mesa_shader_stage_to_string(consumer->Stage), |
| input_vectors, |
| max_input_components / 4); |
| else |
| linker_error(prog, "%s shader uses too many input components " |
| "(%u > %u)\n", |
| _mesa_shader_stage_to_string(consumer->Stage), |
| input_components, |
| max_input_components); |
| |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| link_varyings(struct gl_shader_program *prog, unsigned first, unsigned last, |
| struct gl_context *ctx, void *mem_ctx) |
| { |
| bool has_xfb_qualifiers = false; |
| unsigned num_tfeedback_decls = 0; |
| char **varying_names = NULL; |
| tfeedback_decl *tfeedback_decls = NULL; |
| |
| /* From the ARB_enhanced_layouts spec: |
| * |
| * "If the shader used to record output variables for transform feedback |
| * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout |
| * qualifiers, the values specified by TransformFeedbackVaryings are |
| * ignored, and the set of variables captured for transform feedback is |
| * instead derived from the specified layout qualifiers." |
| */ |
| for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) { |
| /* Find last stage before fragment shader */ |
| if (prog->_LinkedShaders[i]) { |
| has_xfb_qualifiers = |
| process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i], |
| prog, &num_tfeedback_decls, |
| &varying_names); |
| break; |
| } |
| } |
| |
| if (!has_xfb_qualifiers) { |
| num_tfeedback_decls = prog->TransformFeedback.NumVarying; |
| varying_names = prog->TransformFeedback.VaryingNames; |
| } |
| |
| if (num_tfeedback_decls != 0) { |
| /* From GL_EXT_transform_feedback: |
| * A program will fail to link if: |
| * |
| * * the <count> specified by TransformFeedbackVaryingsEXT is |
| * non-zero, but the program object has no vertex or geometry |
| * shader; |
| */ |
| if (first >= MESA_SHADER_FRAGMENT) { |
| linker_error(prog, "Transform feedback varyings specified, but " |
| "no vertex, tessellation, or geometry shader is " |
| "present.\n"); |
| return false; |
| } |
| |
| tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl, |
| num_tfeedback_decls); |
| if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls, |
| varying_names, tfeedback_decls)) |
| return false; |
| } |
| |
| /* If there is no fragment shader we need to set transform feedback. |
| * |
| * For SSO we also need to assign output locations. We assign them here |
| * because we need to do it for both single stage programs and multi stage |
| * programs. |
| */ |
| if (last < MESA_SHADER_FRAGMENT && |
| (num_tfeedback_decls != 0 || prog->SeparateShader)) { |
| const uint64_t reserved_out_slots = |
| reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out); |
| if (!assign_varying_locations(ctx, mem_ctx, prog, |
| prog->_LinkedShaders[last], NULL, |
| num_tfeedback_decls, tfeedback_decls, |
| reserved_out_slots)) |
| return false; |
| } |
| |
| if (last <= MESA_SHADER_FRAGMENT) { |
| /* Remove unused varyings from the first/last stage unless SSO */ |
| remove_unused_shader_inputs_and_outputs(prog->SeparateShader, |
| prog->_LinkedShaders[first], |
| ir_var_shader_in); |
| remove_unused_shader_inputs_and_outputs(prog->SeparateShader, |
| prog->_LinkedShaders[last], |
| ir_var_shader_out); |
| |
| /* If the program is made up of only a single stage */ |
| if (first == last) { |
| gl_linked_shader *const sh = prog->_LinkedShaders[last]; |
| |
| do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL); |
| do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls, |
| tfeedback_decls); |
| |
| if (prog->SeparateShader) { |
| const uint64_t reserved_slots = |
| reserved_varying_slot(sh, ir_var_shader_in); |
| |
| /* Assign input locations for SSO, output locations are already |
| * assigned. |
| */ |
| if (!assign_varying_locations(ctx, mem_ctx, prog, |
| NULL /* producer */, |
| sh /* consumer */, |
| 0 /* num_tfeedback_decls */, |
| NULL /* tfeedback_decls */, |
| reserved_slots)) |
| return false; |
| } |
| } else { |
| /* Linking the stages in the opposite order (from fragment to vertex) |
| * ensures that inter-shader outputs written to in an earlier stage |
| * are eliminated if they are (transitively) not used in a later |
| * stage. |
| */ |
| int next = last; |
| for (int i = next - 1; i >= 0; i--) { |
| if (prog->_LinkedShaders[i] == NULL && i != 0) |
| continue; |
| |
| gl_linked_shader *const sh_i = prog->_LinkedShaders[i]; |
| gl_linked_shader *const sh_next = prog->_LinkedShaders[next]; |
| |
| const uint64_t reserved_out_slots = |
| reserved_varying_slot(sh_i, ir_var_shader_out); |
| const uint64_t reserved_in_slots = |
| reserved_varying_slot(sh_next, ir_var_shader_in); |
| |
| do_dead_builtin_varyings(ctx, sh_i, sh_next, |
| next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0, |
| tfeedback_decls); |
| |
| if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next, |
| next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0, |
| tfeedback_decls, |
| reserved_out_slots | reserved_in_slots)) |
| return false; |
| |
| /* This must be done after all dead varyings are eliminated. */ |
| if (sh_i != NULL) { |
| unsigned slots_used = _mesa_bitcount_64(reserved_out_slots); |
| if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) { |
| return false; |
| } |
| } |
| |
| unsigned slots_used = _mesa_bitcount_64(reserved_in_slots); |
| if (!check_against_input_limit(ctx, prog, sh_next, slots_used)) |
| return false; |
| |
| next = i; |
| } |
| } |
| } |
| |
| if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls, |
| has_xfb_qualifiers)) |
| return false; |
| |
| return true; |
| } |