| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * \file linker.cpp |
| * GLSL linker implementation |
| * |
| * Given a set of shaders that are to be linked to generate a final program, |
| * there are three distinct stages. |
| * |
| * In the first stage shaders are partitioned into groups based on the shader |
| * type. All shaders of a particular type (e.g., vertex shaders) are linked |
| * together. |
| * |
| * - Undefined references in each shader are resolve to definitions in |
| * another shader. |
| * - Types and qualifiers of uniforms, outputs, and global variables defined |
| * in multiple shaders with the same name are verified to be the same. |
| * - Initializers for uniforms and global variables defined |
| * in multiple shaders with the same name are verified to be the same. |
| * |
| * The result, in the terminology of the GLSL spec, is a set of shader |
| * executables for each processing unit. |
| * |
| * After the first stage is complete, a series of semantic checks are performed |
| * on each of the shader executables. |
| * |
| * - Each shader executable must define a \c main function. |
| * - Each vertex shader executable must write to \c gl_Position. |
| * - Each fragment shader executable must write to either \c gl_FragData or |
| * \c gl_FragColor. |
| * |
| * In the final stage individual shader executables are linked to create a |
| * complete exectuable. |
| * |
| * - Types of uniforms defined in multiple shader stages with the same name |
| * are verified to be the same. |
| * - Initializers for uniforms defined in multiple shader stages with the |
| * same name are verified to be the same. |
| * - Types and qualifiers of outputs defined in one stage are verified to |
| * be the same as the types and qualifiers of inputs defined with the same |
| * name in a later stage. |
| * |
| * \author Ian Romanick <ian.d.romanick@intel.com> |
| */ |
| |
| #include <ctype.h> |
| #include "util/strndup.h" |
| #include "main/core.h" |
| #include "glsl_symbol_table.h" |
| #include "glsl_parser_extras.h" |
| #include "ir.h" |
| #include "program.h" |
| #include "program/prog_instruction.h" |
| #include "program/program.h" |
| #include "util/mesa-sha1.h" |
| #include "util/set.h" |
| #include "string_to_uint_map.h" |
| #include "linker.h" |
| #include "link_varyings.h" |
| #include "ir_optimization.h" |
| #include "ir_rvalue_visitor.h" |
| #include "ir_uniform.h" |
| #include "builtin_functions.h" |
| #include "shader_cache.h" |
| |
| #include "main/shaderobj.h" |
| #include "main/enums.h" |
| |
| |
| namespace { |
| |
| struct find_variable { |
| const char *name; |
| bool found; |
| |
| find_variable(const char *name) : name(name), found(false) {} |
| }; |
| |
| /** |
| * Visitor that determines whether or not a variable is ever written. |
| * |
| * Use \ref find_assignments for convenience. |
| */ |
| class find_assignment_visitor : public ir_hierarchical_visitor { |
| public: |
| find_assignment_visitor(unsigned num_vars, |
| find_variable * const *vars) |
| : num_variables(num_vars), num_found(0), variables(vars) |
| { |
| } |
| |
| virtual ir_visitor_status visit_enter(ir_assignment *ir) |
| { |
| ir_variable *const var = ir->lhs->variable_referenced(); |
| |
| return check_variable_name(var->name); |
| } |
| |
| virtual ir_visitor_status visit_enter(ir_call *ir) |
| { |
| foreach_two_lists(formal_node, &ir->callee->parameters, |
| actual_node, &ir->actual_parameters) { |
| ir_rvalue *param_rval = (ir_rvalue *) actual_node; |
| ir_variable *sig_param = (ir_variable *) formal_node; |
| |
| if (sig_param->data.mode == ir_var_function_out || |
| sig_param->data.mode == ir_var_function_inout) { |
| ir_variable *var = param_rval->variable_referenced(); |
| if (var && check_variable_name(var->name) == visit_stop) |
| return visit_stop; |
| } |
| } |
| |
| if (ir->return_deref != NULL) { |
| ir_variable *const var = ir->return_deref->variable_referenced(); |
| |
| if (check_variable_name(var->name) == visit_stop) |
| return visit_stop; |
| } |
| |
| return visit_continue_with_parent; |
| } |
| |
| private: |
| ir_visitor_status check_variable_name(const char *name) |
| { |
| for (unsigned i = 0; i < num_variables; ++i) { |
| if (strcmp(variables[i]->name, name) == 0) { |
| if (!variables[i]->found) { |
| variables[i]->found = true; |
| |
| assert(num_found < num_variables); |
| if (++num_found == num_variables) |
| return visit_stop; |
| } |
| break; |
| } |
| } |
| |
| return visit_continue_with_parent; |
| } |
| |
| private: |
| unsigned num_variables; /**< Number of variables to find */ |
| unsigned num_found; /**< Number of variables already found */ |
| find_variable * const *variables; /**< Variables to find */ |
| }; |
| |
| /** |
| * Determine whether or not any of NULL-terminated list of variables is ever |
| * written to. |
| */ |
| static void |
| find_assignments(exec_list *ir, find_variable * const *vars) |
| { |
| unsigned num_variables = 0; |
| |
| for (find_variable * const *v = vars; *v; ++v) |
| num_variables++; |
| |
| find_assignment_visitor visitor(num_variables, vars); |
| visitor.run(ir); |
| } |
| |
| /** |
| * Determine whether or not the given variable is ever written to. |
| */ |
| static void |
| find_assignments(exec_list *ir, find_variable *var) |
| { |
| find_assignment_visitor visitor(1, &var); |
| visitor.run(ir); |
| } |
| |
| /** |
| * Visitor that determines whether or not a variable is ever read. |
| */ |
| class find_deref_visitor : public ir_hierarchical_visitor { |
| public: |
| find_deref_visitor(const char *name) |
| : name(name), found(false) |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| if (strcmp(this->name, ir->var->name) == 0) { |
| this->found = true; |
| return visit_stop; |
| } |
| |
| return visit_continue; |
| } |
| |
| bool variable_found() const |
| { |
| return this->found; |
| } |
| |
| private: |
| const char *name; /**< Find writes to a variable with this name. */ |
| bool found; /**< Was a write to the variable found? */ |
| }; |
| |
| |
| /** |
| * A visitor helper that provides methods for updating the types of |
| * ir_dereferences. Classes that update variable types (say, updating |
| * array sizes) will want to use this so that dereference types stay in sync. |
| */ |
| class deref_type_updater : public ir_hierarchical_visitor { |
| public: |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| ir->type = ir->var->type; |
| return visit_continue; |
| } |
| |
| virtual ir_visitor_status visit_leave(ir_dereference_array *ir) |
| { |
| const glsl_type *const vt = ir->array->type; |
| if (vt->is_array()) |
| ir->type = vt->fields.array; |
| return visit_continue; |
| } |
| |
| virtual ir_visitor_status visit_leave(ir_dereference_record *ir) |
| { |
| ir->type = ir->record->type->fields.structure[ir->field_idx].type; |
| return visit_continue; |
| } |
| }; |
| |
| |
| class array_resize_visitor : public deref_type_updater { |
| public: |
| unsigned num_vertices; |
| gl_shader_program *prog; |
| gl_shader_stage stage; |
| |
| array_resize_visitor(unsigned num_vertices, |
| gl_shader_program *prog, |
| gl_shader_stage stage) |
| { |
| this->num_vertices = num_vertices; |
| this->prog = prog; |
| this->stage = stage; |
| } |
| |
| virtual ~array_resize_visitor() |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit(ir_variable *var) |
| { |
| if (!var->type->is_array() || var->data.mode != ir_var_shader_in || |
| var->data.patch) |
| return visit_continue; |
| |
| unsigned size = var->type->length; |
| |
| if (stage == MESA_SHADER_GEOMETRY) { |
| /* Generate a link error if the shader has declared this array with |
| * an incorrect size. |
| */ |
| if (!var->data.implicit_sized_array && |
| size && size != this->num_vertices) { |
| linker_error(this->prog, "size of array %s declared as %u, " |
| "but number of input vertices is %u\n", |
| var->name, size, this->num_vertices); |
| return visit_continue; |
| } |
| |
| /* Generate a link error if the shader attempts to access an input |
| * array using an index too large for its actual size assigned at |
| * link time. |
| */ |
| if (var->data.max_array_access >= (int)this->num_vertices) { |
| linker_error(this->prog, "%s shader accesses element %i of " |
| "%s, but only %i input vertices\n", |
| _mesa_shader_stage_to_string(this->stage), |
| var->data.max_array_access, var->name, this->num_vertices); |
| return visit_continue; |
| } |
| } |
| |
| var->type = glsl_type::get_array_instance(var->type->fields.array, |
| this->num_vertices); |
| var->data.max_array_access = this->num_vertices - 1; |
| |
| return visit_continue; |
| } |
| }; |
| |
| /** |
| * Visitor that determines the highest stream id to which a (geometry) shader |
| * emits vertices. It also checks whether End{Stream}Primitive is ever called. |
| */ |
| class find_emit_vertex_visitor : public ir_hierarchical_visitor { |
| public: |
| find_emit_vertex_visitor(int max_allowed) |
| : max_stream_allowed(max_allowed), |
| invalid_stream_id(0), |
| invalid_stream_id_from_emit_vertex(false), |
| end_primitive_found(false), |
| uses_non_zero_stream(false) |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit_leave(ir_emit_vertex *ir) |
| { |
| int stream_id = ir->stream_id(); |
| |
| if (stream_id < 0) { |
| invalid_stream_id = stream_id; |
| invalid_stream_id_from_emit_vertex = true; |
| return visit_stop; |
| } |
| |
| if (stream_id > max_stream_allowed) { |
| invalid_stream_id = stream_id; |
| invalid_stream_id_from_emit_vertex = true; |
| return visit_stop; |
| } |
| |
| if (stream_id != 0) |
| uses_non_zero_stream = true; |
| |
| return visit_continue; |
| } |
| |
| virtual ir_visitor_status visit_leave(ir_end_primitive *ir) |
| { |
| end_primitive_found = true; |
| |
| int stream_id = ir->stream_id(); |
| |
| if (stream_id < 0) { |
| invalid_stream_id = stream_id; |
| invalid_stream_id_from_emit_vertex = false; |
| return visit_stop; |
| } |
| |
| if (stream_id > max_stream_allowed) { |
| invalid_stream_id = stream_id; |
| invalid_stream_id_from_emit_vertex = false; |
| return visit_stop; |
| } |
| |
| if (stream_id != 0) |
| uses_non_zero_stream = true; |
| |
| return visit_continue; |
| } |
| |
| bool error() |
| { |
| return invalid_stream_id != 0; |
| } |
| |
| const char *error_func() |
| { |
| return invalid_stream_id_from_emit_vertex ? |
| "EmitStreamVertex" : "EndStreamPrimitive"; |
| } |
| |
| int error_stream() |
| { |
| return invalid_stream_id; |
| } |
| |
| bool uses_streams() |
| { |
| return uses_non_zero_stream; |
| } |
| |
| bool uses_end_primitive() |
| { |
| return end_primitive_found; |
| } |
| |
| private: |
| int max_stream_allowed; |
| int invalid_stream_id; |
| bool invalid_stream_id_from_emit_vertex; |
| bool end_primitive_found; |
| bool uses_non_zero_stream; |
| }; |
| |
| /* Class that finds array derefs and check if indexes are dynamic. */ |
| class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor |
| { |
| public: |
| dynamic_sampler_array_indexing_visitor() : |
| dynamic_sampler_array_indexing(false) |
| { |
| } |
| |
| ir_visitor_status visit_enter(ir_dereference_array *ir) |
| { |
| if (!ir->variable_referenced()) |
| return visit_continue; |
| |
| if (!ir->variable_referenced()->type->contains_sampler()) |
| return visit_continue; |
| |
| if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) { |
| dynamic_sampler_array_indexing = true; |
| return visit_stop; |
| } |
| return visit_continue; |
| } |
| |
| bool uses_dynamic_sampler_array_indexing() |
| { |
| return dynamic_sampler_array_indexing; |
| } |
| |
| private: |
| bool dynamic_sampler_array_indexing; |
| }; |
| |
| } /* anonymous namespace */ |
| |
| void |
| linker_error(gl_shader_program *prog, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| ralloc_strcat(&prog->data->InfoLog, "error: "); |
| va_start(ap, fmt); |
| ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); |
| va_end(ap); |
| |
| prog->data->LinkStatus = linking_failure; |
| } |
| |
| |
| void |
| linker_warning(gl_shader_program *prog, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| ralloc_strcat(&prog->data->InfoLog, "warning: "); |
| va_start(ap, fmt); |
| ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); |
| va_end(ap); |
| |
| } |
| |
| |
| /** |
| * Given a string identifying a program resource, break it into a base name |
| * and an optional array index in square brackets. |
| * |
| * If an array index is present, \c out_base_name_end is set to point to the |
| * "[" that precedes the array index, and the array index itself is returned |
| * as a long. |
| * |
| * If no array index is present (or if the array index is negative or |
| * mal-formed), \c out_base_name_end, is set to point to the null terminator |
| * at the end of the input string, and -1 is returned. |
| * |
| * Only the final array index is parsed; if the string contains other array |
| * indices (or structure field accesses), they are left in the base name. |
| * |
| * No attempt is made to check that the base name is properly formed; |
| * typically the caller will look up the base name in a hash table, so |
| * ill-formed base names simply turn into hash table lookup failures. |
| */ |
| long |
| parse_program_resource_name(const GLchar *name, |
| const GLchar **out_base_name_end) |
| { |
| /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says: |
| * |
| * "When an integer array element or block instance number is part of |
| * the name string, it will be specified in decimal form without a "+" |
| * or "-" sign or any extra leading zeroes. Additionally, the name |
| * string will not include white space anywhere in the string." |
| */ |
| |
| const size_t len = strlen(name); |
| *out_base_name_end = name + len; |
| |
| if (len == 0 || name[len-1] != ']') |
| return -1; |
| |
| /* Walk backwards over the string looking for a non-digit character. This |
| * had better be the opening bracket for an array index. |
| * |
| * Initially, i specifies the location of the ']'. Since the string may |
| * contain only the ']' charcater, walk backwards very carefully. |
| */ |
| unsigned i; |
| for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i) |
| /* empty */ ; |
| |
| if ((i == 0) || name[i-1] != '[') |
| return -1; |
| |
| long array_index = strtol(&name[i], NULL, 10); |
| if (array_index < 0) |
| return -1; |
| |
| /* Check for leading zero */ |
| if (name[i] == '0' && name[i+1] != ']') |
| return -1; |
| |
| *out_base_name_end = name + (i - 1); |
| return array_index; |
| } |
| |
| |
| void |
| link_invalidate_variable_locations(exec_list *ir) |
| { |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL) |
| continue; |
| |
| /* Only assign locations for variables that lack an explicit location. |
| * Explicit locations are set for all built-in variables, generic vertex |
| * shader inputs (via layout(location=...)), and generic fragment shader |
| * outputs (also via layout(location=...)). |
| */ |
| if (!var->data.explicit_location) { |
| var->data.location = -1; |
| var->data.location_frac = 0; |
| } |
| |
| /* ir_variable::is_unmatched_generic_inout is used by the linker while |
| * connecting outputs from one stage to inputs of the next stage. |
| */ |
| if (var->data.explicit_location && |
| var->data.location < VARYING_SLOT_VAR0) { |
| var->data.is_unmatched_generic_inout = 0; |
| } else { |
| var->data.is_unmatched_generic_inout = 1; |
| } |
| } |
| } |
| |
| |
| /** |
| * Set clip_distance_array_size based and cull_distance_array_size on the given |
| * shader. |
| * |
| * Also check for errors based on incorrect usage of gl_ClipVertex and |
| * gl_ClipDistance and gl_CullDistance. |
| * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance |
| * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances. |
| * |
| * Return false if an error was reported. |
| */ |
| static void |
| analyze_clip_cull_usage(struct gl_shader_program *prog, |
| struct gl_linked_shader *shader, |
| struct gl_context *ctx, |
| GLuint *clip_distance_array_size, |
| GLuint *cull_distance_array_size) |
| { |
| *clip_distance_array_size = 0; |
| *cull_distance_array_size = 0; |
| |
| if (prog->data->Version >= (prog->IsES ? 300 : 130)) { |
| /* From section 7.1 (Vertex Shader Special Variables) of the |
| * GLSL 1.30 spec: |
| * |
| * "It is an error for a shader to statically write both |
| * gl_ClipVertex and gl_ClipDistance." |
| * |
| * This does not apply to GLSL ES shaders, since GLSL ES defines neither |
| * gl_ClipVertex nor gl_ClipDistance. However with |
| * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0. |
| */ |
| find_variable gl_ClipDistance("gl_ClipDistance"); |
| find_variable gl_CullDistance("gl_CullDistance"); |
| find_variable gl_ClipVertex("gl_ClipVertex"); |
| find_variable * const variables[] = { |
| &gl_ClipDistance, |
| &gl_CullDistance, |
| !prog->IsES ? &gl_ClipVertex : NULL, |
| NULL |
| }; |
| find_assignments(shader->ir, variables); |
| |
| /* From the ARB_cull_distance spec: |
| * |
| * It is a compile-time or link-time error for the set of shaders forming |
| * a program to statically read or write both gl_ClipVertex and either |
| * gl_ClipDistance or gl_CullDistance. |
| * |
| * This does not apply to GLSL ES shaders, since GLSL ES doesn't define |
| * gl_ClipVertex. |
| */ |
| if (!prog->IsES) { |
| if (gl_ClipVertex.found && gl_ClipDistance.found) { |
| linker_error(prog, "%s shader writes to both `gl_ClipVertex' " |
| "and `gl_ClipDistance'\n", |
| _mesa_shader_stage_to_string(shader->Stage)); |
| return; |
| } |
| if (gl_ClipVertex.found && gl_CullDistance.found) { |
| linker_error(prog, "%s shader writes to both `gl_ClipVertex' " |
| "and `gl_CullDistance'\n", |
| _mesa_shader_stage_to_string(shader->Stage)); |
| return; |
| } |
| } |
| |
| if (gl_ClipDistance.found) { |
| ir_variable *clip_distance_var = |
| shader->symbols->get_variable("gl_ClipDistance"); |
| assert(clip_distance_var); |
| *clip_distance_array_size = clip_distance_var->type->length; |
| } |
| if (gl_CullDistance.found) { |
| ir_variable *cull_distance_var = |
| shader->symbols->get_variable("gl_CullDistance"); |
| assert(cull_distance_var); |
| *cull_distance_array_size = cull_distance_var->type->length; |
| } |
| /* From the ARB_cull_distance spec: |
| * |
| * It is a compile-time or link-time error for the set of shaders forming |
| * a program to have the sum of the sizes of the gl_ClipDistance and |
| * gl_CullDistance arrays to be larger than |
| * gl_MaxCombinedClipAndCullDistances. |
| */ |
| if ((*clip_distance_array_size + *cull_distance_array_size) > |
| ctx->Const.MaxClipPlanes) { |
| linker_error(prog, "%s shader: the combined size of " |
| "'gl_ClipDistance' and 'gl_CullDistance' size cannot " |
| "be larger than " |
| "gl_MaxCombinedClipAndCullDistances (%u)", |
| _mesa_shader_stage_to_string(shader->Stage), |
| ctx->Const.MaxClipPlanes); |
| } |
| } |
| } |
| |
| |
| /** |
| * Verify that a vertex shader executable meets all semantic requirements. |
| * |
| * Also sets info.clip_distance_array_size and |
| * info.cull_distance_array_size as a side effect. |
| * |
| * \param shader Vertex shader executable to be verified |
| */ |
| static void |
| validate_vertex_shader_executable(struct gl_shader_program *prog, |
| struct gl_linked_shader *shader, |
| struct gl_context *ctx) |
| { |
| if (shader == NULL) |
| return; |
| |
| /* From the GLSL 1.10 spec, page 48: |
| * |
| * "The variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. All executions of a well-formed vertex shader |
| * executable must write a value into this variable. [...] The |
| * variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. All executions of a well-formed vertex shader |
| * executable must write a value into this variable." |
| * |
| * while in GLSL 1.40 this text is changed to: |
| * |
| * "The variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. It can be written at any time during shader |
| * execution. It may also be read back by a vertex shader |
| * after being written. This value will be used by primitive |
| * assembly, clipping, culling, and other fixed functionality |
| * operations, if present, that operate on primitives after |
| * vertex processing has occurred. Its value is undefined if |
| * the vertex shader executable does not write gl_Position." |
| * |
| * All GLSL ES Versions are similar to GLSL 1.40--failing to write to |
