blob: 5e69bccd9a4a343a988304fd2514d25a361828d0 [file] [log] [blame]
/*
* Copyright © 2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/**
* \file ast_to_hir.c
* Convert abstract syntax to to high-level intermediate reprensentation (HIR).
*
* During the conversion to HIR, the majority of the symantic checking is
* preformed on the program. This includes:
*
* * Symbol table management
* * Type checking
* * Function binding
*
* The majority of this work could be done during parsing, and the parser could
* probably generate HIR directly. However, this results in frequent changes
* to the parser code. Since we do not assume that every system this complier
* is built on will have Flex and Bison installed, we have to store the code
* generated by these tools in our version control system. In other parts of
* the system we've seen problems where a parser was changed but the generated
* code was not committed, merge conflicts where created because two developers
* had slightly different versions of Bison installed, etc.
*
* I have also noticed that running Bison generated parsers in GDB is very
* irritating. When you get a segfault on '$$ = $1->foo', you can't very
* well 'print $1' in GDB.
*
* As a result, my preference is to put as little C code as possible in the
* parser (and lexer) sources.
*/
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "ast.h"
#include "glsl_types.h"
#include "program/hash_table.h"
#include "main/shaderobj.h"
#include "ir.h"
#include "ir_builder.h"
using namespace ir_builder;
static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
exec_list *instructions);
static void
remove_per_vertex_blocks(exec_list *instructions,
_mesa_glsl_parse_state *state, ir_variable_mode mode);
/**
* Visitor class that finds the first instance of any write-only variable that
* is ever read, if any
*/
class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
{
public:
read_from_write_only_variable_visitor() : found(NULL)
{
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (this->in_assignee)
return visit_continue;
ir_variable *var = ir->variable_referenced();
/* We can have image_write_only set on both images and buffer variables,
* but in the former there is a distinction between reads from
* the variable itself (write_only) and from the memory they point to
* (image_write_only), while in the case of buffer variables there is
* no such distinction, that is why this check here is limited to
* buffer variables alone.
*/
if (!var || var->data.mode != ir_var_shader_storage)
return visit_continue;
if (var->data.image_write_only) {
found = var;
return visit_stop;
}
return visit_continue;
}
ir_variable *get_variable() {
return found;
}
private:
ir_variable *found;
};
void
_mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
_mesa_glsl_initialize_variables(instructions, state);
state->symbols->separate_function_namespace = state->language_version == 110;
state->current_function = NULL;
state->toplevel_ir = instructions;
state->gs_input_prim_type_specified = false;
state->tcs_output_vertices_specified = false;
state->cs_input_local_size_specified = false;
/* Section 4.2 of the GLSL 1.20 specification states:
* "The built-in functions are scoped in a scope outside the global scope
* users declare global variables in. That is, a shader's global scope,
* available for user-defined functions and global variables, is nested
* inside the scope containing the built-in functions."
*
* Since built-in functions like ftransform() access built-in variables,
* it follows that those must be in the outer scope as well.
*
* We push scope here to create this nesting effect...but don't pop.
* This way, a shader's globals are still in the symbol table for use
* by the linker.
*/
state->symbols->push_scope();
foreach_list_typed (ast_node, ast, link, & state->translation_unit)
ast->hir(instructions, state);
detect_recursion_unlinked(state, instructions);
detect_conflicting_assignments(state, instructions);
state->toplevel_ir = NULL;
/* Move all of the variable declarations to the front of the IR list, and
* reverse the order. This has the (intended!) side effect that vertex
* shader inputs and fragment shader outputs will appear in the IR in the
* same order that they appeared in the shader code. This results in the
* locations being assigned in the declared order. Many (arguably buggy)
* applications depend on this behavior, and it matches what nearly all
* other drivers do.
*/
foreach_in_list_safe(ir_instruction, node, instructions) {
ir_variable *const var = node->as_variable();
if (var == NULL)
continue;
var->remove();
instructions->push_head(var);
}
/* Figure out if gl_FragCoord is actually used in fragment shader */
ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
if (var != NULL)
state->fs_uses_gl_fragcoord = var->data.used;
/* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
*
* If multiple shaders using members of a built-in block belonging to
* the same interface are linked together in the same program, they
* must all redeclare the built-in block in the same way, as described
* in section 4.3.7 "Interface Blocks" for interface block matching, or
* a link error will result.