| * gl_Position is not an error. |
| */ |
| if (prog->data->Version < (prog->IsES ? 300 : 140)) { |
| find_variable gl_Position("gl_Position"); |
| find_assignments(shader->ir, &gl_Position); |
| if (!gl_Position.found) { |
| if (prog->IsES) { |
| linker_warning(prog, |
| "vertex shader does not write to `gl_Position'. " |
| "Its value is undefined. \n"); |
| } else { |
| linker_error(prog, |
| "vertex shader does not write to `gl_Position'. \n"); |
| } |
| return; |
| } |
| } |
| |
| analyze_clip_cull_usage(prog, shader, ctx, |
| &shader->Program->info.clip_distance_array_size, |
| &shader->Program->info.cull_distance_array_size); |
| } |
| |
| static void |
| validate_tess_eval_shader_executable(struct gl_shader_program *prog, |
| struct gl_linked_shader *shader, |
| struct gl_context *ctx) |
| { |
| if (shader == NULL) |
| return; |
| |
| analyze_clip_cull_usage(prog, shader, ctx, |
| &shader->Program->info.clip_distance_array_size, |
| &shader->Program->info.cull_distance_array_size); |
| } |
| |
| |
| /** |
| * Verify that a fragment shader executable meets all semantic requirements |
| * |
| * \param shader Fragment shader executable to be verified |
| */ |
| static void |
| validate_fragment_shader_executable(struct gl_shader_program *prog, |
| struct gl_linked_shader *shader) |
| { |
| if (shader == NULL) |
| return; |
| |
| find_variable gl_FragColor("gl_FragColor"); |
| find_variable gl_FragData("gl_FragData"); |
| find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL }; |
| find_assignments(shader->ir, variables); |
| |
| if (gl_FragColor.found && gl_FragData.found) { |
| linker_error(prog, "fragment shader writes to both " |
| "`gl_FragColor' and `gl_FragData'\n"); |
| } |
| } |
| |
| /** |
| * Verify that a geometry shader executable meets all semantic requirements |
| * |
| * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand |
| * info.cull_distance_array_size as a side effect. |
| * |
| * \param shader Geometry shader executable to be verified |
| */ |
| static void |
| validate_geometry_shader_executable(struct gl_shader_program *prog, |
| struct gl_linked_shader *shader, |
| struct gl_context *ctx) |
| { |
| if (shader == NULL) |
| return; |
| |
| unsigned num_vertices = |
| vertices_per_prim(shader->Program->info.gs.input_primitive); |
| prog->Geom.VerticesIn = num_vertices; |
| |
| analyze_clip_cull_usage(prog, shader, ctx, |
| &shader->Program->info.clip_distance_array_size, |
| &shader->Program->info.cull_distance_array_size); |
| } |
| |
| /** |
| * Check if geometry shaders emit to non-zero streams and do corresponding |
| * validations. |
| */ |
| static void |
| validate_geometry_shader_emissions(struct gl_context *ctx, |
| struct gl_shader_program *prog) |
| { |
| struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY]; |
| |
| if (sh != NULL) { |
| find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1); |
| emit_vertex.run(sh->ir); |
| if (emit_vertex.error()) { |
| linker_error(prog, "Invalid call %s(%d). Accepted values for the " |
| "stream parameter are in the range [0, %d].\n", |
| emit_vertex.error_func(), |
| emit_vertex.error_stream(), |
| ctx->Const.MaxVertexStreams - 1); |
| } |
| prog->Geom.UsesStreams = emit_vertex.uses_streams(); |
| prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive(); |
| |
| /* From the ARB_gpu_shader5 spec: |
| * |
| * "Multiple vertex streams are supported only if the output primitive |
| * type is declared to be "points". A program will fail to link if it |
| * contains a geometry shader calling EmitStreamVertex() or |
| * EndStreamPrimitive() if its output primitive type is not "points". |
| * |
| * However, in the same spec: |
| * |
| * "The function EmitVertex() is equivalent to calling EmitStreamVertex() |
| * with <stream> set to zero." |
| * |
| * And: |
| * |
| * "The function EndPrimitive() is equivalent to calling |
| * EndStreamPrimitive() with <stream> set to zero." |
| * |
| * Since we can call EmitVertex() and EndPrimitive() when we output |
| * primitives other than points, calling EmitStreamVertex(0) or |
| * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia |
| * does. Currently we only set prog->Geom.UsesStreams to TRUE when |
| * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero |
| * stream. |
| */ |
| if (prog->Geom.UsesStreams && |
| sh->Program->info.gs.output_primitive != GL_POINTS) { |
| linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) " |
| "with n>0 requires point output\n"); |
| } |
| } |
| } |
| |
| bool |
| validate_intrastage_arrays(struct gl_shader_program *prog, |
| ir_variable *const var, |
| ir_variable *const existing) |
| { |
| /* Consider the types to be "the same" if both types are arrays |
| * of the same type and one of the arrays is implicitly sized. |
| * In addition, set the type of the linked variable to the |
| * explicitly sized array. |
| */ |
| if (var->type->is_array() && existing->type->is_array()) { |
| if ((var->type->fields.array == existing->type->fields.array) && |
| ((var->type->length == 0)|| (existing->type->length == 0))) { |
| if (var->type->length != 0) { |
| if ((int)var->type->length <= existing->data.max_array_access) { |
| linker_error(prog, "%s `%s' declared as type " |
| "`%s' but outermost dimension has an index" |
| " of `%i'\n", |
| mode_string(var), |
| var->name, var->type->name, |
| existing->data.max_array_access); |
| } |
| existing->type = var->type; |
| return true; |
| } else if (existing->type->length != 0) { |
| if((int)existing->type->length <= var->data.max_array_access && |
| !existing->data.from_ssbo_unsized_array) { |
| linker_error(prog, "%s `%s' declared as type " |
| "`%s' but outermost dimension has an index" |
| " of `%i'\n", |
| mode_string(var), |
| var->name, existing->type->name, |
| var->data.max_array_access); |
| } |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| |
| /** |
| * Perform validation of global variables used across multiple shaders |
| */ |
| static void |
| cross_validate_globals(struct gl_shader_program *prog, |
| struct exec_list *ir, glsl_symbol_table *variables, |
| bool uniforms_only) |
| { |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL) |
| continue; |
| |
| if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage)) |
| continue; |
| |
| /* don't cross validate subroutine uniforms */ |
| if (var->type->contains_subroutine()) |
| continue; |
| |
| /* Don't cross validate interface instances. These are only relevant |
| * inside a shader. The cross validation is done at the Interface Block |
| * name level. |
| */ |
| if (var->is_interface_instance()) |
| continue; |
| |
| /* Don't cross validate temporaries that are at global scope. These |
| * will eventually get pulled into the shaders 'main'. |
| */ |
| if (var->data.mode == ir_var_temporary) |
| continue; |
| |
| /* If a global with this name has already been seen, verify that the |
| * new instance has the same type. In addition, if the globals have |
| * initializers, the values of the initializers must be the same. |
| */ |
| ir_variable *const existing = variables->get_variable(var->name); |
| if (existing != NULL) { |
| /* Check if types match. */ |
| if (var->type != existing->type) { |
| if (!validate_intrastage_arrays(prog, var, existing)) { |
| /* If it is an unsized array in a Shader Storage Block, |
| * two different shaders can access to different elements. |
| * Because of that, they might be converted to different |
| * sized arrays, then check that they are compatible but |
| * ignore the array size. |
| */ |
| if (!(var->data.mode == ir_var_shader_storage && |
| var->data.from_ssbo_unsized_array && |
| existing->data.mode == ir_var_shader_storage && |
| existing->data.from_ssbo_unsized_array && |
| var->type->gl_type == existing->type->gl_type)) { |
| linker_error(prog, "%s `%s' declared as type " |
| "`%s' and type `%s'\n", |
| mode_string(var), |
| var->name, var->type->name, |
| existing->type->name); |
| return; |
| } |
| } |
| } |
| |
| if (var->data.explicit_location) { |
| if (existing->data.explicit_location |
| && (var->data.location != existing->data.location)) { |
| linker_error(prog, "explicit locations for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return; |
| } |
| |
| if (var->data.location_frac != existing->data.location_frac) { |
| linker_error(prog, "explicit components for %s `%s' have " |
| "differing values\n", mode_string(var), var->name); |
| return; |
| } |
| |
| existing->data.location = var->data.location; |
| existing->data.explicit_location = true; |
| } else { |
| /* Check if uniform with implicit location was marked explicit |
| * by earlier shader stage. If so, mark it explicit in this stage |
| * too to make sure later processing does not treat it as |
| * implicit one. |
| */ |
| if (existing->data.explicit_location) { |
| var->data.location = existing->data.location; |
| var->data.explicit_location = true; |
| } |
| } |
| |
| /* From the GLSL 4.20 specification: |
| * "A link error will result if two compilation units in a program |
| * specify different integer-constant bindings for the same |
| * opaque-uniform name. However, it is not an error to specify a |
| * binding on some but not all declarations for the same name" |
| */ |
| if (var->data.explicit_binding) { |
| if (existing->data.explicit_binding && |
| var->data.binding != existing->data.binding) { |
| linker_error(prog, "explicit bindings for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return; |
| } |
| |
| existing->data.binding = var->data.binding; |
| existing->data.explicit_binding = true; |
| } |
| |
| if (var->type->contains_atomic() && |
| var->data.offset != existing->data.offset) { |
| linker_error(prog, "offset specifications for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return; |
| } |
| |
| /* Validate layout qualifiers for gl_FragDepth. |
| * |
| * From the AMD/ARB_conservative_depth specs: |
| * |
| * "If gl_FragDepth is redeclared in any fragment shader in a |
| * program, it must be redeclared in all fragment shaders in |
| * that program that have static assignments to |
| * gl_FragDepth. All redeclarations of gl_FragDepth in all |
| * fragment shaders in a single program must have the same set |
| * of qualifiers." |
| */ |
| if (strcmp(var->name, "gl_FragDepth") == 0) { |
| bool layout_declared = var->data.depth_layout != ir_depth_layout_none; |
| bool layout_differs = |
| var->data.depth_layout != existing->data.depth_layout; |
| |
| if (layout_declared && layout_differs) { |
| linker_error(prog, |
| "All redeclarations of gl_FragDepth in all " |
| "fragment shaders in a single program must have " |
| "the same set of qualifiers.\n"); |
| } |
| |
| if (var->data.used && layout_differs) { |
| linker_error(prog, |
| "If gl_FragDepth is redeclared with a layout " |
| "qualifier in any fragment shader, it must be " |
| "redeclared with the same layout qualifier in " |
| "all fragment shaders that have assignments to " |
| "gl_FragDepth\n"); |
| } |
| } |
| |
| /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says: |
| * |
| * "If a shared global has multiple initializers, the |
| * initializers must all be constant expressions, and they |
| * must all have the same value. Otherwise, a link error will |
| * result. (A shared global having only one initializer does |
| * not require that initializer to be a constant expression.)" |
| * |
| * Previous to 4.20 the GLSL spec simply said that initializers |
| * must have the same value. In this case of non-constant |
| * initializers, this was impossible to determine. As a result, |
| * no vendor actually implemented that behavior. The 4.20 |
| * behavior matches the implemented behavior of at least one other |
| * vendor, so we'll implement that for all GLSL versions. |
| */ |
| if (var->constant_initializer != NULL) { |
| if (existing->constant_initializer != NULL) { |
| if (!var->constant_initializer->has_value(existing->constant_initializer)) { |
| linker_error(prog, "initializers for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return; |
| } |
| } else { |
| /* If the first-seen instance of a particular uniform did |
| * not have an initializer but a later instance does, |
| * replace the former with the later. |
| */ |
| variables->replace_variable(existing->name, var); |
| } |
| } |
| |
| if (var->data.has_initializer) { |
| if (existing->data.has_initializer |
| && (var->constant_initializer == NULL |
| || existing->constant_initializer == NULL)) { |
| linker_error(prog, |
| "shared global variable `%s' has multiple " |
| "non-constant initializers.\n", |
| var->name); |
| return; |
| } |
| } |
| |
| if (existing->data.invariant != var->data.invariant) { |
| linker_error(prog, "declarations for %s `%s' have " |
| "mismatching invariant qualifiers\n", |
| mode_string(var), var->name); |
| return; |
| } |
| if (existing->data.centroid != var->data.centroid) { |
| linker_error(prog, "declarations for %s `%s' have " |
| "mismatching centroid qualifiers\n", |
| mode_string(var), var->name); |
| return; |
| } |
| if (existing->data.sample != var->data.sample) { |
| linker_error(prog, "declarations for %s `%s` have " |
| "mismatching sample qualifiers\n", |
| mode_string(var), var->name); |
| return; |
| } |
| if (existing->data.image_format != var->data.image_format) { |
| linker_error(prog, "declarations for %s `%s` have " |
| "mismatching image format qualifiers\n", |
| mode_string(var), var->name); |
| return; |
| } |
| |
| /* Only in GLSL ES 3.10, the precision qualifier should not match |
| * between block members defined in matched block names within a |
| * shader interface. |
| * |
| * In GLSL ES 3.00 and ES 3.20, precision qualifier for each block |
| * member should match. |
| */ |
| if (prog->IsES && (prog->data->Version != 310 || |
| !var->get_interface_type()) && |
| existing->data.precision != var->data.precision) { |
| linker_error(prog, "declarations for %s `%s` have " |
| "mismatching precision qualifiers\n", |
| mode_string(var), var->name); |
| return; |
| } |
| } else |
| variables->add_variable(var); |
| } |
| } |
| |
| |
| /** |
| * Perform validation of uniforms used across multiple shader stages |
| */ |
| static void |
| cross_validate_uniforms(struct gl_shader_program *prog) |
| { |
| glsl_symbol_table variables; |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| cross_validate_globals(prog, prog->_LinkedShaders[i]->ir, &variables, |
| true); |
| } |
| } |
| |
| /** |
| * Accumulates the array of buffer blocks and checks that all definitions of |
| * blocks agree on their contents. |
| */ |
| static bool |
| interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog, |
| bool validate_ssbo) |
| { |
| int *InterfaceBlockStageIndex[MESA_SHADER_STAGES]; |
| struct gl_uniform_block *blks = NULL; |
| unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks : |
| &prog->data->NumUniformBlocks; |
| |
| unsigned max_num_buffer_blocks = 0; |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i]) { |
| if (validate_ssbo) { |
| max_num_buffer_blocks += |
| prog->_LinkedShaders[i]->Program->info.num_ssbos; |
| } else { |
| max_num_buffer_blocks += |
| prog->_LinkedShaders[i]->Program->info.num_ubos; |
| } |
| } |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| struct gl_linked_shader *sh = prog->_LinkedShaders[i]; |
| |
| InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks]; |
| for (unsigned int j = 0; j < max_num_buffer_blocks; j++) |
| InterfaceBlockStageIndex[i][j] = -1; |
| |
| if (sh == NULL) |
| continue; |
| |
| unsigned sh_num_blocks; |
| struct gl_uniform_block **sh_blks; |
| if (validate_ssbo) { |
| sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos; |
| sh_blks = sh->Program->sh.ShaderStorageBlocks; |
| } else { |
| sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos; |
| sh_blks = sh->Program->sh.UniformBlocks; |
| } |
| |
| for (unsigned int j = 0; j < sh_num_blocks; j++) { |
| int index = link_cross_validate_uniform_block(prog, &blks, num_blks, |
| sh_blks[j]); |
| |
| if (index == -1) { |
| linker_error(prog, "buffer block `%s' has mismatching " |
| "definitions\n", sh_blks[j]->Name); |
| |
| for (unsigned k = 0; k <= i; k++) { |
| delete[] InterfaceBlockStageIndex[k]; |
| } |
| |
| /* Reset the block count. This will help avoid various segfaults |
| * from api calls that assume the array exists due to the count |
| * being non-zero. |
| */ |
| *num_blks = 0; |
| return false; |
| } |
| |
| InterfaceBlockStageIndex[i][index] = j; |
| } |
| } |
| |
| /* Update per stage block pointers to point to the program list. |
| * FIXME: We should be able to free the per stage blocks here. |
| */ |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| for (unsigned j = 0; j < *num_blks; j++) { |
| int stage_index = InterfaceBlockStageIndex[i][j]; |
| |
| if (stage_index != -1) { |
| struct gl_linked_shader *sh = prog->_LinkedShaders[i]; |
| |
| struct gl_uniform_block **sh_blks = validate_ssbo ? |
| sh->Program->sh.ShaderStorageBlocks : |
| sh->Program->sh.UniformBlocks; |
| |
| blks[j].stageref |= sh_blks[stage_index]->stageref; |
| sh_blks[stage_index] = &blks[j]; |
| } |
| } |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| delete[] InterfaceBlockStageIndex[i]; |
| } |
| |
| if (validate_ssbo) |
| prog->data->ShaderStorageBlocks = blks; |
| else |
| prog->data->UniformBlocks = blks; |
| |
| return true; |
| } |
| |
| |
| /** |
| * Populates a shaders symbol table with all global declarations |
| */ |
| static void |
| populate_symbol_table(gl_linked_shader *sh) |
| { |
| sh->symbols = new(sh) glsl_symbol_table; |
| |
| foreach_in_list(ir_instruction, inst, sh->ir) { |
| ir_variable *var; |
| ir_function *func; |
| |
| if ((func = inst->as_function()) != NULL) { |
| sh->symbols->add_function(func); |
| } else if ((var = inst->as_variable()) != NULL) { |
| if (var->data.mode != ir_var_temporary) |
| sh->symbols->add_variable(var); |
| } |
| } |
| } |
| |
| |
| /** |
| * Remap variables referenced in an instruction tree |
| * |
| * This is used when instruction trees are cloned from one shader and placed in |
| * another. These trees will contain references to \c ir_variable nodes that |
| * do not exist in the target shader. This function finds these \c ir_variable |
| * references and replaces the references with matching variables in the target |
| * shader. |
| * |
| * If there is no matching variable in the target shader, a clone of the |
| * \c ir_variable is made and added to the target shader. The new variable is |
| * added to \b both the instruction stream and the symbol table. |
| * |
| * \param inst IR tree that is to be processed. |
| * \param symbols Symbol table containing global scope symbols in the |
| * linked shader. |
| * \param instructions Instruction stream where new variable declarations |
| * should be added. |
| */ |
| static void |
| remap_variables(ir_instruction *inst, struct gl_linked_shader *target, |
| hash_table *temps) |
| { |
| class remap_visitor : public ir_hierarchical_visitor { |
| public: |
| remap_visitor(struct gl_linked_shader *target, hash_table *temps) |
| { |
| this->target = target; |
| this->symbols = target->symbols; |
| this->instructions = target->ir; |
| this->temps = temps; |
| } |
| |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| if (ir->var->data.mode == ir_var_temporary) { |
| hash_entry *entry = _mesa_hash_table_search(temps, ir->var); |
| ir_variable *var = entry ? (ir_variable *) entry->data : NULL; |
| |
| assert(var != NULL); |
| ir->var = var; |
| return visit_continue; |
| } |
| |
| ir_variable *const existing = |
| this->symbols->get_variable(ir->var->name); |
| if (existing != NULL) |
| ir->var = existing; |
| else { |
| ir_variable *copy = ir->var->clone(this->target, NULL); |
| |
| this->symbols->add_variable(copy); |
| this->instructions->push_head(copy); |
| ir->var = copy; |
| } |
| |
| return visit_continue; |
| } |
| |
| private: |
| struct gl_linked_shader *target; |
| glsl_symbol_table *symbols; |
| exec_list *instructions; |
| hash_table *temps; |
| }; |
| |
| remap_visitor v(target, temps); |
| |
| inst->accept(&v); |
| } |
| |
| |
| /** |
| * Move non-declarations from one instruction stream to another |
| * |
| * The intended usage pattern of this function is to pass the pointer to the |
| * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node |
| * pointer) for \c last and \c false for \c make_copies on the first |
| * call. Successive calls pass the return value of the previous call for |
| * \c last and \c true for \c make_copies. |
| * |
| * \param instructions Source instruction stream |
| * \param last Instruction after which new instructions should be |
| * inserted in the target instruction stream |
| * \param make_copies Flag selecting whether instructions in \c instructions |
| * should be copied (via \c ir_instruction::clone) into the |
| * target list or moved. |
| * |
| * \return |
| * The new "last" instruction in the target instruction stream. This pointer |
| * is suitable for use as the \c last parameter of a later call to this |
| * function. |
| */ |
| static exec_node * |
| move_non_declarations(exec_list *instructions, exec_node *last, |
| bool make_copies, gl_linked_shader *target) |
| { |
| hash_table *temps = NULL; |
| |
| if (make_copies) |
| temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer, |
| _mesa_key_pointer_equal); |
| |
| foreach_in_list_safe(ir_instruction, inst, instructions) { |
| if (inst->as_function()) |
| continue; |
| |
| ir_variable *var = inst->as_variable(); |
| if ((var != NULL) && (var->data.mode != ir_var_temporary)) |
| continue; |
| |
| assert(inst->as_assignment() |
| || inst->as_call() |
| || inst->as_if() /* for initializers with the ?: operator */ |
| || ((var != NULL) && (var->data.mode == ir_var_temporary))); |
| |
| if (make_copies) { |
| inst = inst->clone(target, NULL); |
| |
| if (var != NULL) |
| _mesa_hash_table_insert(temps, var, inst); |
| else |
| remap_variables(inst, target, temps); |
| } else { |
| inst->remove(); |
| } |
| |
| last->insert_after(inst); |
| last = inst; |
| } |
| |
| if (make_copies) |
| _mesa_hash_table_destroy(temps, NULL); |
| |
| return last; |
| } |
| |
| |
| /** |
| * This class is only used in link_intrastage_shaders() below but declaring |
| * it inside that function leads to compiler warnings with some versions of |
| * gcc. |
| */ |
| class array_sizing_visitor : public deref_type_updater { |
| public: |
| array_sizing_visitor() |
| : mem_ctx(ralloc_context(NULL)), |
| unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer, |
| _mesa_key_pointer_equal)) |
| { |
| } |
| |
| ~array_sizing_visitor() |
| { |
| _mesa_hash_table_destroy(this->unnamed_interfaces, NULL); |
| ralloc_free(this->mem_ctx); |
| } |
| |
| virtual ir_visitor_status visit(ir_variable *var) |
| { |
| const glsl_type *type_without_array; |
| bool implicit_sized_array = var->data.implicit_sized_array; |
| fixup_type(&var->type, var->data.max_array_access, |
| var->data.from_ssbo_unsized_array, |
| &implicit_sized_array); |
| var->data.implicit_sized_array = implicit_sized_array; |
| type_without_array = var->type->without_array(); |
| if (var->type->is_interface()) { |
| if (interface_contains_unsized_arrays(var->type)) { |
| const glsl_type *new_type = |
| resize_interface_members(var->type, |
| var->get_max_ifc_array_access(), |
| var->is_in_shader_storage_block()); |
| var->type = new_type; |
| var->change_interface_type(new_type); |
| } |
| } else if (type_without_array->is_interface()) { |
| if (interface_contains_unsized_arrays(type_without_array)) { |
| const glsl_type *new_type = |
| resize_interface_members(type_without_array, |
| var->get_max_ifc_array_access(), |
| var->is_in_shader_storage_block()); |
| var->change_interface_type(new_type); |
| var->type = update_interface_members_array(var->type, new_type); |
| } |
| } else if (const glsl_type *ifc_type = var->get_interface_type()) { |
| /* Store a pointer to the variable in the unnamed_interfaces |
| * hashtable. |
| */ |
| hash_entry *entry = |
| _mesa_hash_table_search(this->unnamed_interfaces, |
| ifc_type); |
| |
| ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL; |
| |
| if (interface_vars == NULL) { |
| interface_vars = rzalloc_array(mem_ctx, ir_variable *, |
| ifc_type->length); |
| _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type, |
| interface_vars); |
| } |
| unsigned index = ifc_type->field_index(var->name); |
| assert(index < ifc_type->length); |
| assert(interface_vars[index] == NULL); |
| interface_vars[index] = var; |
| } |
| return visit_continue; |
| } |
| |
| /** |
| * For each unnamed interface block that was discovered while running the |
| * visitor, adjust the interface type to reflect the newly assigned array |
| * sizes, and fix up the ir_variable nodes to point to the new interface |
| * type. |
| */ |
| void fixup_unnamed_interface_types() |
| { |
| hash_table_call_foreach(this->unnamed_interfaces, |
| fixup_unnamed_interface_type, NULL); |
| } |
| |
| private: |
| /** |
| * If the type pointed to by \c type represents an unsized array, replace |
| * it with a sized array whose size is determined by max_array_access. |
| */ |
| static void fixup_type(const glsl_type **type, unsigned max_array_access, |
| bool from_ssbo_unsized_array, bool *implicit_sized) |
| { |
| if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) { |
| *type = glsl_type::get_array_instance((*type)->fields.array, |
| max_array_access + 1); |
| *implicit_sized = true; |
| assert(*type != NULL); |
| } |
| } |
| |
| static const glsl_type * |
| update_interface_members_array(const glsl_type *type, |
| const glsl_type *new_interface_type) |
| { |
| const glsl_type *element_type = type->fields.array; |
| if (element_type->is_array()) { |
| const glsl_type *new_array_type = |
| update_interface_members_array(element_type, new_interface_type); |
| return glsl_type::get_array_instance(new_array_type, type->length); |
| } else { |
| return glsl_type::get_array_instance(new_interface_type, |
| type->length); |
| } |
| } |
| |
| /** |
| * Determine whether the given interface type contains unsized arrays (if |
| * it doesn't, array_sizing_visitor doesn't need to process it). |
| */ |
| static bool interface_contains_unsized_arrays(const glsl_type *type) |
| { |
| for (unsigned i = 0; i < type->length; i++) { |
| const glsl_type *elem_type = type->fields.structure[i].type; |
| if (elem_type->is_unsized_array()) |
| return true; |
| } |
| return false; |
| } |
| |
| /** |
| * Create a new interface type based on the given type, with unsized arrays |
| * replaced by sized arrays whose size is determined by |
| * max_ifc_array_access. |
| */ |
| static const glsl_type * |
| resize_interface_members(const glsl_type *type, |
| const int *max_ifc_array_access, |
| bool is_ssbo) |
| { |
| unsigned num_fields = type->length; |
| glsl_struct_field *fields = new glsl_struct_field[num_fields]; |
| memcpy(fields, type->fields.structure, |
| num_fields * sizeof(*fields)); |
| for (unsigned i = 0; i < num_fields; i++) { |
| bool implicit_sized_array = fields[i].implicit_sized_array; |
| /* If SSBO last member is unsized array, we don't replace it by a sized |
| * array. |
| */ |
| if (is_ssbo && i == (num_fields - 1)) |
| fixup_type(&fields[i].type, max_ifc_array_access[i], |
| true, &implicit_sized_array); |
| else |
| fixup_type(&fields[i].type, max_ifc_array_access[i], |
| false, &implicit_sized_array); |
| fields[i].implicit_sized_array = implicit_sized_array; |
| } |
| glsl_interface_packing packing = |
| (glsl_interface_packing) type->interface_packing; |
| bool row_major = (bool) type->interface_row_major; |
| const glsl_type *new_ifc_type = |
| glsl_type::get_interface_instance(fields, num_fields, |
| packing, row_major, type->name); |
| delete [] fields; |
| return new_ifc_type; |
| } |
| |
| static void fixup_unnamed_interface_type(const void *key, void *data, |
| void *) |
| { |
| const glsl_type *ifc_type = (const glsl_type *) key; |
| ir_variable **interface_vars = (ir_variable **) data; |
| unsigned num_fields = ifc_type->length; |
| glsl_struct_field *fields = new glsl_struct_field[num_fields]; |
| memcpy(fields, ifc_type->fields.structure, |
| num_fields * sizeof(*fields)); |
| bool interface_type_changed = false; |
| for (unsigned i = 0; i < num_fields; i++) { |
| if (interface_vars[i] != NULL && |
| fields[i].type != interface_vars[i]->type) { |
| fields[i].type = interface_vars[i]->type; |
| interface_type_changed = true; |
| } |
| } |
| if (!interface_type_changed) { |
| delete [] fields; |
| return; |
| } |
| glsl_interface_packing packing = |
| (glsl_interface_packing) ifc_type->interface_packing; |
| bool row_major = (bool) ifc_type->interface_row_major; |
| const glsl_type *new_ifc_type = |
| glsl_type::get_interface_instance(fields, num_fields, packing, |
| row_major, ifc_type->name); |
| delete [] fields; |
| for (unsigned i = 0; i < num_fields; i++) { |
| if (interface_vars[i] != NULL) |
| interface_vars[i]->change_interface_type(new_ifc_type); |
| } |
| } |
| |
| /** |
| * Memory context used to allocate the data in \c unnamed_interfaces. |
| */ |
| void *mem_ctx; |
| |
| /** |
| * Hash table from const glsl_type * to an array of ir_variable *'s |
| * pointing to the ir_variables constituting each unnamed interface block. |
| */ |
| hash_table *unnamed_interfaces; |
| }; |
| |
| static bool |
| validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx, |
| struct gl_shader_program *prog) |
| { |
| /* We will validate doubles at a later stage */ |
| if (prog->TransformFeedback.BufferStride[idx] % 4) { |
| linker_error(prog, "invalid qualifier xfb_stride=%d must be a " |
| "multiple of 4 or if its applied to a type that is " |
| "or contains a double a multiple of 8.", |
| prog->TransformFeedback.BufferStride[idx]); |
| return false; |
| } |
| |
| if (prog->TransformFeedback.BufferStride[idx] / 4 > |
| ctx->Const.MaxTransformFeedbackInterleavedComponents) { |
| linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS " |
| "limit has been exceeded."); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Check for conflicting xfb_stride default qualifiers and store buffer stride |
| * for later use. |
| */ |
| static void |
| link_xfb_stride_layout_qualifiers(struct gl_context *ctx, |
| struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) { |
| prog->TransformFeedback.BufferStride[i] = 0; |
| } |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| struct gl_shader *shader = shader_list[i]; |
| |
| for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { |
| if (shader->TransformFeedbackBufferStride[j]) { |
| if (prog->TransformFeedback.BufferStride[j] == 0) { |
| prog->TransformFeedback.BufferStride[j] = |
| shader->TransformFeedbackBufferStride[j]; |
| if (!validate_xfb_buffer_stride(ctx, j, prog)) |
| return; |
| } else if (prog->TransformFeedback.BufferStride[j] != |
| shader->TransformFeedbackBufferStride[j]){ |
| linker_error(prog, |
| "intrastage shaders defined with conflicting " |
| "xfb_stride for buffer %d (%d and %d)\n", j, |
| prog->TransformFeedback.BufferStride[j], |
| shader->TransformFeedbackBufferStride[j]); |
| return; |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * Check for conflicting bindless/bound sampler/image layout qualifiers at |
| * global scope. |
| */ |
| static void |
| link_bindless_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| bool bindless_sampler, bindless_image; |
| bool bound_sampler, bound_image; |
| |
| bindless_sampler = bindless_image = false; |
| bound_sampler = bound_image = false; |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| struct gl_shader *shader = shader_list[i]; |
| |
| if (shader->bindless_sampler) |
| bindless_sampler = true; |
| if (shader->bindless_image) |
| bindless_image = true; |
| if (shader->bound_sampler) |
| bound_sampler = true; |
| if (shader->bound_image) |
| bound_image = true; |
| |
| if ((bindless_sampler && bound_sampler) || |
| (bindless_image && bound_image)) { |
| /* From section 4.4.6 of the ARB_bindless_texture spec: |
| * |
| * "If both bindless_sampler and bound_sampler, or bindless_image |
| * and bound_image, are declared at global scope in any |
| * compilation unit, a link- time error will be generated." |
| */ |
| linker_error(prog, "both bindless_sampler and bound_sampler, or " |
| "bindless_image and bound_image, can't be declared at " |
| "global scope"); |
| } |
| } |
| } |
| |
| /** |
| * Performs the cross-validation of tessellation control shader vertices and |
| * layout qualifiers for the attached tessellation control shaders, |
| * and propagates them to the linked TCS and linked shader program. |
| */ |
| static void |
| link_tcs_out_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_program *gl_prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL) |
| return; |
| |
| gl_prog->info.tess.tcs_vertices_out = 0; |
| |
| /* From the GLSL 4.0 spec (chapter 4.3.8.2): |
| * |
| * "All tessellation control shader layout declarations in a program |
| * must specify the same output patch vertex count. There must be at |
| * least one layout qualifier specifying an output patch vertex count |
| * in any program containing tessellation control shaders; however, |
| * such a declaration is not required in all tessellation control |
| * shaders." |
| */ |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| struct gl_shader *shader = shader_list[i]; |
| |
| if (shader->info.TessCtrl.VerticesOut != 0) { |
| if (gl_prog->info.tess.tcs_vertices_out != 0 && |
| gl_prog->info.tess.tcs_vertices_out != |
| (unsigned) shader->info.TessCtrl.VerticesOut) { |
| linker_error(prog, "tessellation control shader defined with " |
| "conflicting output vertex count (%d and %d)\n", |
| gl_prog->info.tess.tcs_vertices_out, |
| shader->info.TessCtrl.VerticesOut); |
| return; |
| } |
| gl_prog->info.tess.tcs_vertices_out = |
| shader->info.TessCtrl.VerticesOut; |
| } |
| } |
| |
| /* Just do the intrastage -> interstage propagation right now, |
| * since we already know we're in the right type of shader program |
| * for doing it. |
| */ |
| if (gl_prog->info.tess.tcs_vertices_out == 0) { |
| linker_error(prog, "tessellation control shader didn't declare " |
| "vertices out layout qualifier\n"); |
| return; |
| } |
| } |
| |
| |
| /** |
| * Performs the cross-validation of tessellation evaluation shader |
| * primitive type, vertex spacing, ordering and point_mode layout qualifiers |
| * for the attached tessellation evaluation shaders, and propagates them |
| * to the linked TES and linked shader program. |
| */ |
| static void |
| link_tes_in_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_program *gl_prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL) |
| return; |
| |
| int point_mode = -1; |
| unsigned vertex_order = 0; |
| |
| gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN; |
| gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED; |
| |
| /* From the GLSL 4.0 spec (chapter 4.3.8.1): |
| * |
| * "At least one tessellation evaluation shader (compilation unit) in |
| * a program must declare a primitive mode in its input layout. |
| * Declaration vertex spacing, ordering, and point mode identifiers is |
| * optional. It is not required that all tessellation evaluation |
| * shaders in a program declare a primitive mode. If spacing or |
| * vertex ordering declarations are omitted, the tessellation |
| * primitive generator will use equal spacing or counter-clockwise |
| * vertex ordering, respectively. If a point mode declaration is |
| * omitted, the tessellation primitive generator will produce lines or |
| * triangles according to the primitive mode." |
| */ |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| struct gl_shader *shader = shader_list[i]; |
| |
| if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) { |
| if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN && |
| gl_prog->info.tess.primitive_mode != |
| shader->info.TessEval.PrimitiveMode) { |
| linker_error(prog, "tessellation evaluation shader defined with " |
| "conflicting input primitive modes.\n"); |
| return; |
| } |
| gl_prog->info.tess.primitive_mode = |
| shader->info.TessEval.PrimitiveMode; |
| } |
| |
| if (shader->info.TessEval.Spacing != 0) { |
| if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing != |
| shader->info.TessEval.Spacing) { |
| linker_error(prog, "tessellation evaluation shader defined with " |
| "conflicting vertex spacing.\n"); |
| return; |
| } |
| gl_prog->info.tess.spacing = shader->info.TessEval.Spacing; |
| } |
| |
| if (shader->info.TessEval.VertexOrder != 0) { |
| if (vertex_order != 0 && |
| vertex_order != shader->info.TessEval.VertexOrder) { |
| linker_error(prog, "tessellation evaluation shader defined with " |
| "conflicting ordering.\n"); |
| return; |
| } |
| vertex_order = shader->info.TessEval.VertexOrder; |
| } |
| |
| if (shader->info.TessEval.PointMode != -1) { |
| if (point_mode != -1 && |
| point_mode != shader->info.TessEval.PointMode) { |
| linker_error(prog, "tessellation evaluation shader defined with " |
| "conflicting point modes.\n"); |
| return; |
| } |
| point_mode = shader->info.TessEval.PointMode; |
| } |
| |
| } |
| |
| /* Just do the intrastage -> interstage propagation right now, |
| * since we already know we're in the right type of shader program |
| * for doing it. |
| */ |
| if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) { |
| linker_error(prog, |
| "tessellation evaluation shader didn't declare input " |
| "primitive modes.\n"); |
| return; |
| } |
| |
| if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED) |
| gl_prog->info.tess.spacing = TESS_SPACING_EQUAL; |
| |
| if (vertex_order == 0 || vertex_order == GL_CCW) |
| gl_prog->info.tess.ccw = true; |
| else |
| gl_prog->info.tess.ccw = false; |
| |
| |
| if (point_mode == -1 || point_mode == GL_FALSE) |
| gl_prog->info.tess.point_mode = false; |
| else |
| gl_prog->info.tess.point_mode = true; |
| } |
| |
| |
| /** |
| * Performs the cross-validation of layout qualifiers specified in |
| * redeclaration of gl_FragCoord for the attached fragment shaders, |
| * and propagates them to the linked FS and linked shader program. |
| */ |
| static void |
| link_fs_inout_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_linked_shader *linked_shader, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| bool redeclares_gl_fragcoord = false; |
| bool uses_gl_fragcoord = false; |
| bool origin_upper_left = false; |
| bool pixel_center_integer = false; |
| |
| if (linked_shader->Stage != MESA_SHADER_FRAGMENT || |
| (prog->data->Version < 150 && |
| !prog->ARB_fragment_coord_conventions_enable)) |
| return; |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| struct gl_shader *shader = shader_list[i]; |
| /* From the GLSL 1.50 spec, page 39: |
| * |
| * "If gl_FragCoord is redeclared in any fragment shader in a program, |
| * it must be redeclared in all the fragment shaders in that program |
| * that have a static use gl_FragCoord." |
| */ |
| if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord && |
| shader->uses_gl_fragcoord) |
| || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord && |
| uses_gl_fragcoord)) { |
| linker_error(prog, "fragment shader defined with conflicting " |
| "layout qualifiers for gl_FragCoord\n"); |
| } |
| |
| /* From the GLSL 1.50 spec, page 39: |
| * |
| * "All redeclarations of gl_FragCoord in all fragment shaders in a |
| * single program must have the same set of qualifiers." |
| */ |
| if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord && |
| (shader->origin_upper_left != origin_upper_left || |
| shader->pixel_center_integer != pixel_center_integer)) { |
| linker_error(prog, "fragment shader defined with conflicting " |
| "layout qualifiers for gl_FragCoord\n"); |
| } |
| |
| /* Update the linked shader state. Note that uses_gl_fragcoord should |
| * accumulate the results. The other values should replace. If there |
| * are multiple redeclarations, all the fields except uses_gl_fragcoord |
| * are already known to be the same. |
| */ |
| if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) { |
| redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord; |
| uses_gl_fragcoord |= shader->uses_gl_fragcoord; |
| origin_upper_left = shader->origin_upper_left; |
| pixel_center_integer = shader->pixel_center_integer; |
| } |
| |
| linked_shader->Program->info.fs.early_fragment_tests |= |
| shader->EarlyFragmentTests || shader->PostDepthCoverage; |
| linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage; |
| linked_shader->Program->info.fs.post_depth_coverage |= |
| shader->PostDepthCoverage; |
| |
| linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport; |