*
* The phrase "using members of a built-in block" implies that if two
* shaders are linked together and one of them *does not use* any members
* of the built-in block, then that shader does not need to have a matching
* redeclaration of the built-in block.
*
* This appears to be a clarification to the behaviour established for
* gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
* version.
*
* The definition of "interface" in section 4.3.7 that applies here is as
* follows:
*
* The boundary between adjacent programmable pipeline stages: This
* spans all the outputs in all compilation units of the first stage
* and all the inputs in all compilation units of the second stage.
*
* Therefore this rule applies to both inter- and intra-stage linking.
*
* The easiest way to implement this is to check whether the shader uses
* gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
* remove all the relevant variable declaration from the IR, so that the
* linker won't see them and complain about mismatches.
*/
remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
/* Check that we don't have reads from write-only variables */
read_from_write_only_variable_visitor v;
v.run(instructions);
ir_variable *error_var = v.get_variable();
if (error_var) {
/* It would be nice to have proper location information, but for that
* we would need to check this as we process each kind of AST node
*/
YYLTYPE loc;
memset(&loc, 0, sizeof(loc));
_mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
error_var->name);
}
}
static ir_expression_operation
get_conversion_operation(const glsl_type *to, const glsl_type *from,
struct _mesa_glsl_parse_state *state)
{
switch (to->base_type) {
case GLSL_TYPE_FLOAT:
switch (from->base_type) {
case GLSL_TYPE_INT: return ir_unop_i2f;
case GLSL_TYPE_UINT: return ir_unop_u2f;
case GLSL_TYPE_DOUBLE: return ir_unop_d2f;
default: return (ir_expression_operation)0;
}
case GLSL_TYPE_UINT:
if (!state->is_version(400, 0) && !state->ARB_gpu_shader5_enable)
return (ir_expression_operation)0;
switch (from->base_type) {
case GLSL_TYPE_INT: return ir_unop_i2u;
default: return (ir_expression_operation)0;
}
case GLSL_TYPE_DOUBLE:
if (!state->has_double())
return (ir_expression_operation)0;
switch (from->base_type) {
case GLSL_TYPE_INT: return ir_unop_i2d;
case GLSL_TYPE_UINT: return ir_unop_u2d;
case GLSL_TYPE_FLOAT: return ir_unop_f2d;
default: return (ir_expression_operation)0;
}
default: return (ir_expression_operation)0;
}
}
/**
* If a conversion is available, convert one operand to a different type
*
* The \c from \c ir_rvalue is converted "in place".
*
* \param to Type that the operand it to be converted to
* \param from Operand that is being converted
* \param state GLSL compiler state
*
* \return
* If a conversion is possible (or unnecessary), \c true is returned.
* Otherwise \c false is returned.
*/
bool
apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
if (to->base_type == from->type->base_type)
return true;
/* Prior to GLSL 1.20, there are no implicit conversions */
if (!state->is_version(120, 0))
return false;
/* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
*
* "There are no implicit array or structure conversions. For
* example, an array of int cannot be implicitly converted to an
* array of float.
*/
if (!to->is_numeric() || !from->type->is_numeric())
return false;
/* We don't actually want the specific type `to`, we want a type
* with the same base type as `to`, but the same vector width as
* `from`.
*/
to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
from->type->matrix_columns);
ir_expression_operation op = get_conversion_operation(to, from->type, state);
if (op) {
from = new(ctx) ir_expression(op, to, from, NULL);
return true;
} else {
return false;
}
}
static const struct glsl_type *
arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
bool multiply,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
const glsl_type *type_a = value_a->type;
const glsl_type *type_b = value_b->type;
/* From GLSL 1.50 spec, page 56:
*
* "The arithmetic binary operators add (+), subtract (-),
* multiply (*), and divide (/) operate on integer and
* floating-point scalars, vectors, and matrices."
*/
if (!type_a->is_numeric() || !type_b->is_numeric()) {
_mesa_glsl_error(loc, state,
"operands to arithmetic operators must be numeric");
return glsl_type::error_type;
}
/* "If one operand is floating-point based and the other is
* not, then the conversions from Section 4.1.10 "Implicit
* Conversions" are applied to the non-floating-point-based operand."
*/
if (!apply_implicit_conversion(type_a, value_b, state)
&& !apply_implicit_conversion(type_b, value_a, state)) {
_mesa_glsl_error(loc, state,
"could not implicitly convert operands to "
"arithmetic operator");
return glsl_type::error_type;
}
type_a = value_a->type;
type_b = value_b->type;
/* "If the operands are integer types, they must both be signed or
* both be unsigned."
*
* From this rule and the preceeding conversion it can be inferred that
* both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
* The is_numeric check above already filtered out the case where either
* type is not one of these, so now the base types need only be tested for
* equality.
*/
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state,
"base type mismatch for arithmetic operator");
return glsl_type::error_type;
}
/* "All arithmetic binary operators result in the same fundamental type
* (signed integer, unsigned integer, or floating-point) as the
* operands they operate on, after operand type conversion. After
* conversion, the following cases are valid
*
* * The two operands are scalars. In this case the operation is
* applied, resulting in a scalar."
*/
if (type_a->is_scalar() && type_b->is_scalar())
return type_a;
/* "* One operand is a scalar, and the other is a vector or matrix.
* In this case, the scalar operation is applied independently to each
* component of the vector or matrix, resulting in the same size
* vector or matrix."
*/
if (type_a->is_scalar()) {
if (!type_b->is_scalar())
return type_b;
} else if (type_b->is_scalar()) {
return type_a;
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
* handled.
*/
assert(!type_a->is_scalar());
assert(!type_b->is_scalar());
/* "* The two operands are vectors of the same size. In this case, the
* operation is done component-wise resulting in the same size
* vector."
*/
if (type_a->is_vector() && type_b->is_vector()) {
if (type_a == type_b) {
return type_a;
} else {
_mesa_glsl_error(loc, state,
"vector size mismatch for arithmetic operator");
return glsl_type::error_type;
}
}
/* All of the combinations of <scalar, scalar>, <vector, scalar>,
* <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
* <vector, vector> have been handled. At least one of the operands must
* be matrix. Further, since there are no integer matrix types, the base
* type of both operands must be float.
*/
assert(type_a->is_matrix() || type_b->is_matrix());
assert(type_a->base_type == GLSL_TYPE_FLOAT ||
type_a->base_type == GLSL_TYPE_DOUBLE);
assert(type_b->base_type == GLSL_TYPE_FLOAT ||
type_b->base_type == GLSL_TYPE_DOUBLE);
/* "* The operator is add (+), subtract (-), or divide (/), and the
* operands are matrices with the same number of rows and the same
* number of columns. In this case, the operation is done component-
* wise resulting in the same size matrix."
* * The operator is multiply (*), where both operands are matrices or
* one operand is a vector and the other a matrix. A right vector
* operand is treated as a column vector and a left vector operand as a
* row vector. In all these cases, it is required that the number of
* columns of the left operand is equal to the number of rows of the
* right operand. Then, the multiply (*) operation does a linear
* algebraic multiply, yielding an object that has the same number of
* rows as the left operand and the same number of columns as the right
* operand. Section 5.10 "Vector and Matrix Operations" explains in
* more detail how vectors and matrices are operated on."
*/
if (! multiply) {
if (type_a == type_b)
return type_a;
} else {
const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
if (type == glsl_type::error_type) {
_mesa_glsl_error(loc, state,
"size mismatch for matrix multiplication");
}
return type;
}
/* "All other cases are illegal."
*/
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type *type,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
/* From GLSL 1.50 spec, page 57:
*
* "The arithmetic unary operators negate (-), post- and pre-increment
* and decrement (-- and ++) operate on integer or floating-point
* values (including vectors and matrices). All unary operators work
* component-wise on their operands. These result with the same type
* they operated on."
*/
if (!type->is_numeric()) {
_mesa_glsl_error(loc, state,
"operands to arithmetic operators must be numeric");
return glsl_type::error_type;
}
return type;
}
/**
* \brief Return the result type of a bit-logic operation.
*
* If the given types to the bit-logic operator are invalid, return
* glsl_type::error_type.
*
* \param type_a Type of LHS of bit-logic op
* \param type_b Type of RHS of bit-logic op
*/
static const struct glsl_type *
bit_logic_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
ast_operators op,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
if (!state->check_bitwise_operations_allowed(loc)) {
return glsl_type::error_type;
}
/* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
*
* "The bitwise operators and (&), exclusive-or (^), and inclusive-or
* (|). The operands must be of type signed or unsigned integers or
* integer vectors."