| } |
| } |
| |
| /** |
| * Performs the cross-validation of geometry shader max_vertices and |
| * primitive type layout qualifiers for the attached geometry shaders, |
| * and propagates them to the linked GS and linked shader program. |
| */ |
| static void |
| link_gs_inout_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_program *gl_prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| /* No in/out qualifiers defined for anything but GLSL 1.50+ |
| * geometry shaders so far. |
| */ |
| if (gl_prog->info.stage != MESA_SHADER_GEOMETRY || |
| prog->data->Version < 150) |
| return; |
| |
| int vertices_out = -1; |
| |
| gl_prog->info.gs.invocations = 0; |
| gl_prog->info.gs.input_primitive = PRIM_UNKNOWN; |
| gl_prog->info.gs.output_primitive = PRIM_UNKNOWN; |
| |
| /* From the GLSL 1.50 spec, page 46: |
| * |
| * "All geometry shader output layout declarations in a program |
| * must declare the same layout and same value for |
| * max_vertices. There must be at least one geometry output |
| * layout declaration somewhere in a program, but not all |
| * geometry shaders (compilation units) are required to |
| * declare it." |
| */ |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| struct gl_shader *shader = shader_list[i]; |
| |
| if (shader->info.Geom.InputType != PRIM_UNKNOWN) { |
| if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN && |
| gl_prog->info.gs.input_primitive != |
| shader->info.Geom.InputType) { |
| linker_error(prog, "geometry shader defined with conflicting " |
| "input types\n"); |
| return; |
| } |
| gl_prog->info.gs.input_primitive = shader->info.Geom.InputType; |
| } |
| |
| if (shader->info.Geom.OutputType != PRIM_UNKNOWN) { |
| if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN && |
| gl_prog->info.gs.output_primitive != |
| shader->info.Geom.OutputType) { |
| linker_error(prog, "geometry shader defined with conflicting " |
| "output types\n"); |
| return; |
| } |
| gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType; |
| } |
| |
| if (shader->info.Geom.VerticesOut != -1) { |
| if (vertices_out != -1 && |
| vertices_out != shader->info.Geom.VerticesOut) { |
| linker_error(prog, "geometry shader defined with conflicting " |
| "output vertex count (%d and %d)\n", |
| vertices_out, shader->info.Geom.VerticesOut); |
| return; |
| } |
| vertices_out = shader->info.Geom.VerticesOut; |
| } |
| |
| if (shader->info.Geom.Invocations != 0) { |
| if (gl_prog->info.gs.invocations != 0 && |
| gl_prog->info.gs.invocations != |
| (unsigned) shader->info.Geom.Invocations) { |
| linker_error(prog, "geometry shader defined with conflicting " |
| "invocation count (%d and %d)\n", |
| gl_prog->info.gs.invocations, |
| shader->info.Geom.Invocations); |
| return; |
| } |
| gl_prog->info.gs.invocations = shader->info.Geom.Invocations; |
| } |
| } |
| |
| /* Just do the intrastage -> interstage propagation right now, |
| * since we already know we're in the right type of shader program |
| * for doing it. |
| */ |
| if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) { |
| linker_error(prog, |
| "geometry shader didn't declare primitive input type\n"); |
| return; |
| } |
| |
| if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) { |
| linker_error(prog, |
| "geometry shader didn't declare primitive output type\n"); |
| return; |
| } |
| |
| if (vertices_out == -1) { |
| linker_error(prog, |
| "geometry shader didn't declare max_vertices\n"); |
| return; |
| } else { |
| gl_prog->info.gs.vertices_out = vertices_out; |
| } |
| |
| if (gl_prog->info.gs.invocations == 0) |
| gl_prog->info.gs.invocations = 1; |
| } |
| |
| |
| /** |
| * Perform cross-validation of compute shader local_size_{x,y,z} layout |
| * qualifiers for the attached compute shaders, and propagate them to the |
| * linked CS and linked shader program. |
| */ |
| static void |
| link_cs_input_layout_qualifiers(struct gl_shader_program *prog, |
| struct gl_program *gl_prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| /* This function is called for all shader stages, but it only has an effect |
| * for compute shaders. |
| */ |
| if (gl_prog->info.stage != MESA_SHADER_COMPUTE) |
| return; |
| |
| for (int i = 0; i < 3; i++) |
| gl_prog->info.cs.local_size[i] = 0; |
| |
| gl_prog->info.cs.local_size_variable = false; |
| |
| /* From the ARB_compute_shader spec, in the section describing local size |
| * declarations: |
| * |
| * If multiple compute shaders attached to a single program object |
| * declare local work-group size, the declarations must be identical; |
| * otherwise a link-time error results. Furthermore, if a program |
| * object contains any compute shaders, at least one must contain an |
| * input layout qualifier specifying the local work sizes of the |
| * program, or a link-time error will occur. |
| */ |
| for (unsigned sh = 0; sh < num_shaders; sh++) { |
| struct gl_shader *shader = shader_list[sh]; |
| |
| if (shader->info.Comp.LocalSize[0] != 0) { |
| if (gl_prog->info.cs.local_size[0] != 0) { |
| for (int i = 0; i < 3; i++) { |
| if (gl_prog->info.cs.local_size[i] != |
| shader->info.Comp.LocalSize[i]) { |
| linker_error(prog, "compute shader defined with conflicting " |
| "local sizes\n"); |
| return; |
| } |
| } |
| } |
| for (int i = 0; i < 3; i++) { |
| gl_prog->info.cs.local_size[i] = |
| shader->info.Comp.LocalSize[i]; |
| } |
| } else if (shader->info.Comp.LocalSizeVariable) { |
| if (gl_prog->info.cs.local_size[0] != 0) { |
| /* The ARB_compute_variable_group_size spec says: |
| * |
| * If one compute shader attached to a program declares a |
| * variable local group size and a second compute shader |
| * attached to the same program declares a fixed local group |
| * size, a link-time error results. |
| */ |
| linker_error(prog, "compute shader defined with both fixed and " |
| "variable local group size\n"); |
| return; |
| } |
| gl_prog->info.cs.local_size_variable = true; |
| } |
| } |
| |
| /* Just do the intrastage -> interstage propagation right now, |
| * since we already know we're in the right type of shader program |
| * for doing it. |
| */ |
| if (gl_prog->info.cs.local_size[0] == 0 && |
| !gl_prog->info.cs.local_size_variable) { |
| linker_error(prog, "compute shader must contain a fixed or a variable " |
| "local group size\n"); |
| return; |
| } |
| } |
| |
| |
| /** |
| * Combine a group of shaders for a single stage to generate a linked shader |
| * |
| * \note |
| * If this function is supplied a single shader, it is cloned, and the new |
| * shader is returned. |
| */ |
| struct gl_linked_shader * |
| link_intrastage_shaders(void *mem_ctx, |
| struct gl_context *ctx, |
| struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders, |
| bool allow_missing_main) |
| { |
| struct gl_uniform_block *ubo_blocks = NULL; |
| struct gl_uniform_block *ssbo_blocks = NULL; |
| unsigned num_ubo_blocks = 0; |
| unsigned num_ssbo_blocks = 0; |
| |
| /* Check that global variables defined in multiple shaders are consistent. |
| */ |
| glsl_symbol_table variables; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i] == NULL) |
| continue; |
| cross_validate_globals(prog, shader_list[i]->ir, &variables, false); |
| } |
| |
| if (!prog->data->LinkStatus) |
| return NULL; |
| |
| /* Check that interface blocks defined in multiple shaders are consistent. |
| */ |
| validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list, |
| num_shaders); |
| if (!prog->data->LinkStatus) |
| return NULL; |
| |
| /* Check that there is only a single definition of each function signature |
| * across all shaders. |
| */ |
| for (unsigned i = 0; i < (num_shaders - 1); i++) { |
| foreach_in_list(ir_instruction, node, shader_list[i]->ir) { |
| ir_function *const f = node->as_function(); |
| |
| if (f == NULL) |
| continue; |
| |
| for (unsigned j = i + 1; j < num_shaders; j++) { |
| ir_function *const other = |
| shader_list[j]->symbols->get_function(f->name); |
| |
| /* If the other shader has no function (and therefore no function |
| * signatures) with the same name, skip to the next shader. |
| */ |
| if (other == NULL) |
| continue; |
| |
| foreach_in_list(ir_function_signature, sig, &f->signatures) { |
| if (!sig->is_defined) |
| continue; |
| |
| ir_function_signature *other_sig = |
| other->exact_matching_signature(NULL, &sig->parameters); |
| |
| if (other_sig != NULL && other_sig->is_defined) { |
| linker_error(prog, "function `%s' is multiply defined\n", |
| f->name); |
| return NULL; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Find the shader that defines main, and make a clone of it. |
| * |
| * Starting with the clone, search for undefined references. If one is |
| * found, find the shader that defines it. Clone the reference and add |
| * it to the shader. Repeat until there are no undefined references or |
| * until a reference cannot be resolved. |
| */ |
| gl_shader *main = NULL; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (_mesa_get_main_function_signature(shader_list[i]->symbols)) { |
| main = shader_list[i]; |
| break; |
| } |
| } |
| |
| if (main == NULL && allow_missing_main) |
| main = shader_list[0]; |
| |
| if (main == NULL) { |
| linker_error(prog, "%s shader lacks `main'\n", |
| _mesa_shader_stage_to_string(shader_list[0]->Stage)); |
| return NULL; |
| } |
| |
| gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader); |
| linked->Stage = shader_list[0]->Stage; |
| |
| /* Create program and attach it to the linked shader */ |
| struct gl_program *gl_prog = |
| ctx->Driver.NewProgram(ctx, |
| _mesa_shader_stage_to_program(shader_list[0]->Stage), |
| prog->Name, false); |
| if (!gl_prog) { |
| prog->data->LinkStatus = linking_failure; |
| _mesa_delete_linked_shader(ctx, linked); |
| return NULL; |
| } |
| |
| if (!prog->data->cache_fallback) |
| _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data); |
| |
| /* Don't use _mesa_reference_program() just take ownership */ |
| linked->Program = gl_prog; |
| |
| linked->ir = new(linked) exec_list; |
| clone_ir_list(mem_ctx, linked->ir, main->ir); |
| |
| link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders); |
| link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); |
| link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); |
| link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); |
| link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); |
| |
| if (linked->Stage != MESA_SHADER_FRAGMENT) |
| link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders); |
| |
| link_bindless_layout_qualifiers(prog, shader_list, num_shaders); |
| |
| populate_symbol_table(linked); |
| |
| /* The pointer to the main function in the final linked shader (i.e., the |
| * copy of the original shader that contained the main function). |
| */ |
| ir_function_signature *const main_sig = |
| _mesa_get_main_function_signature(linked->symbols); |
| |
| /* Move any instructions other than variable declarations or function |
| * declarations into main. |
| */ |
| if (main_sig != NULL) { |
| exec_node *insertion_point = |
| move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, |
| linked); |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i] == main) |
| continue; |
| |
| insertion_point = move_non_declarations(shader_list[i]->ir, |
| insertion_point, true, linked); |
| } |
| } |
| |
| if (!link_function_calls(prog, linked, shader_list, num_shaders)) { |
| _mesa_delete_linked_shader(ctx, linked); |
| return NULL; |
| } |
| |
| /* Make a pass over all variable declarations to ensure that arrays with |
| * unspecified sizes have a size specified. The size is inferred from the |
| * max_array_access field. |
| */ |
| array_sizing_visitor v; |
| v.run(linked->ir); |
| v.fixup_unnamed_interface_types(); |
| |
| if (!prog->data->cache_fallback) { |
| /* Link up uniform blocks defined within this stage. */ |
| link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks, |
| &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks); |
| |
| if (!prog->data->LinkStatus) { |
| _mesa_delete_linked_shader(ctx, linked); |
| return NULL; |
| } |
| |
| /* Copy ubo blocks to linked shader list */ |
| linked->Program->sh.UniformBlocks = |
| ralloc_array(linked, gl_uniform_block *, num_ubo_blocks); |
| ralloc_steal(linked, ubo_blocks); |
| for (unsigned i = 0; i < num_ubo_blocks; i++) { |
| linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i]; |
| } |
| linked->Program->info.num_ubos = num_ubo_blocks; |
| |
| /* Copy ssbo blocks to linked shader list */ |
| linked->Program->sh.ShaderStorageBlocks = |
| ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks); |
| ralloc_steal(linked, ssbo_blocks); |
| for (unsigned i = 0; i < num_ssbo_blocks; i++) { |
| linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i]; |
| } |
| linked->Program->info.num_ssbos = num_ssbo_blocks; |
| } |
| |
| /* At this point linked should contain all of the linked IR, so |
| * validate it to make sure nothing went wrong. |
| */ |
| validate_ir_tree(linked->ir); |
| |
| /* Set the size of geometry shader input arrays */ |
| if (linked->Stage == MESA_SHADER_GEOMETRY) { |
| unsigned num_vertices = |
| vertices_per_prim(gl_prog->info.gs.input_primitive); |
| array_resize_visitor input_resize_visitor(num_vertices, prog, |
| MESA_SHADER_GEOMETRY); |
| foreach_in_list(ir_instruction, ir, linked->ir) { |
| ir->accept(&input_resize_visitor); |
| } |
| } |
| |
| if (ctx->Const.VertexID_is_zero_based) |
| lower_vertex_id(linked); |
| |
| if (ctx->Const.LowerCsDerivedVariables) |
| lower_cs_derived(linked); |
| |
| #ifdef DEBUG |
| /* Compute the source checksum. */ |
| linked->SourceChecksum = 0; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i] == NULL) |
| continue; |
| linked->SourceChecksum ^= shader_list[i]->SourceChecksum; |
| } |
| #endif |
| |
| return linked; |
| } |
| |
| /** |
| * Update the sizes of linked shader uniform arrays to the maximum |
| * array index used. |
| * |
| * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec: |
| * |
| * If one or more elements of an array are active, |
| * GetActiveUniform will return the name of the array in name, |
| * subject to the restrictions listed above. The type of the array |
| * is returned in type. The size parameter contains the highest |
| * array element index used, plus one. The compiler or linker |
| * determines the highest index used. There will be only one |
| * active uniform reported by the GL per uniform array. |
| |
| */ |
| static void |
| update_array_sizes(struct gl_shader_program *prog) |
| { |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| bool types_were_updated = false; |
| |
| foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if ((var == NULL) || (var->data.mode != ir_var_uniform) || |
| !var->type->is_array()) |
| continue; |
| |
| /* GL_ARB_uniform_buffer_object says that std140 uniforms |
| * will not be eliminated. Since we always do std140, just |
| * don't resize arrays in UBOs. |
| * |
| * Atomic counters are supposed to get deterministic |
| * locations assigned based on the declaration ordering and |
| * sizes, array compaction would mess that up. |
| * |
| * Subroutine uniforms are not removed. |
| */ |
| if (var->is_in_buffer_block() || var->type->contains_atomic() || |
| var->type->contains_subroutine() || var->constant_initializer) |
| continue; |
| |
| int size = var->data.max_array_access; |
| for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) { |
| if (prog->_LinkedShaders[j] == NULL) |
| continue; |
| |
| foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) { |
| ir_variable *other_var = node2->as_variable(); |
| if (!other_var) |
| continue; |
| |
| if (strcmp(var->name, other_var->name) == 0 && |
| other_var->data.max_array_access > size) { |
| size = other_var->data.max_array_access; |
| } |
| } |
| } |
| |
| if (size + 1 != (int)var->type->length) { |
| /* If this is a built-in uniform (i.e., it's backed by some |
| * fixed-function state), adjust the number of state slots to |
| * match the new array size. The number of slots per array entry |
| * is not known. It seems safe to assume that the total number of |
| * slots is an integer multiple of the number of array elements. |
| * Determine the number of slots per array element by dividing by |
| * the old (total) size. |
| */ |
| const unsigned num_slots = var->get_num_state_slots(); |
| if (num_slots > 0) { |
| var->set_num_state_slots((size + 1) |
| * (num_slots / var->type->length)); |
| } |
| |
| var->type = glsl_type::get_array_instance(var->type->fields.array, |
| size + 1); |
| types_were_updated = true; |
| } |
| } |
| |
| /* Update the types of dereferences in case we changed any. */ |
| if (types_were_updated) { |
| deref_type_updater v; |
| v.run(prog->_LinkedShaders[i]->ir); |
| } |
| } |
| } |
| |
| /** |
| * Resize tessellation evaluation per-vertex inputs to the size of |
| * tessellation control per-vertex outputs. |
| */ |
| static void |
| resize_tes_inputs(struct gl_context *ctx, |
| struct gl_shader_program *prog) |
| { |
| if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL) |
| return; |
| |
| gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL]; |
| gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL]; |
| |
| /* If no control shader is present, then the TES inputs are statically |
| * sized to MaxPatchVertices; the actual size of the arrays won't be |
| * known until draw time. |
| */ |
| const int num_vertices = tcs |
| ? tcs->Program->info.tess.tcs_vertices_out |
| : ctx->Const.MaxPatchVertices; |
| |
| array_resize_visitor input_resize_visitor(num_vertices, prog, |
| MESA_SHADER_TESS_EVAL); |
| foreach_in_list(ir_instruction, ir, tes->ir) { |
| ir->accept(&input_resize_visitor); |
| } |
| |
| if (tcs || ctx->Const.LowerTESPatchVerticesIn) { |
| /* Convert the gl_PatchVerticesIn system value into a constant, since |
| * the value is known at this point. |
| */ |
| foreach_in_list(ir_instruction, ir, tes->ir) { |
| ir_variable *var = ir->as_variable(); |
| if (var && var->data.mode == ir_var_system_value && |
| var->data.location == SYSTEM_VALUE_VERTICES_IN) { |
| void *mem_ctx = ralloc_parent(var); |
| var->data.location = 0; |
| var->data.explicit_location = false; |
| if (tcs) { |
| var->data.mode = ir_var_auto; |
| var->constant_value = new(mem_ctx) ir_constant(num_vertices); |
| } else { |
| var->data.mode = ir_var_uniform; |
| var->data.how_declared = ir_var_hidden; |
| var->allocate_state_slots(1); |
| ir_state_slot *slot0 = &var->get_state_slots()[0]; |
| slot0->swizzle = SWIZZLE_XXXX; |
| slot0->tokens[0] = STATE_INTERNAL; |
| slot0->tokens[1] = STATE_TES_PATCH_VERTICES_IN; |
| for (int i = 2; i < STATE_LENGTH; i++) |
| slot0->tokens[i] = 0; |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * Find a contiguous set of available bits in a bitmask. |
| * |
| * \param used_mask Bits representing used (1) and unused (0) locations |
| * \param needed_count Number of contiguous bits needed. |
| * |
| * \return |
| * Base location of the available bits on success or -1 on failure. |
| */ |
| static int |
| find_available_slots(unsigned used_mask, unsigned needed_count) |
| { |
| unsigned needed_mask = (1 << needed_count) - 1; |
| const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; |
| |
| /* The comparison to 32 is redundant, but without it GCC emits "warning: |
| * cannot optimize possibly infinite loops" for the loop below. |
| */ |
| if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) |
| return -1; |
| |
| for (int i = 0; i <= max_bit_to_test; i++) { |
| if ((needed_mask & ~used_mask) == needed_mask) |
| return i; |
| |
| needed_mask <<= 1; |
| } |
| |
| return -1; |
| } |
| |
| |
| /** |
| * Assign locations for either VS inputs or FS outputs |
| * |
| * \param mem_ctx Temporary ralloc context used for linking |
| * \param prog Shader program whose variables need locations assigned |
| * \param constants Driver specific constant values for the program. |
| * \param target_index Selector for the program target to receive location |
| * assignmnets. Must be either \c MESA_SHADER_VERTEX or |
| * \c MESA_SHADER_FRAGMENT. |
| * |
| * \return |
| * If locations are successfully assigned, true is returned. Otherwise an |
| * error is emitted to the shader link log and false is returned. |
| */ |
| static bool |
| assign_attribute_or_color_locations(void *mem_ctx, |
| gl_shader_program *prog, |