*/
if (!type_a->is_integer()) {
_mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
if (!type_b->is_integer()) {
_mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "The fundamental types of the operands (signed or unsigned) must
* match,"
*/
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state, "operands of `%s' must have the same "
"base type", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "The operands cannot be vectors of differing size." */
if (type_a->is_vector() &&
type_b->is_vector() &&
type_a->vector_elements != type_b->vector_elements) {
_mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
"different sizes", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "If one operand is a scalar and the other a vector, the scalar is
* applied component-wise to the vector, resulting in the same type as
* the vector. The fundamental types of the operands [...] will be the
* resulting fundamental type."
*/
if (type_a->is_scalar())
return type_b;
else
return type_a;
}
static const struct glsl_type *
modulus_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
if (!state->check_version(130, 300, loc, "operator '%%' is reserved")) {
return glsl_type::error_type;
}
/* From GLSL 1.50 spec, page 56:
* "The operator modulus (%) operates on signed or unsigned integers or
* integer vectors. The operand types must both be signed or both be
* unsigned."
*/
if (!type_a->is_integer()) {
_mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
return glsl_type::error_type;
}
if (!type_b->is_integer()) {
_mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
return glsl_type::error_type;
}
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state,
"operands of %% must have the same base type");
return glsl_type::error_type;
}
/* "The operands cannot be vectors of differing size. If one operand is
* a scalar and the other vector, then the scalar is applied component-
* wise to the vector, resulting in the same type as the vector. If both
* are vectors of the same size, the result is computed component-wise."
*/
if (type_a->is_vector()) {
if (!type_b->is_vector()
|| (type_a->vector_elements == type_b->vector_elements))
return type_a;
} else
return type_b;
/* "The operator modulus (%) is not defined for any other data types
* (non-integer types)."
*/
_mesa_glsl_error(loc, state, "type mismatch");
return glsl_type::error_type;
}
static const struct glsl_type *
relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
const glsl_type *type_a = value_a->type;
const glsl_type *type_b = value_b->type;
/* From GLSL 1.50 spec, page 56:
* "The relational operators greater than (>), less than (<), greater
* than or equal (>=), and less than or equal (<=) operate only on
* scalar integer and scalar floating-point expressions."
*/
if (!type_a->is_numeric()
|| !type_b->is_numeric()
|| !type_a->is_scalar()
|| !type_b->is_scalar()) {
_mesa_glsl_error(loc, state,
"operands to relational operators must be scalar and "
"numeric");
return glsl_type::error_type;
}
/* "Either the operands' types must match, or the conversions from
* Section 4.1.10 "Implicit Conversions" will be applied to the integer
* operand, after which the types must match."
*/
if (!apply_implicit_conversion(type_a, value_b, state)
&& !apply_implicit_conversion(type_b, value_a, state)) {
_mesa_glsl_error(loc, state,
"could not implicitly convert operands to "
"relational operator");
return glsl_type::error_type;
}
type_a = value_a->type;
type_b = value_b->type;
if (type_a->base_type != type_b->base_type) {
_mesa_glsl_error(loc, state, "base type mismatch");
return glsl_type::error_type;
}
/* "The result is scalar Boolean."
*/
return glsl_type::bool_type;
}
/**
* \brief Return the result type of a bit-shift operation.
*
* If the given types to the bit-shift operator are invalid, return
* glsl_type::error_type.
*
* \param type_a Type of LHS of bit-shift op
* \param type_b Type of RHS of bit-shift op
*/
static const struct glsl_type *
shift_result_type(const struct glsl_type *type_a,
const struct glsl_type *type_b,
ast_operators op,
struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
{
if (!state->check_bitwise_operations_allowed(loc)) {
return glsl_type::error_type;
}
/* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
*
* "The shift operators (<<) and (>>). For both operators, the operands
* must be signed or unsigned integers or integer vectors. One operand
* can be signed while the other is unsigned."
*/
if (!type_a->is_integer()) {
_mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
"integer vector", ast_expression::operator_string(op));
return glsl_type::error_type;
}
if (!type_b->is_integer()) {
_mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
"integer vector", ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "If the first operand is a scalar, the second operand has to be
* a scalar as well."
*/
if (type_a->is_scalar() && !type_b->is_scalar()) {
_mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
"second must be scalar as well",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* If both operands are vectors, check that they have same number of
* elements.
*/
if (type_a->is_vector() &&
type_b->is_vector() &&
type_a->vector_elements != type_b->vector_elements) {
_mesa_glsl_error(loc, state, "vector operands to operator %s must "
"have same number of elements",
ast_expression::operator_string(op));
return glsl_type::error_type;
}
/* "In all cases, the resulting type will be the same type as the left
* operand."
*/
return type_a;
}
/**
* Returns the innermost array index expression in an rvalue tree.
* This is the largest indexing level -- if an array of blocks, then
* it is the block index rather than an indexing expression for an
* array-typed member of an array of blocks.
*/
static ir_rvalue *
find_innermost_array_index(ir_rvalue *rv)
{
ir_dereference_array *last = NULL;
while (rv) {
if (rv->as_dereference_array()) {
last = rv->as_dereference_array();
rv = last->array;
} else if (rv->as_dereference_record())
rv = rv->as_dereference_record()->record;
else if (rv->as_swizzle())
rv = rv->as_swizzle()->val;
else
rv = NULL;
}
if (last)
return last->array_index;
return NULL;
}
/**
* Validates that a value can be assigned to a location with a specified type
*
* Validates that \c rhs can be assigned to some location. If the types are
* not an exact match but an automatic conversion is possible, \c rhs will be
* converted.
*
* \return
* \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
* Otherwise the actual RHS to be assigned will be returned. This may be
* \c rhs, or it may be \c rhs after some type conversion.
*
* \note
* In addition to being used for assignments, this function is used to
* type-check return values.
*/
static ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state *state,
YYLTYPE loc, ir_rvalue *lhs,
ir_rvalue *rhs, bool is_initializer)
{
/* If there is already some error in the RHS, just return it. Anything
* else will lead to an avalanche of error message back to the user.
*/
if (rhs->type->is_error())
return rhs;
/* In the Tessellation Control Shader:
* If a per-vertex output variable is used as an l-value, it is an error
* if the expression indicating the vertex number is not the identifier
* `gl_InvocationID`.
*/
if (state->stage == MESA_SHADER_TESS_CTRL) {
ir_variable *var = lhs->variable_referenced();
if (var->data.mode == ir_var_shader_out && !var->data.patch) {
ir_rvalue *index = find_innermost_array_index(lhs);
ir_variable *index_var = index ? index->variable_referenced() : NULL;
if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
_mesa_glsl_error(&loc, state,
"Tessellation control shader outputs can only "
"be indexed by gl_InvocationID");
return NULL;
}
}
}
/* If the types are identical, the assignment can trivially proceed.
*/
if (rhs->type == lhs->type)
return rhs;
/* If the array element types are the same and the LHS is unsized,
* the assignment is okay for initializers embedded in variable
* declarations.
*
* Note: Whole-array assignments are not permitted in GLSL 1.10, but this
* is handled by ir_dereference::is_lvalue.
*/
if (lhs->type->is_unsized_array() && rhs->type->is_array()
&& (lhs->type->fields.array == rhs->type->fields.array)) {
if (is_initializer) {
return rhs;
} else {
_mesa_glsl_error(&loc, state,
"implicitly sized arrays cannot be assigned");
return NULL;
}
}
/* Check for implicit conversion in GLSL 1.20 */
if (apply_implicit_conversion(lhs->type, rhs, state)) {
if (rhs->type == lhs->type)
return rhs;
}
_mesa_glsl_error(&loc, state,
"%s of type %s cannot be assigned to "
"variable of type %s",
is_initializer ? "initializer" : "value",
rhs->type->name, lhs->type->name);
return NULL;
}
static void
mark_whole_array_access(ir_rvalue *access)
{
ir_dereference_variable *deref = access->as_dereference_variable();
if (deref && deref->var) {
deref->var->data.max_array_access = deref->type->length - 1;
}
}
static bool
do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
const char *non_lvalue_description,
ir_rvalue *lhs, ir_rvalue *rhs,
ir_rvalue **out_rvalue, bool needs_rvalue,
bool is_initializer,
YYLTYPE lhs_loc)
{
void *ctx = state;
bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
ir_rvalue *extract_channel = NULL;
/* If the assignment LHS comes back as an ir_binop_vector_extract
* expression, move it to the RHS as an ir_triop_vector_insert.