| struct gl_constants *constants, |
| unsigned target_index) |
| { |
| /* Maximum number of generic locations. This corresponds to either the |
| * maximum number of draw buffers or the maximum number of generic |
| * attributes. |
| */ |
| unsigned max_index = (target_index == MESA_SHADER_VERTEX) ? |
| constants->Program[target_index].MaxAttribs : |
| MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers); |
| |
| /* Mark invalid locations as being used. |
| */ |
| unsigned used_locations = (max_index >= 32) |
| ? ~0 : ~((1 << max_index) - 1); |
| unsigned double_storage_locations = 0; |
| |
| assert((target_index == MESA_SHADER_VERTEX) |
| || (target_index == MESA_SHADER_FRAGMENT)); |
| |
| gl_linked_shader *const sh = prog->_LinkedShaders[target_index]; |
| if (sh == NULL) |
| return true; |
| |
| /* Operate in a total of four passes. |
| * |
| * 1. Invalidate the location assignments for all vertex shader inputs. |
| * |
| * 2. Assign locations for inputs that have user-defined (via |
| * glBindVertexAttribLocation) locations and outputs that have |
| * user-defined locations (via glBindFragDataLocation). |
| * |
| * 3. Sort the attributes without assigned locations by number of slots |
| * required in decreasing order. Fragmentation caused by attribute |
| * locations assigned by the application may prevent large attributes |
| * from having enough contiguous space. |
| * |
| * 4. Assign locations to any inputs without assigned locations. |
| */ |
| |
| const int generic_base = (target_index == MESA_SHADER_VERTEX) |
| ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0; |
| |
| const enum ir_variable_mode direction = |
| (target_index == MESA_SHADER_VERTEX) |
| ? ir_var_shader_in : ir_var_shader_out; |
| |
| |
| /* Temporary storage for the set of attributes that need locations assigned. |
| */ |
| struct temp_attr { |
| unsigned slots; |
| ir_variable *var; |
| |
| /* Used below in the call to qsort. */ |
| static int compare(const void *a, const void *b) |
| { |
| const temp_attr *const l = (const temp_attr *) a; |
| const temp_attr *const r = (const temp_attr *) b; |
| |
| /* Reversed because we want a descending order sort below. */ |
| return r->slots - l->slots; |
| } |
| } to_assign[32]; |
| assert(max_index <= 32); |
| |
| /* Temporary array for the set of attributes that have locations assigned, |
| * for the purpose of checking overlapping slots/components of (non-ES) |
| * fragment shader outputs. |
| */ |
| ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */ |
| unsigned assigned_attr = 0; |
| |
| unsigned num_attr = 0; |
| |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if ((var == NULL) || (var->data.mode != (unsigned) direction)) |
| continue; |
| |
| if (var->data.explicit_location) { |
| var->data.is_unmatched_generic_inout = 0; |
| if ((var->data.location >= (int)(max_index + generic_base)) |
| || (var->data.location < 0)) { |
| linker_error(prog, |
| "invalid explicit location %d specified for `%s'\n", |
| (var->data.location < 0) |
| ? var->data.location |
| : var->data.location - generic_base, |
| var->name); |
| return false; |
| } |
| } else if (target_index == MESA_SHADER_VERTEX) { |
| unsigned binding; |
| |
| if (prog->AttributeBindings->get(binding, var->name)) { |
| assert(binding >= VERT_ATTRIB_GENERIC0); |
| var->data.location = binding; |
| var->data.is_unmatched_generic_inout = 0; |
| } |
| } else if (target_index == MESA_SHADER_FRAGMENT) { |
| unsigned binding; |
| unsigned index; |
| const char *name = var->name; |
| const glsl_type *type = var->type; |
| |
| while (type) { |
| /* Check if there's a binding for the variable name */ |
| if (prog->FragDataBindings->get(binding, name)) { |
| assert(binding >= FRAG_RESULT_DATA0); |
| var->data.location = binding; |
| var->data.is_unmatched_generic_inout = 0; |
| |
| if (prog->FragDataIndexBindings->get(index, name)) { |
| var->data.index = index; |
| } |
| break; |
| } |
| |
| /* If not, but it's an array type, look for name[0] */ |
| if (type->is_array()) { |
| name = ralloc_asprintf(mem_ctx, "%s[0]", name); |
| type = type->fields.array; |
| continue; |
| } |
| |
| break; |
| } |
| } |
| |
| if (strcmp(var->name, "gl_LastFragData") == 0) |
| continue; |
| |
| /* From GL4.5 core spec, section 15.2 (Shader Execution): |
| * |
| * "Output binding assignments will cause LinkProgram to fail: |
| * ... |
| * If the program has an active output assigned to a location greater |
| * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has |
| * an active output assigned an index greater than or equal to one;" |
| */ |
| if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 && |
| var->data.location - generic_base >= |
| (int) constants->MaxDualSourceDrawBuffers) { |
| linker_error(prog, |
| "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS " |
| "with index %u for %s\n", |
| var->data.location - generic_base, var->data.index, |
| var->name); |
| return false; |
| } |
| |
| const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX); |
| |
| /* If the variable is not a built-in and has a location statically |
| * assigned in the shader (presumably via a layout qualifier), make sure |
| * that it doesn't collide with other assigned locations. Otherwise, |
| * add it to the list of variables that need linker-assigned locations. |
| */ |
| if (var->data.location != -1) { |
| if (var->data.location >= generic_base && var->data.index < 1) { |
| /* From page 61 of the OpenGL 4.0 spec: |
| * |
| * "LinkProgram will fail if the attribute bindings assigned |
| * by BindAttribLocation do not leave not enough space to |
| * assign a location for an active matrix attribute or an |
| * active attribute array, both of which require multiple |
| * contiguous generic attributes." |
| * |
| * I think above text prohibits the aliasing of explicit and |
| * automatic assignments. But, aliasing is allowed in manual |
| * assignments of attribute locations. See below comments for |
| * the details. |
| * |
| * From OpenGL 4.0 spec, page 61: |
| * |
| * "It is possible for an application to bind more than one |
| * attribute name to the same location. This is referred to as |
| * aliasing. This will only work if only one of the aliased |
| * attributes is active in the executable program, or if no |
| * path through the shader consumes more than one attribute of |
| * a set of attributes aliased to the same location. A link |
| * error can occur if the linker determines that every path |
| * through the shader consumes multiple aliased attributes, |
| * but implementations are not required to generate an error |
| * in this case." |
| * |
| * From GLSL 4.30 spec, page 54: |
| * |
| * "A program will fail to link if any two non-vertex shader |
| * input variables are assigned to the same location. For |
| * vertex shaders, multiple input variables may be assigned |
| * to the same location using either layout qualifiers or via |
| * the OpenGL API. However, such aliasing is intended only to |
| * support vertex shaders where each execution path accesses |
| * at most one input per each location. Implementations are |
| * permitted, but not required, to generate link-time errors |
| * if they detect that every path through the vertex shader |
| * executable accesses multiple inputs assigned to any single |
| * location. For all shader types, a program will fail to link |
| * if explicit location assignments leave the linker unable |
| * to find space for other variables without explicit |
| * assignments." |
| * |
| * From OpenGL ES 3.0 spec, page 56: |
| * |
| * "Binding more than one attribute name to the same location |
| * is referred to as aliasing, and is not permitted in OpenGL |
| * ES Shading Language 3.00 vertex shaders. LinkProgram will |
| * fail when this condition exists. However, aliasing is |
| * possible in OpenGL ES Shading Language 1.00 vertex shaders. |
| * This will only work if only one of the aliased attributes |
| * is active in the executable program, or if no path through |
| * the shader consumes more than one attribute of a set of |
| * attributes aliased to the same location. A link error can |
| * occur if the linker determines that every path through the |
| * shader consumes multiple aliased attributes, but implemen- |
| * tations are not required to generate an error in this case." |
| * |
| * After looking at above references from OpenGL, OpenGL ES and |
| * GLSL specifications, we allow aliasing of vertex input variables |
| * in: OpenGL 2.0 (and above) and OpenGL ES 2.0. |
| * |
| * NOTE: This is not required by the spec but its worth mentioning |
| * here that we're not doing anything to make sure that no path |
| * through the vertex shader executable accesses multiple inputs |
| * assigned to any single location. |
| */ |
| |
| /* Mask representing the contiguous slots that will be used by |
| * this attribute. |
| */ |
| const unsigned attr = var->data.location - generic_base; |
| const unsigned use_mask = (1 << slots) - 1; |
| const char *const string = (target_index == MESA_SHADER_VERTEX) |
| ? "vertex shader input" : "fragment shader output"; |
| |
| /* Generate a link error if the requested locations for this |
| * attribute exceed the maximum allowed attribute location. |
| */ |
| if (attr + slots > max_index) { |
| linker_error(prog, |
| "insufficient contiguous locations " |
| "available for %s `%s' %d %d %d\n", string, |
| var->name, used_locations, use_mask, attr); |
| return false; |
| } |
| |
| /* Generate a link error if the set of bits requested for this |
| * attribute overlaps any previously allocated bits. |
| */ |
| if ((~(use_mask << attr) & used_locations) != used_locations) { |
| if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { |
| /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL |
| * 4.40 spec: |
| * |
| * "Additionally, for fragment shader outputs, if two |
| * variables are placed within the same location, they |
| * must have the same underlying type (floating-point or |
| * integer). No component aliasing of output variables or |
| * members is allowed. |
| */ |
| for (unsigned i = 0; i < assigned_attr; i++) { |
| unsigned assigned_slots = |
| assigned[i]->type->count_attribute_slots(false); |
| unsigned assig_attr = |
| assigned[i]->data.location - generic_base; |
| unsigned assigned_use_mask = (1 << assigned_slots) - 1; |
| |
| if ((assigned_use_mask << assig_attr) & |
| (use_mask << attr)) { |
| |
| const glsl_type *assigned_type = |
| assigned[i]->type->without_array(); |
| const glsl_type *type = var->type->without_array(); |
| if (assigned_type->base_type != type->base_type) { |
| linker_error(prog, "types do not match for aliased" |
| " %ss %s and %s\n", string, |
| assigned[i]->name, var->name); |
| return false; |
| } |
| |
| unsigned assigned_component_mask = |
| ((1 << assigned_type->vector_elements) - 1) << |
| assigned[i]->data.location_frac; |
| unsigned component_mask = |
| ((1 << type->vector_elements) - 1) << |
| var->data.location_frac; |
| if (assigned_component_mask & component_mask) { |
| linker_error(prog, "overlapping component is " |
| "assigned to %ss %s and %s " |
| "(component=%d)\n", |
| string, assigned[i]->name, var->name, |
| var->data.location_frac); |
| return false; |
| } |
| } |
| } |
| } else if (target_index == MESA_SHADER_FRAGMENT || |
| (prog->IsES && prog->data->Version >= 300)) { |
| linker_error(prog, "overlapping location is assigned " |
| "to %s `%s' %d %d %d\n", string, var->name, |
| used_locations, use_mask, attr); |
| return false; |
| } else { |
| linker_warning(prog, "overlapping location is assigned " |
| "to %s `%s' %d %d %d\n", string, var->name, |
| used_locations, use_mask, attr); |
| } |
| } |
| |
| if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { |
| /* Only track assigned variables for non-ES fragment shaders |
| * to avoid overflowing the array. |
| * |
| * At most one variable per fragment output component should |
| * reach this. |
| */ |
| assert(assigned_attr < ARRAY_SIZE(assigned)); |
| assigned[assigned_attr] = var; |
| assigned_attr++; |
| } |
| |
| used_locations |= (use_mask << attr); |
| |
| /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes): |
| * |
| * "A program with more than the value of MAX_VERTEX_ATTRIBS |
| * active attribute variables may fail to link, unless |
| * device-dependent optimizations are able to make the program |
| * fit within available hardware resources. For the purposes |
| * of this test, attribute variables of the type dvec3, dvec4, |
| * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may |
| * count as consuming twice as many attributes as equivalent |
| * single-precision types. While these types use the same number |
| * of generic attributes as their single-precision equivalents, |
| * implementations are permitted to consume two single-precision |
| * vectors of internal storage for each three- or four-component |
| * double-precision vector." |
| * |
| * Mark this attribute slot as taking up twice as much space |
| * so we can count it properly against limits. According to |
| * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this |
| * is optional behavior, but it seems preferable. |
| */ |
| if (var->type->without_array()->is_dual_slot()) |
| double_storage_locations |= (use_mask << attr); |
| } |
| |
| continue; |
| } |
| |
| if (num_attr >= max_index) { |
| linker_error(prog, "too many %s (max %u)", |
| target_index == MESA_SHADER_VERTEX ? |
| "vertex shader inputs" : "fragment shader outputs", |
| max_index); |
| return false; |
| } |
| to_assign[num_attr].slots = slots; |
| to_assign[num_attr].var = var; |
| num_attr++; |
| } |
| |
| if (target_index == MESA_SHADER_VERTEX) { |
| unsigned total_attribs_size = |
| _mesa_bitcount(used_locations & ((1 << max_index) - 1)) + |
| _mesa_bitcount(double_storage_locations); |
| if (total_attribs_size > max_index) { |
| linker_error(prog, |
| "attempt to use %d vertex attribute slots only %d available ", |
| total_attribs_size, max_index); |
| return false; |
| } |
| } |
| |
| /* If all of the attributes were assigned locations by the application (or |
| * are built-in attributes with fixed locations), return early. This should |
| * be the common case. |
| */ |
| if (num_attr == 0) |
| return true; |
| |
| qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); |
| |
| if (target_index == MESA_SHADER_VERTEX) { |
| /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can |
| * only be explicitly assigned by via glBindAttribLocation. Mark it as |
| * reserved to prevent it from being automatically allocated below. |
| */ |
| find_deref_visitor find("gl_Vertex"); |
| find.run(sh->ir); |
| if (find.variable_found()) |
| used_locations |= (1 << 0); |
| } |
| |
| for (unsigned i = 0; i < num_attr; i++) { |
| /* Mask representing the contiguous slots that will be used by this |
| * attribute. |
| */ |
| const unsigned use_mask = (1 << to_assign[i].slots) - 1; |
| |
| int location = find_available_slots(used_locations, to_assign[i].slots); |
| |
| if (location < 0) { |
| const char *const string = (target_index == MESA_SHADER_VERTEX) |
| ? "vertex shader input" : "fragment shader output"; |
| |
| linker_error(prog, |
| "insufficient contiguous locations " |
| "available for %s `%s'\n", |
| string, to_assign[i].var->name); |
| return false; |
| } |
| |
| to_assign[i].var->data.location = generic_base + location; |
| to_assign[i].var->data.is_unmatched_generic_inout = 0; |
| used_locations |= (use_mask << location); |
| |
| if (to_assign[i].var->type->without_array()->is_dual_slot()) |
| double_storage_locations |= (use_mask << location); |
| } |
| |
| /* Now that we have all the locations, from the GL 4.5 core spec, section |
| * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3, |
| * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes |
| * as equivalent single-precision types. |
| */ |
| if (target_index == MESA_SHADER_VERTEX) { |
| unsigned total_attribs_size = |
| _mesa_bitcount(used_locations & ((1 << max_index) - 1)) + |
| _mesa_bitcount(double_storage_locations); |
| if (total_attribs_size > max_index) { |
| linker_error(prog, |
| "attempt to use %d vertex attribute slots only %d available ", |
| total_attribs_size, max_index); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Match explicit locations of outputs to inputs and deactivate the |
| * unmatch flag if found so we don't optimise them away. |
| */ |
| static void |
| match_explicit_outputs_to_inputs(gl_linked_shader *producer, |
| gl_linked_shader *consumer) |
| { |
| glsl_symbol_table parameters; |
| ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] = |
| { {NULL, NULL} }; |
| |
| /* Find all shader outputs in the "producer" stage. |
| */ |
| foreach_in_list(ir_instruction, node, producer->ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if ((var == NULL) || (var->data.mode != ir_var_shader_out)) |
| continue; |
| |
| if (var->data.explicit_location && |
| var->data.location >= VARYING_SLOT_VAR0) { |
| const unsigned idx = var->data.location - VARYING_SLOT_VAR0; |
| if (explicit_locations[idx][var->data.location_frac] == NULL) |
| explicit_locations[idx][var->data.location_frac] = var; |
| } |
| } |
| |
| /* Match inputs to outputs */ |
| foreach_in_list(ir_instruction, node, consumer->ir) { |
| ir_variable *const input = node->as_variable(); |
| |
| if ((input == NULL) || (input->data.mode != ir_var_shader_in)) |
| continue; |
| |
| ir_variable *output = NULL; |
| if (input->data.explicit_location |
| && input->data.location >= VARYING_SLOT_VAR0) { |
| output = explicit_locations[input->data.location - VARYING_SLOT_VAR0] |
| [input->data.location_frac]; |
| |
| if (output != NULL){ |
| input->data.is_unmatched_generic_inout = 0; |
| output->data.is_unmatched_generic_inout = 0; |
| } |
| } |
| } |
| } |
| |
| /** |
| * Store the gl_FragDepth layout in the gl_shader_program struct. |
| */ |
| static void |
| store_fragdepth_layout(struct gl_shader_program *prog) |
| { |
| if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { |
| return; |
| } |
| |
| struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir; |
| |
| /* We don't look up the gl_FragDepth symbol directly because if |
| * gl_FragDepth is not used in the shader, it's removed from the IR. |
| * However, the symbol won't be removed from the symbol table. |
| * |
| * We're only interested in the cases where the variable is NOT removed |
| * from the IR. |
| */ |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL || var->data.mode != ir_var_shader_out) { |
| continue; |
| } |
| |
| if (strcmp(var->name, "gl_FragDepth") == 0) { |
| switch (var->data.depth_layout) { |
| case ir_depth_layout_none: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; |
| return; |
| case ir_depth_layout_any: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; |
| return; |
| case ir_depth_layout_greater: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; |
| return; |
| case ir_depth_layout_less: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; |
| return; |
| case ir_depth_layout_unchanged: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; |
| return; |
| default: |
| assert(0); |
| return; |
| } |
| } |
| } |
| } |
| |
| /** |
| * Validate the resources used by a program versus the implementation limits |
| */ |
| static void |
| check_resources(struct gl_context *ctx, struct gl_shader_program *prog) |
| { |
| unsigned total_uniform_blocks = 0; |
| unsigned total_shader_storage_blocks = 0; |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| struct gl_linked_shader *sh = prog->_LinkedShaders[i]; |
| |
| if (sh == NULL) |
| continue; |
| |
| if (sh->Program->info.num_textures > |
| ctx->Const.Program[i].MaxTextureImageUnits) { |
| linker_error(prog, "Too many %s shader texture samplers\n", |
| _mesa_shader_stage_to_string(i)); |
| } |
| |
| if (sh->num_uniform_components > |
| ctx->Const.Program[i].MaxUniformComponents) { |
| if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { |
| linker_warning(prog, "Too many %s shader default uniform block " |
| "components, but the driver will try to optimize " |
| "them out; this is non-portable out-of-spec " |
| "behavior\n", |
| _mesa_shader_stage_to_string(i)); |
| } else { |
| linker_error(prog, "Too many %s shader default uniform block " |
| "components\n", |
| _mesa_shader_stage_to_string(i)); |
| } |
| } |
| |
| if (sh->num_combined_uniform_components > |
| ctx->Const.Program[i].MaxCombinedUniformComponents) { |
| if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { |
| linker_warning(prog, "Too many %s shader uniform components, " |
| "but the driver will try to optimize them out; " |
| "this is non-portable out-of-spec behavior\n", |
| _mesa_shader_stage_to_string(i)); |
| } else { |
| linker_error(prog, "Too many %s shader uniform components\n", |
| _mesa_shader_stage_to_string(i)); |
| } |
| } |
| |
| total_shader_storage_blocks += sh->Program->info.num_ssbos; |
| total_uniform_blocks += sh->Program->info.num_ubos; |
| |
| const unsigned max_uniform_blocks = |
| ctx->Const.Program[i].MaxUniformBlocks; |
| if (max_uniform_blocks < sh->Program->info.num_ubos) { |
| linker_error(prog, "Too many %s uniform blocks (%d/%d)\n", |
| _mesa_shader_stage_to_string(i), |
| sh->Program->info.num_ubos, max_uniform_blocks); |
| } |
| |
| const unsigned max_shader_storage_blocks = |
| ctx->Const.Program[i].MaxShaderStorageBlocks; |
| if (max_shader_storage_blocks < sh->Program->info.num_ssbos) { |
| linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n", |
| _mesa_shader_stage_to_string(i), |
| sh->Program->info.num_ssbos, max_shader_storage_blocks); |
| } |
| } |
| |
| if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) { |
| linker_error(prog, "Too many combined uniform blocks (%d/%d)\n", |
| total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks); |
| } |
| |
| if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) { |
| linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n", |
| total_shader_storage_blocks, |
| ctx->Const.MaxCombinedShaderStorageBlocks); |
| } |
| |
| for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) { |
| if (prog->data->UniformBlocks[i].UniformBufferSize > |
| ctx->Const.MaxUniformBlockSize) { |
| linker_error(prog, "Uniform block %s too big (%d/%d)\n", |
| prog->data->UniformBlocks[i].Name, |
| prog->data->UniformBlocks[i].UniformBufferSize, |
| ctx->Const.MaxUniformBlockSize); |
| } |
| } |
| |
| for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) { |
| if (prog->data->ShaderStorageBlocks[i].UniformBufferSize > |
| ctx->Const.MaxShaderStorageBlockSize) { |
| linker_error(prog, "Shader storage block %s too big (%d/%d)\n", |
| prog->data->ShaderStorageBlocks[i].Name, |
| prog->data->ShaderStorageBlocks[i].UniformBufferSize, |
| ctx->Const.MaxShaderStorageBlockSize); |
| } |
| } |
| } |
| |
| static void |
| link_calculate_subroutine_compat(struct gl_shader_program *prog) |
| { |
| unsigned mask = prog->data->linked_stages; |
| while (mask) { |
| const int i = u_bit_scan(&mask); |
| struct gl_program *p = prog->_LinkedShaders[i]->Program; |
| |
| for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) { |
| if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) |
| continue; |
| |
| struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j]; |
| |
| if (!uni) |
| continue; |
| |
| int count = 0; |
| if (p->sh.NumSubroutineFunctions == 0) { |
| linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name); |
| continue; |
| } |
| for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) { |
| struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f]; |
| for (int k = 0; k < fn->num_compat_types; k++) { |
| if (fn->types[k] == uni->type) { |
| count++; |
| break; |
| } |
| } |
| } |
| uni->num_compatible_subroutines = count; |
| } |
| } |
| } |
| |
| static void |
| check_subroutine_resources(struct gl_shader_program *prog) |
| { |
| unsigned mask = prog->data->linked_stages; |
| while (mask) { |
| const int i = u_bit_scan(&mask); |
| struct gl_program *p = prog->_LinkedShaders[i]->Program; |
| |
| if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) { |
| linker_error(prog, "Too many %s shader subroutine uniforms\n", |
| _mesa_shader_stage_to_string(i)); |
| } |
| } |
| } |
| /** |
| * Validate shader image resources. |
| */ |
| static void |
| check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog) |
| { |
| unsigned total_image_units = 0; |
| unsigned fragment_outputs = 0; |
| unsigned total_shader_storage_blocks = 0; |
| |
| if (!ctx->Extensions.ARB_shader_image_load_store) |
| return; |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| struct gl_linked_shader *sh = prog->_LinkedShaders[i]; |
| |
| if (sh) { |
| if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms) |
| linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n", |
| _mesa_shader_stage_to_string(i), |
| sh->Program->info.num_images, |
| ctx->Const.Program[i].MaxImageUniforms); |
| |
| total_image_units += sh->Program->info.num_images; |
| total_shader_storage_blocks += sh->Program->info.num_ssbos; |
| |
| if (i == MESA_SHADER_FRAGMENT) { |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *var = node->as_variable(); |
| if (var && var->data.mode == ir_var_shader_out) |
| /* since there are no double fs outputs - pass false */ |
| fragment_outputs += var->type->count_attribute_slots(false); |
| } |
| } |
| } |
| } |
| |
| if (total_image_units > ctx->Const.MaxCombinedImageUniforms) |
| linker_error(prog, "Too many combined image uniforms\n"); |
| |
| if (total_image_units + fragment_outputs + total_shader_storage_blocks > |
| ctx->Const.MaxCombinedShaderOutputResources) |
| linker_error(prog, "Too many combined image uniforms, shader storage " |
| " buffers and fragment outputs\n"); |
| } |
| |
| |
| /** |
| * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION |
| * for a variable, checks for overlaps between other uniforms using explicit |
| * locations. |
| */ |
| static int |
| reserve_explicit_locations(struct gl_shader_program *prog, |
| string_to_uint_map *map, ir_variable *var) |
| { |
| unsigned slots = var->type->uniform_locations(); |
| unsigned max_loc = var->data.location + slots - 1; |
| unsigned return_value = slots; |
| |
| /* Resize remap table if locations do not fit in the current one. */ |
| if (max_loc + 1 > prog->NumUniformRemapTable) { |
| prog->UniformRemapTable = |
| reralloc(prog, prog->UniformRemapTable, |
| gl_uniform_storage *, |
| max_loc + 1); |
| |
| if (!prog->UniformRemapTable) { |
| linker_error(prog, "Out of memory during linking.\n"); |
| return -1; |
| } |
| |
| /* Initialize allocated space. */ |
| for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++) |
| prog->UniformRemapTable[i] = NULL; |
| |
| prog->NumUniformRemapTable = max_loc + 1; |
| } |
| |
| for (unsigned i = 0; i < slots; i++) { |
| unsigned loc = var->data.location + i; |
| |
| /* Check if location is already used. */ |
| if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { |
| |
| /* Possibly same uniform from a different stage, this is ok. */ |
| unsigned hash_loc; |
| if (map->get(hash_loc, var->name) && hash_loc == loc - i) { |
| return_value = 0; |
| continue; |
| } |
| |
| /* ARB_explicit_uniform_location specification states: |
| * |
| * "No two default-block uniform variables in the program can have |
| * the same location, even if they are unused, otherwise a compiler |
| * or linker error will be generated." |
| */ |
| linker_error(prog, |
| "location qualifier for uniform %s overlaps " |
| "previously used location\n", |
| var->name); |
| return -1; |
| } |
| |
| /* Initialize location as inactive before optimization |
| * rounds and location assignment. |
| */ |
| prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; |
| } |
| |
| /* Note, base location used for arrays. */ |
| map->put(var->data.location, var->name); |
| |
| return return_value; |
| } |
| |
| static bool |
| reserve_subroutine_explicit_locations(struct gl_shader_program *prog, |
| struct gl_program *p, |
| ir_variable *var) |
| { |
| unsigned slots = var->type->uniform_locations(); |
| unsigned max_loc = var->data.location + slots - 1; |
| |
| /* Resize remap table if locations do not fit in the current one. */ |
| if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) { |
| p->sh.SubroutineUniformRemapTable = |
| reralloc(p, p->sh.SubroutineUniformRemapTable, |
| gl_uniform_storage *, |
| max_loc + 1); |
| |
| if (!p->sh.SubroutineUniformRemapTable) { |
| linker_error(prog, "Out of memory during linking.\n"); |
| return false; |
| } |
| |
| /* Initialize allocated space. */ |
| for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++) |
| p->sh.SubroutineUniformRemapTable[i] = NULL; |
| |
| p->sh.NumSubroutineUniformRemapTable = max_loc + 1; |
| } |
| |
| for (unsigned i = 0; i < slots; i++) { |
| unsigned loc = var->data.location + i; |
| |
| /* Check if location is already used. */ |
| if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { |
| |
| /* ARB_explicit_uniform_location specification states: |
| * "No two subroutine uniform variables can have the same location |
| * in the same shader stage, otherwise a compiler or linker error |
| * will be generated." |
| */ |
| linker_error(prog, |
| "location qualifier for uniform %s overlaps " |
| "previously used location\n", |
| var->name); |
| return false; |
| } |
| |
| /* Initialize location as inactive before optimization |
| * rounds and location assignment. |
| */ |
| p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; |
| } |
| |
| return true; |
| } |
| /** |
| * Check and reserve all explicit uniform locations, called before |
| * any optimizations happen to handle also inactive uniforms and |
| * inactive array elements that may get trimmed away. |
| */ |
| static void |
| check_explicit_uniform_locations(struct gl_context *ctx, |
| struct gl_shader_program *prog) |
| { |
| prog->NumExplicitUniformLocations = 0; |
| |
| if (!ctx->Extensions.ARB_explicit_uniform_location) |
| return; |
| |
| /* This map is used to detect if overlapping explicit locations |
| * occur with the same uniform (from different stage) or a different one. |
| */ |
| string_to_uint_map *uniform_map = new string_to_uint_map; |
| |
| if (!uniform_map) { |
| linker_error(prog, "Out of memory during linking.\n"); |
| return; |
| } |
| |
| unsigned entries_total = 0; |
| unsigned mask = prog->data->linked_stages; |
| while (mask) { |
| const int i = u_bit_scan(&mask); |
| struct gl_program *p = prog->_LinkedShaders[i]->Program; |
| |
| foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { |
| ir_variable *var = node->as_variable(); |
| if (!var || var->data.mode != ir_var_uniform) |
| continue; |
| |
| if (var->data.explicit_location) { |
| bool ret = false; |
| if (var->type->without_array()->is_subroutine()) |
| ret = reserve_subroutine_explicit_locations(prog, p, var); |
| else { |
| int slots = reserve_explicit_locations(prog, uniform_map, |
| var); |
| if (slots != -1) { |
| ret = true; |
| entries_total += slots; |
| } |
| } |
| if (!ret) { |
| delete uniform_map; |
| return; |
| } |
| } |
| } |
| } |
| |
| struct empty_uniform_block *current_block = NULL; |
| |
| for (unsigned i = 0; i < prog->NumUniformRemapTable; i++) { |
| /* We found empty space in UniformRemapTable. */ |
| if (prog->UniformRemapTable[i] == NULL) { |
| /* We've found the beginning of a new continous block of empty slots */ |
| if (!current_block || current_block->start + current_block->slots != i) { |
| current_block = rzalloc(prog, struct empty_uniform_block); |
| current_block->start = i; |
| exec_list_push_tail(&prog->EmptyUniformLocations, |
| ¤t_block->link); |
| } |
| |
| /* The current block continues, so we simply increment its slots */ |
| current_block->slots++; |
| } |
| } |
| |
| delete uniform_map; |
| prog->NumExplicitUniformLocations = entries_total; |
| } |
| |
| static bool |
| should_add_buffer_variable(struct gl_shader_program *shProg, |
| GLenum type, const char *name) |
| { |
| bool found_interface = false; |
| unsigned block_name_len = 0; |
| const char *block_name_dot = strchr(name, '.'); |
| |
| /* These rules only apply to buffer variables. So we return |
| * true for the rest of types. |
| */ |
| if (type != GL_BUFFER_VARIABLE) |
| return true; |
| |
| for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { |
| const char *block_name = shProg->data->ShaderStorageBlocks[i].Name; |
| block_name_len = strlen(block_name); |
| |
| const char *block_square_bracket = strchr(block_name, '['); |
| if (block_square_bracket) { |
| /* The block is part of an array of named interfaces, |
| * for the name comparison we ignore the "[x]" part. |
| */ |
| block_name_len -= strlen(block_square_bracket); |
| } |
| |
| if (block_name_dot) { |
| /* Check if the variable name starts with the interface |
| * name. The interface name (if present) should have the |
| * length than the interface block name we are comparing to. |
| */ |
| unsigned len = strlen(name) - strlen(block_name_dot); |
| if (len != block_name_len) |
| continue; |
| } |
| |
| if (strncmp(block_name, name, block_name_len) == 0) { |
| found_interface = true; |
| break; |
| } |
| } |
| |
| /* We remove the interface name from the buffer variable name, |
| * including the dot that follows it. |
| */ |
| if (found_interface) |
| name = name + block_name_len + 1; |
| |
| /* The ARB_program_interface_query spec says: |
| * |
| * "For an active shader storage block member declared as an array, an |
| * entry will be generated only for the first array element, regardless |
| * of its type. For arrays of aggregate types, the enumeration rules |
| * are applied recursively for the single enumerated array element." |
| */ |
| const char *struct_first_dot = strchr(name, '.'); |
| const char *first_square_bracket = strchr(name, '['); |
| |
| /* The buffer variable is on top level and it is not an array */ |
| if (!first_square_bracket) { |
| return true; |
| /* The shader storage block member is a struct, then generate the entry */ |
| } else if (struct_first_dot && struct_first_dot < first_square_bracket) { |
| return true; |
| } else { |
| /* Shader storage block member is an array, only generate an entry for the |
| * first array element. |
| */ |
| if (strncmp(first_square_bracket, "[0]", 3) == 0) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool |
| add_program_resource(struct gl_shader_program *prog, |
| struct set *resource_set, |
| GLenum type, const void *data, uint8_t stages) |
| { |
| assert(data); |
| |
| /* If resource already exists, do not add it again. */ |
| if (_mesa_set_search(resource_set, data)) |
| return true; |
| |
| prog->data->ProgramResourceList = |
| reralloc(prog, |
| prog->data->ProgramResourceList, |
| gl_program_resource, |
| prog->data->NumProgramResourceList + 1); |
| |
| if (!prog->data->ProgramResourceList) { |
| linker_error(prog, "Out of memory during linking.\n"); |
| return false; |
| } |
| |
| struct gl_program_resource *res = |
| &prog->data->ProgramResourceList[prog->data->NumProgramResourceList]; |
| |
| res->Type = type; |
| res->Data = data; |
| res->StageReferences = stages; |
| |
| prog->data->NumProgramResourceList++; |
| |
| _mesa_set_add(resource_set, data); |
| |
| return true; |
| } |
| |
| /* Function checks if a variable var is a packed varying and |
| * if given name is part of packed varying's list. |
| * |
| * If a variable is a packed varying, it has a name like |
| * 'packed:a,b,c' where a, b and c are separate variables. |
| */ |
| static bool |
| included_in_packed_varying(ir_variable *var, const char *name) |
| { |
| if (strncmp(var->name, "packed:", 7) != 0) |
| return false; |
| |
| char *list = strdup(var->name + 7); |
| assert(list); |
| |
| bool found = false; |
| char *saveptr; |
| char *token = strtok_r(list, ",", &saveptr); |
| while (token) { |
| if (strcmp(token, name) == 0) { |
| found = true; |
| break; |
| } |
| token = strtok_r(NULL, ",", &saveptr); |
| } |
| free(list); |
| return found; |
| } |
| |
| /** |
| * Function builds a stage reference bitmask from variable name. |
| */ |
| static uint8_t |
| build_stageref(struct gl_shader_program *shProg, const char *name, |
| unsigned mode) |
| { |
| uint8_t stages = 0; |
| |
| /* Note, that we assume MAX 8 stages, if there will be more stages, type |
| * used for reference mask in gl_program_resource will need to be changed. |
| */ |
| assert(MESA_SHADER_STAGES < 8); |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| struct gl_linked_shader *sh = shProg->_LinkedShaders[i]; |
| if (!sh) |
| continue; |
| |
| /* Shader symbol table may contain variables that have |
| * been optimized away. Search IR for the variable instead. |
| */ |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *var = node->as_variable(); |
| if (var) { |
| unsigned baselen = strlen(var->name); |
| |
| if (included_in_packed_varying(var, name)) { |
| stages |= (1 << i); |
| break; |
| } |
| |
| /* Type needs to match if specified, otherwise we might |
| * pick a variable with same name but different interface. |
| */ |
| if (var->data.mode != mode) |
| continue; |
| |
| if (strncmp(var->name, name, baselen) == 0) { |
| /* Check for exact name matches but also check for arrays and |
| * structs. |
| */ |
| if (name[baselen] == '\0' || |
| name[baselen] == '[' || |
| name[baselen] == '.') { |
| stages |= (1 << i); |
| break; |
| } |
| } |
| } |
| } |
| } |
| return stages; |
| } |
| |
| /** |
| * Create gl_shader_variable from ir_variable class. |
| */ |
| static gl_shader_variable * |
| create_shader_variable(struct gl_shader_program *shProg, |
| const ir_variable *in, |
| const char *name, const glsl_type *type, |
| const glsl_type *interface_type, |
| bool use_implicit_location, int location, |
| const glsl_type *outermost_struct_type) |
| { |
| /* Allocate zero-initialized memory to ensure that bitfield padding |
| * is zero. |
| */ |
| gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable); |
| if (!out) |
| return NULL; |
| |
| /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications |
| * expect to see gl_VertexID in the program resource list. Pretend. |
| */ |
| if (in->data.mode == ir_var_system_value && |
| in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) { |
| out->name = ralloc_strdup(shProg, "gl_VertexID"); |
| } else if ((in->data.mode == ir_var_shader_out && |
| in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) || |
| (in->data.mode == ir_var_system_value && |
| in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) { |
| out->name = ralloc_strdup(shProg, "gl_TessLevelOuter"); |
| type = glsl_type::get_array_instance(glsl_type::float_type, 4); |
| } else if ((in->data.mode == ir_var_shader_out && |
| in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) || |
| (in->data.mode == ir_var_system_value && |
| in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) { |
| out->name = ralloc_strdup(shProg, "gl_TessLevelInner"); |
| type = glsl_type::get_array_instance(glsl_type::float_type, 2); |
| } else { |
| out->name = ralloc_strdup(shProg, name); |
| } |
| |
| if (!out->name) |
| return NULL; |
| |
| /* The ARB_program_interface_query spec says: |
| * |
| * "Not all active variables are assigned valid locations; the |
| * following variables will have an effective location of -1: |
| * |
| * * uniforms declared as atomic counters; |
| * |
| * * members of a uniform block; |
| * |
| * * built-in inputs, outputs, and uniforms (starting with "gl_"); and |
| * |
| * * inputs or outputs not declared with a "location" layout |
| * qualifier, except for vertex shader inputs and fragment shader |
| * outputs." |
| */ |
| if (in->type->is_atomic_uint() || is_gl_identifier(in->name) || |
| !(in->data.explicit_location || use_implicit_location)) { |
| out->location = -1; |
| } else { |
| out->location = location; |
| } |
| |
| out->type = type; |
| out->outermost_struct_type = outermost_struct_type; |
| out->interface_type = interface_type; |
| out->component = in->data.location_frac; |
| out->index = in->data.index; |
| out->patch = in->data.patch; |
| out->mode = in->data.mode; |
| out->interpolation = in->data.interpolation; |
| out->explicit_location = in->data.explicit_location; |
| out->precision = in->data.precision; |
| |
| return out; |
| } |
| |
| static bool |
| add_shader_variable(const struct gl_context *ctx, |
| struct gl_shader_program *shProg, |
| struct set *resource_set, |
| unsigned stage_mask, |
| GLenum programInterface, ir_variable *var, |
| const char *name, const glsl_type *type, |
| bool use_implicit_location, int location, |
| const glsl_type *outermost_struct_type = NULL) |
| { |
| const glsl_type *interface_type = var->get_interface_type(); |
| |
| if (outermost_struct_type == NULL) { |
| if (var->data.from_named_ifc_block) { |
| const char *interface_name = interface_type->name; |
| |
| if (interface_type->is_array()) { |
| /* Issue #16 of the ARB_program_interface_query spec says: |
| * |
| * "* If a variable is a member of an interface block without an |
| * instance name, it is enumerated using just the variable name. |
| * |
| * * If a variable is a member of an interface block with an |
| * instance name, it is enumerated as "BlockName.Member", where |
| * "BlockName" is the name of the interface block (not the |
| * instance name) and "Member" is the name of the variable." |
| * |
| * In particular, it indicates that it should be "BlockName", |
| * not "BlockName[array length]". The conformance suite and |
| * dEQP both require this behavior. |
| * |
| * Here, we unwrap the extra array level added by named interface |
| * block array lowering so we have the correct variable type. We |
| * also unwrap the interface type when constructing the name. |
| * |
| * We leave interface_type the same so that ES 3.x SSO pipeline |
| * validation can enforce the rules requiring array length to |
| * match on interface blocks. |
| */ |
| type = type->fields.array; |
| |
| interface_name = interface_type->fields.array->name; |
| } |
| |
| name = ralloc_asprintf(shProg, "%s.%s", interface_name, name); |
| } |
| } |
| |
| switch (type->base_type) { |
| case GLSL_TYPE_STRUCT: { |
| /* The ARB_program_interface_query spec says: |
| * |
| * "For an active variable declared as a structure, a separate entry |
| * will be generated for each active structure member. The name of |
| * each entry is formed by concatenating the name of the structure, |
| * the "." character, and the name of the structure member. If a |
| * structure member to enumerate is itself a structure or array, |
| * these enumeration rules are applied recursively." |
| */ |
| if (outermost_struct_type == NULL) |
| outermost_struct_type = type; |
| |
| unsigned field_location = location; |
| for (unsigned i = 0; i < type->length; i++) { |
| const struct glsl_struct_field *field = &type->fields.structure[i]; |
| char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name); |
| if (!add_shader_variable(ctx, shProg, resource_set, |
| stage_mask, programInterface, |
| var, field_name, field->type, |
| use_implicit_location, field_location, |
| outermost_struct_type)) |
| return false; |
| |
| field_location += field->type->count_attribute_slots(false); |
| } |
| return true; |
| } |
| |
| default: { |
| /* The ARB_program_interface_query spec says: |
| * |
| * "For an active variable declared as a single instance of a basic |
| * type, a single entry will be generated, using the variable name |
| * from the shader source." |
| */ |
| gl_shader_variable *sha_v = |
| create_shader_variable(shProg, var, name, type, interface_type, |
| use_implicit_location, location, |
| outermost_struct_type); |
| if (!sha_v) |
| return false; |
| |
| return add_program_resource(shProg, resource_set, |
| programInterface, sha_v, stage_mask); |
| } |
| } |
| } |
| |
| static bool |
| add_interface_variables(const struct gl_context *ctx, |
| struct gl_shader_program *shProg, |
| struct set *resource_set, |
| unsigned stage, GLenum programInterface) |
| { |
| exec_list *ir = shProg->_LinkedShaders[stage]->ir; |
| |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *var = node->as_variable(); |
| |
| if (!var || var->data.how_declared == ir_var_hidden) |
| continue; |
| |
| int loc_bias; |
| |
| switch (var->data.mode) { |
| case ir_var_system_value: |
| case ir_var_shader_in: |
| if (programInterface != GL_PROGRAM_INPUT) |
| continue; |
| loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0) |
| : int(VARYING_SLOT_VAR0); |
| break; |
| case ir_var_shader_out: |
| if (programInterface != GL_PROGRAM_OUTPUT) |
| continue; |
| loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0) |
| : int(VARYING_SLOT_VAR0); |
| break; |
| default: |
| continue; |
| }; |
| |
| if (var->data.patch) |
| loc_bias = int(VARYING_SLOT_PATCH0); |
| |
| /* Skip packed varyings, packed varyings are handled separately |
| * by add_packed_varyings. |
| */ |
| if (strncmp(var->name, "packed:", 7) == 0) |
| continue; |
| |
| /* Skip fragdata arrays, these are handled separately |
| * by add_fragdata_arrays. |
| */ |
| if (strncmp(var->name, "gl_out_FragData", 15) == 0) |
| continue; |
| |
| const bool vs_input_or_fs_output = |
| (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) || |
| (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out); |
| |
| if (!add_shader_variable(ctx, shProg, resource_set, |
| 1 << stage, programInterface, |
| var, var->name, var->type, vs_input_or_fs_output, |
| var->data.location - loc_bias)) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool |
| add_packed_varyings(const struct gl_context *ctx, |
| struct gl_shader_program *shProg, |
| struct set *resource_set, |
| int stage, GLenum type) |
| { |
| struct gl_linked_shader *sh = shProg->_LinkedShaders[stage]; |
| GLenum iface; |
| |
| if (!sh || !sh->packed_varyings) |
| return true; |
| |
| foreach_in_list(ir_instruction, node, sh->packed_varyings) { |
| ir_variable *var = node->as_variable(); |
| if (var) { |
| switch (var->data.mode) { |
| case ir_var_shader_in: |
| iface = GL_PROGRAM_INPUT; |
| break; |
| case ir_var_shader_out: |
| iface = GL_PROGRAM_OUTPUT; |
| break; |
| default: |
| unreachable("unexpected type"); |
| } |
| |
| if (type == iface) { |
| const int stage_mask = |
| build_stageref(shProg, var->name, var->data.mode); |
| if (!add_shader_variable(ctx, shProg, resource_set, |
| stage_mask, |
| iface, var, var->name, var->type, false, |
| var->data.location - VARYING_SLOT_VAR0)) |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| static bool |
| add_fragdata_arrays(const struct gl_context *ctx, |
| struct gl_shader_program *shProg, |
| struct set *resource_set) |
| { |
| struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT]; |
| |
| if (!sh || !sh->fragdata_arrays) |
| return true; |
| |
| foreach_in_list(ir_instruction, node, sh->fragdata_arrays) { |
| ir_variable *var = node->as_variable(); |
| if (var) { |
| assert(var->data.mode == ir_var_shader_out); |
| |
| if (!add_shader_variable(ctx, shProg, resource_set, |
| 1 << MESA_SHADER_FRAGMENT, |
| GL_PROGRAM_OUTPUT, var, var->name, var->type, |
| true, var->data.location - FRAG_RESULT_DATA0)) |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static char* |
| get_top_level_name(const char *name) |
| { |
| const char *first_dot = strchr(name, '.'); |
| const char *first_square_bracket = strchr(name, '['); |
| int name_size = 0; |
| |
| /* The ARB_program_interface_query spec says: |
| * |
| * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying |
| * the number of active array elements of the top-level shader storage |
| * block member containing to the active variable is written to |
| * <params>. If the top-level block member is not declared as an |
| * array, the value one is written to <params>. If the top-level block |
| * member is an array with no declared size, the value zero is written |
| * to <params>." |
| */ |
| |
| /* The buffer variable is on top level.*/ |
| if (!first_square_bracket && !first_dot) |
| name_size = strlen(name); |
| else if ((!first_square_bracket || |
| (first_dot && first_dot < first_square_bracket))) |
| name_size = first_dot - name; |
| else |
| name_size = first_square_bracket - name; |
| |
| return strndup(name, name_size); |
| } |
| |
| static char* |
| get_var_name(const char *name) |
| { |
| const char *first_dot = strchr(name, '.'); |
| |
| if (!first_dot) |
| return strdup(name); |
| |
| return strndup(first_dot+1, strlen(first_dot) - 1); |
| } |
| |
| static bool |
| is_top_level_shader_storage_block_member(const char* name, |
| const char* interface_name, |
| const char* field_name) |
| { |
| bool result = false; |
| |
| /* If the given variable is already a top-level shader storage |
| * block member, then return array_size = 1. |
| * We could have two possibilities: if we have an instanced |
| * shader storage block or not instanced. |
| * |
| * For the first, we check create a name as it was in top level and |
| * compare it with the real name. If they are the same, then |
| * the variable is already at top-level. |
| * |
| * Full instanced name is: interface name + '.' + var name + |
| * NULL character |
| */ |
| int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1; |
| char *full_instanced_name = (char *) calloc(name_length, sizeof(char)); |
| if (!full_instanced_name) { |
| fprintf(stderr, "%s: Cannot allocate space for name\n", __func__); |
| return false; |
| } |
| |
| snprintf(full_instanced_name, name_length, "%s.%s", |
| interface_name, field_name); |
| |
| /* Check if its top-level shader storage block member of an |
| * instanced interface block, or of a unnamed interface block. |
| */ |
| if (strcmp(name, full_instanced_name) == 0 || |
| strcmp(name, field_name) == 0) |
| result = true; |
| |
| free(full_instanced_name); |
| return result; |
| } |
| |
| static int |
| get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field, |
| char *interface_name, char *var_name) |
| { |
| /* The ARB_program_interface_query spec says: |
| * |
| * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying |
| * the number of active array elements of the top-level shader storage |
| * block member containing to the active variable is written to |
| * <params>. If the top-level block member is not declared as an |
| * array, the value one is written to <params>. If the top-level block |
| * member is an array with no declared size, the value zero is written |
| * to <params>." |
| */ |
| if (is_top_level_shader_storage_block_member(uni->name, |
| interface_name, |
| var_name)) |
| return 1; |
| else if (field->type->is_unsized_array()) |
| return 0; |
| else if (field->type->is_array()) |
| return field->type->length; |
| |
| return 1; |
| } |
| |
| static int |
| get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni, |
| const glsl_type *interface, const glsl_struct_field *field, |
| char *interface_name, char *var_name) |
| { |
| /* The ARB_program_interface_query spec says: |
| * |
| * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer |
| * identifying the stride between array elements of the top-level |
| * shader storage block member containing the active variable is |
| * written to <params>. For top-level block members declared as |
| * arrays, the value written is the difference, in basic machine units, |
| * between the offsets of the active variable for consecutive elements |
| * in the top-level array. For top-level block members not declared as |
| * an array, zero is written to <params>." |
| */ |
| if (field->type->is_array()) { |
| const enum glsl_matrix_layout matrix_layout = |
| glsl_matrix_layout(field->matrix_layout); |
| bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR; |
| const glsl_type *array_type = field->type->fields.array; |
| |
| if (is_top_level_shader_storage_block_member(uni->name, |
| interface_name, |
| var_name)) |
| return 0; |
| |
| if (GLSL_INTERFACE_PACKING_STD140 == |
| interface-> |
| get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) { |
| if (array_type->is_record() || array_type->is_array()) |
| return glsl_align(array_type->std140_size(row_major), 16); |
| else |
| return MAX2(array_type->std140_base_alignment(row_major), 16); |
| } else { |
| return array_type->std430_array_stride(row_major); |
| } |
| } |
| return 0; |
| } |
| |
| static void |
| calculate_array_size_and_stride(struct gl_context *ctx, |
| struct gl_shader_program *shProg, |
| struct gl_uniform_storage *uni) |
| { |
| int block_index = uni->block_index; |
| int array_size = -1; |
| int array_stride = -1; |
| char *var_name = get_top_level_name(uni->name); |
| char *interface_name = |
| get_top_level_name(uni->is_shader_storage ? |
| shProg->data->ShaderStorageBlocks[block_index].Name : |
| shProg->data->UniformBlocks[block_index].Name); |
| |
| if (strcmp(var_name, interface_name) == 0) { |
| /* Deal with instanced array of SSBOs */ |
| char *temp_name = get_var_name(uni->name); |
| if (!temp_name) { |
| linker_error(shProg, "Out of memory during linking.\n"); |
| goto write_top_level_array_size_and_stride; |
| } |
| free(var_name); |
| var_name = get_top_level_name(temp_name); |
| free(temp_name); |
| if (!var_name) { |
| linker_error(shProg, "Out of memory during linking.\n"); |
| goto write_top_level_array_size_and_stride; |
| } |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| const gl_linked_shader *sh = shProg->_LinkedShaders[i]; |
| if (sh == NULL) |
| continue; |
| |
| foreach_in_list(ir_instruction, node, sh->ir) { |
| ir_variable *var = node->as_variable(); |
| if (!var || !var->get_interface_type() || |
| var->data.mode != ir_var_shader_storage) |
| continue; |
| |
| const glsl_type *interface = var->get_interface_type(); |
| |
| if (strcmp(interface_name, interface->name) != 0) |
| continue; |
| |
| for (unsigned i = 0; i < interface->length; i++) { |
| const glsl_struct_field *field = &interface->fields.structure[i]; |
| if (strcmp(field->name, var_name) != 0) |
| continue; |
| |
| array_stride = get_array_stride(ctx, uni, interface, field, |
| interface_name, var_name); |
| array_size = get_array_size(uni, field, interface_name, var_name); |
| goto write_top_level_array_size_and_stride; |
| } |
| } |
| } |
| write_top_level_array_size_and_stride: |
| free(interface_name); |
| free(var_name); |
| uni->top_level_array_stride = array_stride; |
| uni->top_level_array_size = array_size; |
| } |
| |
| /** |
| * Builds up a list of program resources that point to existing |
| * resource data. |
| */ |
| void |
| build_program_resource_list(struct gl_context *ctx, |
| struct gl_shader_program *shProg) |
| { |
| /* Rebuild resource list. */ |
| if (shProg->data->ProgramResourceList) { |
| ralloc_free(shProg->data->ProgramResourceList); |
| shProg->data->ProgramResourceList = NULL; |
| shProg->data->NumProgramResourceList = 0; |
| } |
| |
| int input_stage = MESA_SHADER_STAGES, output_stage = 0; |
| |
| /* Determine first input and final output stage. These are used to |
| * detect which variables should be enumerated in the resource list |
| * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT. |
| */ |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (!shProg->_LinkedShaders[i]) |
| continue; |
| if (input_stage == MESA_SHADER_STAGES) |
| input_stage = i; |
| output_stage = i; |
| } |
| |
| /* Empty shader, no resources. */ |
| if (input_stage == MESA_SHADER_STAGES && output_stage == 0) |
| return; |
| |
| struct set *resource_set = _mesa_set_create(NULL, |
| _mesa_hash_pointer, |
| _mesa_key_pointer_equal); |
| |
| /* Program interface needs to expose varyings in case of SSO. */ |
| if (shProg->SeparateShader) { |
| if (!add_packed_varyings(ctx, shProg, resource_set, |
| input_stage, GL_PROGRAM_INPUT)) |
| return; |
| |
| if (!add_packed_varyings(ctx, shProg, resource_set, |
| output_stage, GL_PROGRAM_OUTPUT)) |
| return; |
| } |
| |
| if (!add_fragdata_arrays(ctx, shProg, resource_set)) |
| return; |
| |
| /* Add inputs and outputs to the resource list. */ |
| if (!add_interface_variables(ctx, shProg, resource_set, |
| input_stage, GL_PROGRAM_INPUT)) |
| return; |
| |
| if (!add_interface_variables(ctx, shProg, resource_set, |
| output_stage, GL_PROGRAM_OUTPUT)) |
| return; |
| |
| if (shProg->last_vert_prog) { |
| struct gl_transform_feedback_info *linked_xfb = |
| shProg->last_vert_prog->sh.LinkedTransformFeedback; |
| |
| /* Add transform feedback varyings. */ |
| if (linked_xfb->NumVarying > 0) { |
| for (int i = 0; i < linked_xfb->NumVarying; i++) { |
| if (!add_program_resource(shProg, resource_set, |
| GL_TRANSFORM_FEEDBACK_VARYING, |
| &linked_xfb->Varyings[i], 0)) |
| return; |
| } |
| } |
| |
| /* Add transform feedback buffers. */ |
| for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) { |
| if ((linked_xfb->ActiveBuffers >> i) & 1) { |
| linked_xfb->Buffers[i].Binding = i; |
| if (!add_program_resource(shProg, resource_set, |
| GL_TRANSFORM_FEEDBACK_BUFFER, |
| &linked_xfb->Buffers[i], 0)) |
| return; |
| } |
| } |
| } |
| |
| /* Add uniforms from uniform storage. */ |
| for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { |
| /* Do not add uniforms internally used by Mesa. */ |
| if (shProg->data->UniformStorage[i].hidden) |
| continue; |
| |
| uint8_t stageref = |
| build_stageref(shProg, shProg->data->UniformStorage[i].name, |
| ir_var_uniform); |
| |
| /* Add stagereferences for uniforms in a uniform block. */ |
| bool is_shader_storage = |
| shProg->data->UniformStorage[i].is_shader_storage; |
| int block_index = shProg->data->UniformStorage[i].block_index; |
| if (block_index != -1) { |
| stageref |= is_shader_storage ? |
| shProg->data->ShaderStorageBlocks[block_index].stageref : |
| shProg->data->UniformBlocks[block_index].stageref; |
| } |
| |
| GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM; |
| if (!should_add_buffer_variable(shProg, type, |
| shProg->data->UniformStorage[i].name)) |
| continue; |
| |
| if (is_shader_storage) { |
| calculate_array_size_and_stride(ctx, shProg, |
| &shProg->data->UniformStorage[i]); |
| } |
| |
| if (!add_program_resource(shProg, resource_set, type, |
| &shProg->data->UniformStorage[i], stageref)) |
| return; |
| } |
| |
| /* Add program uniform blocks. */ |
| for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) { |
| if (!add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK, |
| &shProg->data->UniformBlocks[i], 0)) |
| return; |
| } |
| |
| /* Add program shader storage blocks. */ |
| for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { |
| if (!add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK, |
| &shProg->data->ShaderStorageBlocks[i], 0)) |
| return; |
| } |
| |
| /* Add atomic counter buffers. */ |
| for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) { |
| if (!add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER, |
| &shProg->data->AtomicBuffers[i], 0)) |
| return; |
| } |
| |
| for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { |
| GLenum type; |
| if (!shProg->data->UniformStorage[i].hidden) |
| continue; |
| |
| for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) { |
| if (!shProg->data->UniformStorage[i].opaque[j].active || |
| !shProg->data->UniformStorage[i].type->is_subroutine()) |
| continue; |
| |
| type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j); |
| /* add shader subroutines */ |
| if (!add_program_resource(shProg, resource_set, |
| type, &shProg->data->UniformStorage[i], 0)) |
| return; |
| } |
| } |
| |
| unsigned mask = shProg->data->linked_stages; |
| while (mask) { |
| const int i = u_bit_scan(&mask); |
| struct gl_program *p = shProg->_LinkedShaders[i]->Program; |
| |
| GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i); |
| for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { |
| if (!add_program_resource(shProg, resource_set, |
| type, &p->sh.SubroutineFunctions[j], 0)) |
| return; |
| } |
| } |
| |
| _mesa_set_destroy(resource_set, NULL); |
| } |
| |
| /** |
| * This check is done to make sure we allow only constant expression |
| * indexing and "constant-index-expression" (indexing with an expression |
| * that includes loop induction variable). |
| */ |
| static bool |
| validate_sampler_array_indexing(struct gl_context *ctx, |
| struct gl_shader_program *prog) |
| { |
| dynamic_sampler_array_indexing_visitor v; |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| bool no_dynamic_indexing = |
| ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler; |
| |
| /* Search for array derefs in shader. */ |
| v.run(prog->_LinkedShaders[i]->ir); |
| if (v.uses_dynamic_sampler_array_indexing()) { |
| const char *msg = "sampler arrays indexed with non-constant " |
| "expressions is forbidden in GLSL %s %u"; |
| /* Backend has indicated that it has no dynamic indexing support. */ |
| if (no_dynamic_indexing) { |
| linker_error(prog, msg, prog->IsES ? "ES" : "", |
| prog->data->Version); |
| return false; |
| } else { |
| linker_warning(prog, msg, prog->IsES ? "ES" : "", |
| prog->data->Version); |
| } |
| } |
| } |
| return true; |
| } |
| |
| static void |
| link_assign_subroutine_types(struct gl_shader_program *prog) |
| { |
| unsigned mask = prog->data->linked_stages; |
| while (mask) { |
| const int i = u_bit_scan(&mask); |
| gl_program *p = prog->_LinkedShaders[i]->Program; |
| |
| p->sh.MaxSubroutineFunctionIndex = 0; |
| foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { |
| ir_function *fn = node->as_function(); |
| if (!fn) |
| continue; |
| |
| if (fn->is_subroutine) |
| p->sh.NumSubroutineUniformTypes++; |
| |
| if (!fn->num_subroutine_types) |
| continue; |
| |
| /* these should have been calculated earlier. */ |
| assert(fn->subroutine_index != -1); |
| if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) { |
| linker_error(prog, "Too many subroutine functions declared.\n"); |
| return; |
| } |
| p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions, |
| struct gl_subroutine_function, |
| p->sh.NumSubroutineFunctions + 1); |
| p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name); |
| p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types; |
| p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types = |
| ralloc_array(p, const struct glsl_type *, |
| fn->num_subroutine_types); |
| |
| /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the |
| * GLSL 4.5 spec: |
| * |
| * "Each subroutine with an index qualifier in the shader must be |
| * given a unique index, otherwise a compile or link error will be |
| * generated." |
| */ |
| for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { |
| if (p->sh.SubroutineFunctions[j].index != -1 && |
| p->sh.SubroutineFunctions[j].index == fn->subroutine_index) { |
| linker_error(prog, "each subroutine index qualifier in the " |
| "shader must be unique\n"); |
| return; |
| } |
| } |
| p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index = |
| fn->subroutine_index; |
| |
| if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex) |
| p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index; |
| |
| for (int j = 0; j < fn->num_subroutine_types; j++) |
| p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j]; |
| p->sh.NumSubroutineFunctions++; |
| } |
| } |
| } |
| |
| static void |
| set_always_active_io(exec_list *ir, ir_variable_mode io_mode) |
| { |
| assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out); |
| |
| foreach_in_list(ir_instruction, node, ir) { |
| ir_variable *const var = node->as_variable(); |
| |
| if (var == NULL || var->data.mode != io_mode) |
| continue; |
| |
| /* Don't set always active on builtins that haven't been redeclared */ |
| if (var->data.how_declared == ir_var_declared_implicitly) |
| continue; |
| |
| var->data.always_active_io = true; |
| } |
| } |
| |
| /** |
| * When separate shader programs are enabled, only input/outputs between |
| * the stages of a multi-stage separate program can be safely removed |
| * from the shader interface. Other inputs/outputs must remain active. |
| */ |
| static void |
| disable_varying_optimizations_for_sso(struct gl_shader_program *prog) |
| { |
| unsigned first, last; |
| assert(prog->SeparateShader); |
| |
| first = MESA_SHADER_STAGES; |
| last = 0; |
| |
| /* Determine first and last stage. Excluding the compute stage */ |
| for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) { |
| if (!prog->_LinkedShaders[i]) |
| continue; |
| if (first == MESA_SHADER_STAGES) |
| first = i; |
| last = i; |
| } |
| |
| if (first == MESA_SHADER_STAGES) |
| return; |
| |
| for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) { |
| gl_linked_shader *sh = prog->_LinkedShaders[stage]; |
| if (!sh) |
| continue; |
| |
| /* Prevent the removal of inputs to the first and outputs from the last |
| * stage, unless they are the initial pipeline inputs or final pipeline |
| * outputs, respectively. |
| * |
| * The removal of IO between shaders in the same program is always |
| * allowed. |
| */ |
| if (stage == first && stage != MESA_SHADER_VERTEX) |
| set_always_active_io(sh->ir, ir_var_shader_in); |
| if (stage == last && stage != MESA_SHADER_FRAGMENT) |
| set_always_active_io(sh->ir, ir_var_shader_out); |
| } |
| } |
| |
| static void |
| link_and_validate_uniforms(struct gl_context *ctx, |
| struct gl_shader_program *prog) |
| { |
| update_array_sizes(prog); |
| link_assign_uniform_locations(prog, ctx); |
| |
| if (!prog->data->cache_fallback) { |
| link_assign_atomic_counter_resources(ctx, prog); |
| link_calculate_subroutine_compat(prog); |
| check_resources(ctx, prog); |
| check_subroutine_resources(prog); |
| check_image_resources(ctx, prog); |
| link_check_atomic_counter_resources(ctx, prog); |
| } |
| } |
| |
| static bool |
| link_varyings_and_uniforms(unsigned first, unsigned last, |
| struct gl_context *ctx, |
| struct gl_shader_program *prog, void *mem_ctx) |
| { |
| /* Mark all generic shader inputs and outputs as unpaired. */ |
| for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) { |
| if (prog->_LinkedShaders[i] != NULL) { |
| link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir); |
| } |
| } |
| |
| unsigned prev = first; |
| for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev], |
| prog->_LinkedShaders[i]); |
| prev = i; |
| } |
| |
| if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, |
| MESA_SHADER_VERTEX)) { |
| return false; |
| } |
| |
| if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, |
| MESA_SHADER_FRAGMENT)) { |
| return false; |
| } |
| |
| prog->last_vert_prog = NULL; |
| for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| prog->last_vert_prog = prog->_LinkedShaders[i]->Program; |
| break; |
| } |
| |
| if (!link_varyings(prog, first, last, ctx, mem_ctx)) |
| return false; |
| |
| link_and_validate_uniforms(ctx, prog); |
| |
| if (!prog->data->LinkStatus) |
| return false; |
| |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| const struct gl_shader_compiler_options *options = |
| &ctx->Const.ShaderCompilerOptions[i]; |
| |
| if (options->LowerBufferInterfaceBlocks) |
| lower_ubo_reference(prog->_LinkedShaders[i], |
| options->ClampBlockIndicesToArrayBounds, |
| ctx->Const.UseSTD430AsDefaultPacking); |
| |
| if (i == MESA_SHADER_COMPUTE) |
| lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]); |
| |
| lower_vector_derefs(prog->_LinkedShaders[i]); |
| do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir); |
| } |
| |
| return true; |
| } |
| |
| static void |
| linker_optimisation_loop(struct gl_context *ctx, exec_list *ir, |
| unsigned stage) |
| { |
| if (ctx->Const.GLSLOptimizeConservatively) { |
| /* Run it just once. */ |
| do_common_optimization(ir, true, false, |
| &ctx->Const.ShaderCompilerOptions[stage], |
| ctx->Const.NativeIntegers); |
| } else { |
| /* Repeat it until it stops making changes. */ |
| while (do_common_optimization(ir, true, false, |
| &ctx->Const.ShaderCompilerOptions[stage], |
| ctx->Const.NativeIntegers)) |
| ; |
| } |
| } |
| |
| void |
| link_shaders(struct gl_context *ctx, struct gl_shader_program *prog) |
| { |
| prog->data->LinkStatus = linking_success; /* All error paths will set this to false */ |
| prog->data->Validated = false; |
| |
| /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says: |
| * |
| * "Linking can fail for a variety of reasons as specified in the |
| * OpenGL Shading Language Specification, as well as any of the |
| * following reasons: |
| * |
| * - No shader objects are attached to program." |
| * |
| * The Compatibility Profile specification does not list the error. In |
| * Compatibility Profile missing shader stages are replaced by |
| * fixed-function. This applies to the case where all stages are |
| * missing. |
| */ |
| if (prog->NumShaders == 0) { |
| if (ctx->API != API_OPENGL_COMPAT) |
| linker_error(prog, "no shaders attached to the program\n"); |
| return; |
| } |
| |
| #ifdef ENABLE_SHADER_CACHE |
| /* If transform feedback used on the program then compile all shaders. */ |
| bool skip_cache = false; |
| if (prog->TransformFeedback.NumVarying > 0) { |
| for (unsigned i = 0; i < prog->NumShaders; i++) { |
| _mesa_glsl_compile_shader(ctx, prog->Shaders[i], false, false, true); |
| } |
| skip_cache = true; |
| } |
| |
| if (!skip_cache && shader_cache_read_program_metadata(ctx, prog)) |
| return; |
| #endif |
| |
| void *mem_ctx = ralloc_context(NULL); // temporary linker context |
| |
| prog->ARB_fragment_coord_conventions_enable = false; |
| |
| /* Separate the shaders into groups based on their type. |
| */ |
| struct gl_shader **shader_list[MESA_SHADER_STAGES]; |
| unsigned num_shaders[MESA_SHADER_STAGES]; |
| |
| for (int i = 0; i < MESA_SHADER_STAGES; i++) { |
| shader_list[i] = (struct gl_shader **) |
| calloc(prog->NumShaders, sizeof(struct gl_shader *)); |
| num_shaders[i] = 0; |
| } |
| |
| unsigned min_version = UINT_MAX; |
| unsigned max_version = 0; |
| for (unsigned i = 0; i < prog->NumShaders; i++) { |
| min_version = MIN2(min_version, prog->Shaders[i]->Version); |
| max_version = MAX2(max_version, prog->Shaders[i]->Version); |
| |
| if (prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) { |
| linker_error(prog, "all shaders must use same shading " |
| "language version\n"); |
| goto done; |
| } |
| |
| if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) { |
| prog->ARB_fragment_coord_conventions_enable = true; |
| } |
| |
| gl_shader_stage shader_type = prog->Shaders[i]->Stage; |
| shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i]; |
| num_shaders[shader_type]++; |
| } |
| |
| /* In desktop GLSL, different shader versions may be linked together. In |
| * GLSL ES, all shader versions must be the same. |
| */ |
| if (prog->Shaders[0]->IsES && min_version != max_version) { |
| linker_error(prog, "all shaders must use same shading " |
| "language version\n"); |
| goto done; |
| } |
| |
| prog->data->Version = max_version; |
| prog->IsES = prog->Shaders[0]->IsES; |
| |
| /* Some shaders have to be linked with some other shaders present. |
| */ |
| if (!prog->SeparateShader) { |
| if (num_shaders[MESA_SHADER_GEOMETRY] > 0 && |
| num_shaders[MESA_SHADER_VERTEX] == 0) { |
| linker_error(prog, "Geometry shader must be linked with " |
| "vertex shader\n"); |
| goto done; |
| } |
| if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && |
| num_shaders[MESA_SHADER_VERTEX] == 0) { |
| linker_error(prog, "Tessellation evaluation shader must be linked " |
| "with vertex shader\n"); |
| goto done; |
| } |
| if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && |
| num_shaders[MESA_SHADER_VERTEX] == 0) { |
| linker_error(prog, "Tessellation control shader must be linked with " |
| "vertex shader\n"); |
| goto done; |
| } |
| |
| /* Section 7.3 of the OpenGL ES 3.2 specification says: |
| * |
| * "Linking can fail for [...] any of the following reasons: |
| * |
| * * program contains an object to form a tessellation control |
| * shader [...] and [...] the program is not separable and |
| * contains no object to form a tessellation evaluation shader" |
| * |
| * The OpenGL spec is contradictory. It allows linking without a tess |
| * eval shader, but that can only be used with transform feedback and |
| * rasterization disabled. However, transform feedback isn't allowed |
| * with GL_PATCHES, so it can't be used. |
| * |
| * More investigation showed that the idea of transform feedback after |
| * a tess control shader was dropped, because some hw vendors couldn't |
| * support tessellation without a tess eval shader, but the linker |
| * section wasn't updated to reflect that. |
| * |
| * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this |
| * spec bug. |
| * |
| * Do what's reasonable and always require a tess eval shader if a tess |
| * control shader is present. |
| */ |
| if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && |
| num_shaders[MESA_SHADER_TESS_EVAL] == 0) { |
| linker_error(prog, "Tessellation control shader must be linked with " |
| "tessellation evaluation shader\n"); |
| goto done; |
| } |
| |
| if (prog->IsES) { |
| if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && |
| num_shaders[MESA_SHADER_TESS_CTRL] == 0) { |
| linker_error(prog, "GLSL ES requires non-separable programs " |
| "containing a tessellation evaluation shader to also " |
| "be linked with a tessellation control shader\n"); |
| goto done; |
| } |
| } |
| } |
| |
| /* Compute shaders have additional restrictions. */ |
| if (num_shaders[MESA_SHADER_COMPUTE] > 0 && |
| num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) { |
| linker_error(prog, "Compute shaders may not be linked with any other " |
| "type of shader\n"); |
| } |
| |
| /* Link all shaders for a particular stage and validate the result. |
| */ |
| for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) { |
| if (num_shaders[stage] > 0) { |
| gl_linked_shader *const sh = |
| link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage], |
| num_shaders[stage], false); |
| |
| if (!prog->data->LinkStatus) { |
| if (sh) |
| _mesa_delete_linked_shader(ctx, sh); |
| goto done; |
| } |
| |
| switch (stage) { |
| case MESA_SHADER_VERTEX: |
| validate_vertex_shader_executable(prog, sh, ctx); |
| break; |
| case MESA_SHADER_TESS_CTRL: |
| /* nothing to be done */ |
| break; |
| case MESA_SHADER_TESS_EVAL: |
| validate_tess_eval_shader_executable(prog, sh, ctx); |
| break; |
| case MESA_SHADER_GEOMETRY: |
| validate_geometry_shader_executable(prog, sh, ctx); |
| break; |
| case MESA_SHADER_FRAGMENT: |
| validate_fragment_shader_executable(prog, sh); |
| break; |
| } |
| if (!prog->data->LinkStatus) { |
| if (sh) |
| _mesa_delete_linked_shader(ctx, sh); |
| goto done; |
| } |
| |
| prog->_LinkedShaders[stage] = sh; |
| prog->data->linked_stages |= 1 << stage; |
| } |
| } |
| |
| /* Here begins the inter-stage linking phase. Some initial validation is |
| * performed, then locations are assigned for uniforms, attributes, and |
| * varyings. |
| */ |
| cross_validate_uniforms(prog); |
| if (!prog->data->LinkStatus) |
| goto done; |
| |
| unsigned first, last, prev; |
| |
| first = MESA_SHADER_STAGES; |
| last = 0; |
| |
| /* Determine first and last stage. */ |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (!prog->_LinkedShaders[i]) |
| continue; |
| if (first == MESA_SHADER_STAGES) |
| first = i; |
| last = i; |
| } |
| |
| if (!prog->data->cache_fallback) { |
| check_explicit_uniform_locations(ctx, prog); |
| link_assign_subroutine_types(prog); |
| } |
| |
| if (!prog->data->LinkStatus) |
| goto done; |
| |
| resize_tes_inputs(ctx, prog); |
| |
| /* Validate the inputs of each stage with the output of the preceding |
| * stage. |
| */ |
| prev = first; |
| for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev], |
| prog->_LinkedShaders[i]); |
| if (!prog->data->LinkStatus) |
| goto done; |
| |
| cross_validate_outputs_to_inputs(ctx, prog, |
| prog->_LinkedShaders[prev], |
| prog->_LinkedShaders[i]); |
| if (!prog->data->LinkStatus) |
| goto done; |
| |
| prev = i; |
| } |
| |
| /* The cross validation of outputs/inputs above validates explicit locations |
| * but for SSO programs we need to do this also for the inputs in the |
| * first stage and outputs of the last stage included in the program, since |
| * there is no cross validation for these. |
| */ |
| if (prog->SeparateShader) |
| validate_sso_explicit_locations(ctx, prog, |
| (gl_shader_stage) first, |
| (gl_shader_stage) last); |
| |
| /* Cross-validate uniform blocks between shader stages */ |
| validate_interstage_uniform_blocks(prog, prog->_LinkedShaders); |
| if (!prog->data->LinkStatus) |
| goto done; |
| |
| for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] != NULL) |
| lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]); |
| } |
| |
| /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do |
| * it before optimization because we want most of the checks to get |
| * dropped thanks to constant propagation. |
| * |
| * This rule also applies to GLSL ES 3.00. |
| */ |
| if (max_version >= (prog->IsES ? 300 : 130)) { |
| struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; |
| if (sh) { |
| lower_discard_flow(sh->ir); |
| } |
| } |
| |
| if (prog->SeparateShader) |
| disable_varying_optimizations_for_sso(prog); |
| |
| if (!prog->data->cache_fallback) { |
| /* Process UBOs */ |
| if (!interstage_cross_validate_uniform_blocks(prog, false)) |
| goto done; |
| |
| /* Process SSBOs */ |
| if (!interstage_cross_validate_uniform_blocks(prog, true)) |
| goto done; |
| } |
| |
| /* Do common optimization before assigning storage for attributes, |
| * uniforms, and varyings. Later optimization could possibly make |
| * some of that unused. |
| */ |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir); |
| if (!prog->data->LinkStatus) |
| goto done; |
| |
| if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) { |
| lower_clip_cull_distance(prog, prog->_LinkedShaders[i]); |
| } |
| |
| if (ctx->Const.LowerTessLevel) { |
| lower_tess_level(prog->_LinkedShaders[i]); |
| } |
| |
| /* Call opts before lowering const arrays to uniforms so we can const |
| * propagate any elements accessed directly. |
| */ |
| linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); |
| |
| /* Call opts after lowering const arrays to copy propagate things. */ |
| if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i)) |
| linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); |
| |
| propagate_invariance(prog->_LinkedShaders[i]->ir); |
| } |
| |
| /* Validation for special cases where we allow sampler array indexing |
| * with loop induction variable. This check emits a warning or error |
| * depending if backend can handle dynamic indexing. |
| */ |
| if ((!prog->IsES && prog->data->Version < 130) || |
| (prog->IsES && prog->data->Version < 300)) { |
| if (!validate_sampler_array_indexing(ctx, prog)) |
| goto done; |
| } |
| |
| /* Check and validate stream emissions in geometry shaders */ |
| validate_geometry_shader_emissions(ctx, prog); |
| |
| store_fragdepth_layout(prog); |
| |
| if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx)) |
| goto done; |
| |
| /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both |
| * be present in a linked program. GL_ARB_ES2_compatibility doesn't say |
| * anything about shader linking when one of the shaders (vertex or |
| * fragment shader) is absent. So, the extension shouldn't change the |
| * behavior specified in GLSL specification. |
| * |
| * From OpenGL ES 3.1 specification (7.3 Program Objects): |
| * "Linking can fail for a variety of reasons as specified in the |
| * OpenGL ES Shading Language Specification, as well as any of the |
| * following reasons: |
| * |
| * ... |
| * |
| * * program contains objects to form either a vertex shader or |
| * fragment shader, and program is not separable, and does not |
| * contain objects to form both a vertex shader and fragment |
| * shader." |
| * |
| * However, the only scenario in 3.1+ where we don't require them both is |
| * when we have a compute shader. For example: |
| * |
| * - No shaders is a link error. |
| * - Geom or Tess without a Vertex shader is a link error which means we |
| * always require a Vertex shader and hence a Fragment shader. |
| * - Finally a Compute shader linked with any other stage is a link error. |
| */ |
| if (!prog->SeparateShader && ctx->API == API_OPENGLES2 && |
| num_shaders[MESA_SHADER_COMPUTE] == 0) { |
| if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) { |
| linker_error(prog, "program lacks a vertex shader\n"); |
| } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { |
| linker_error(prog, "program lacks a fragment shader\n"); |
| } |
| } |
| |
| done: |
| for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { |
| free(shader_list[i]); |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| /* Do a final validation step to make sure that the IR wasn't |
| * invalidated by any modifications performed after intrastage linking. |
| */ |
| validate_ir_tree(prog->_LinkedShaders[i]->ir); |
| |
| /* Retain any live IR, but trash the rest. */ |
| reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir); |
| |
| /* The symbol table in the linked shaders may contain references to |
| * variables that were removed (e.g., unused uniforms). Since it may |
| * contain junk, there is no possible valid use. Delete it and set the |
| * pointer to NULL. |
| */ |
| delete prog->_LinkedShaders[i]->symbols; |
| prog->_LinkedShaders[i]->symbols = NULL; |
| } |
| |
| ralloc_free(mem_ctx); |
| } |