*/
if (lhs->ir_type == ir_type_expression) {
ir_expression *const lhs_expr = lhs->as_expression();
if (unlikely(lhs_expr->operation == ir_binop_vector_extract)) {
ir_rvalue *new_rhs =
validate_assignment(state, lhs_loc, lhs,
rhs, is_initializer);
if (new_rhs == NULL) {
return lhs;
} else {
/* This converts:
* - LHS: (expression float vector_extract <vec> <channel>)
* - RHS: <scalar>
* into:
* - LHS: <vec>
* - RHS: (expression vec2 vector_insert <vec> <channel> <scalar>)
*
* The LHS type is now a vector instead of a scalar. Since GLSL
* allows assignments to be used as rvalues, we need to re-extract
* the channel from assignment_temp when returning the rvalue.
*/
extract_channel = lhs_expr->operands[1];
rhs = new(ctx) ir_expression(ir_triop_vector_insert,
lhs_expr->operands[0]->type,
lhs_expr->operands[0],
new_rhs,
extract_channel);
lhs = lhs_expr->operands[0]->clone(ctx, NULL);
}
}
}
ir_variable *lhs_var = lhs->variable_referenced();
if (lhs_var)
lhs_var->data.assigned = true;
if (!error_emitted) {
if (non_lvalue_description != NULL) {
_mesa_glsl_error(&lhs_loc, state,
"assignment to %s",
non_lvalue_description);
error_emitted = true;
} else if (lhs_var != NULL && (lhs_var->data.read_only ||
(lhs_var->data.mode == ir_var_shader_storage &&
lhs_var->data.image_read_only))) {
/* We can have image_read_only set on both images and buffer variables,
* but in the former there is a distinction between assignments to
* the variable itself (read_only) and to the memory they point to
* (image_read_only), while in the case of buffer variables there is
* no such distinction, that is why this check here is limited to
* buffer variables alone.
*/
_mesa_glsl_error(&lhs_loc, state,
"assignment to read-only variable '%s'",
lhs_var->name);
error_emitted = true;
} else if (lhs->type->is_array() &&
!state->check_version(120, 300, &lhs_loc,
"whole array assignment forbidden")) {
/* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
*
* "Other binary or unary expressions, non-dereferenced
* arrays, function names, swizzles with repeated fields,
* and constants cannot be l-values."
*
* The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
*/
error_emitted = true;
} else if (!lhs->is_lvalue()) {
_mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
error_emitted = true;
}
}
ir_rvalue *new_rhs =
validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
if (new_rhs != NULL) {
rhs = new_rhs;
/* If the LHS array was not declared with a size, it takes it size from
* the RHS. If the LHS is an l-value and a whole array, it must be a
* dereference of a variable. Any other case would require that the LHS
* is either not an l-value or not a whole array.
*/
if (lhs->type->is_unsized_array()) {
ir_dereference *const d = lhs->as_dereference();
assert(d != NULL);
ir_variable *const var = d->variable_referenced();
assert(var != NULL);
if (var->data.max_array_access >= unsigned(rhs->type->array_size())) {
/* FINISHME: This should actually log the location of the RHS. */
_mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
"previous access",
var->data.max_array_access);
}
var->type = glsl_type::get_array_instance(lhs->type->fields.array,
rhs->type->array_size());
d->type = var->type;
}
if (lhs->type->is_array()) {
mark_whole_array_access(rhs);
mark_whole_array_access(lhs);
}
}
/* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
* but not post_inc) need the converted assigned value as an rvalue
* to handle things like:
*
* i = j += 1;
*/
if (needs_rvalue) {
ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
ir_var_temporary);
instructions->push_tail(var);
instructions->push_tail(assign(var, rhs));
if (!error_emitted) {
ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
}
ir_rvalue *rvalue = new(ctx) ir_dereference_variable(var);
if (extract_channel) {
rvalue = new(ctx) ir_expression(ir_binop_vector_extract,
rvalue,
extract_channel->clone(ctx, NULL));
}
*out_rvalue = rvalue;
} else {
if (!error_emitted)
instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
*out_rvalue = NULL;
}
return error_emitted;
}
static ir_rvalue *
get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
{
void *ctx = ralloc_parent(lvalue);
ir_variable *var;
var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
ir_var_temporary);
instructions->push_tail(var);
instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
lvalue));
return new(ctx) ir_dereference_variable(var);
}
ir_rvalue *
ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
{
(void) instructions;
(void) state;
return NULL;
}
void
ast_function_expression::hir_no_rvalue(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
(void)hir(instructions, state);
}
void
ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
(void)hir(instructions, state);
}
static ir_rvalue *
do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
{
int join_op;
ir_rvalue *cmp = NULL;
if (operation == ir_binop_all_equal)
join_op = ir_binop_logic_and;
else
join_op = ir_binop_logic_or;
switch (op0->type->base_type) {
case GLSL_TYPE_FLOAT:
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_BOOL:
case GLSL_TYPE_DOUBLE:
return new(mem_ctx) ir_expression(operation, op0, op1);
case GLSL_TYPE_ARRAY: {
for (unsigned int i = 0; i < op0->type->length; i++) {
ir_rvalue *e0, *e1, *result;
e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
new(mem_ctx) ir_constant(i));
e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
new(mem_ctx) ir_constant(i));
result = do_comparison(mem_ctx, operation, e0, e1);
if (cmp) {
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
} else {
cmp = result;
}
}
mark_whole_array_access(op0);
mark_whole_array_access(op1);
break;
}
case GLSL_TYPE_STRUCT: {
for (unsigned int i = 0; i < op0->type->length; i++) {
ir_rvalue *e0, *e1, *result;
const char *field_name = op0->type->fields.structure[i].name;
e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
field_name);
e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
field_name);
result = do_comparison(mem_ctx, operation, e0, e1);
if (cmp) {
cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
} else {
cmp = result;
}
}
break;
}
case GLSL_TYPE_ERROR:
case GLSL_TYPE_VOID:
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_INTERFACE:
case GLSL_TYPE_ATOMIC_UINT:
case GLSL_TYPE_SUBROUTINE:
/* I assume a comparison of a struct containing a sampler just
* ignores the sampler present in the type.
*/
break;
}
if (cmp == NULL)
cmp = new(mem_ctx) ir_constant(true);
return cmp;
}
/* For logical operations, we want to ensure that the operands are
* scalar booleans. If it isn't, emit an error and return a constant
* boolean to avoid triggering cascading error messages.
*/
ir_rvalue *
get_scalar_boolean_operand(exec_list *instructions,
struct _mesa_glsl_parse_state *state,
ast_expression *parent_expr,
int operand,
const char *operand_name,
bool *error_emitted)
{
ast_expression *expr = parent_expr->subexpressions[operand];
void *ctx = state;
ir_rvalue *val = expr->hir(instructions, state);
if (val->type->is_boolean() && val->type->is_scalar())
return val;
if (!*error_emitted) {
YYLTYPE loc = expr->get_location();
_mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
operand_name,
parent_expr->operator_string(parent_expr->oper));
*error_emitted = true;
}
return new(ctx) ir_constant(true);
}
/**
* If name refers to a builtin array whose maximum allowed size is less than
* size, report an error and return true. Otherwise return false.
*/
void
check_builtin_array_max_size(const char *name, unsigned size,
YYLTYPE loc, struct _mesa_glsl_parse_state *state)
{
if ((strcmp("gl_TexCoord", name) == 0)
&& (size > state->Const.MaxTextureCoords)) {
/* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
*
* "The size [of gl_TexCoord] can be at most
* gl_MaxTextureCoords."
*/
_mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
"be larger than gl_MaxTextureCoords (%u)",
state->Const.MaxTextureCoords);
} else if (strcmp("gl_ClipDistance", name) == 0
&& size > state->Const.MaxClipPlanes) {
/* From section 7.1 (Vertex Shader Special Variables) of the
* GLSL 1.30 spec:
*
* "The gl_ClipDistance array is predeclared as unsized and
* must be sized by the shader either redeclaring it with a
* size or indexing it only with integral constant
* expressions. ... The size can be at most
* gl_MaxClipDistances."
*/
_mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
"be larger than gl_MaxClipDistances (%u)",
state->Const.MaxClipPlanes);
}
}
/**
* Create the constant 1, of a which is appropriate for incrementing and
* decrementing values of the given GLSL type. For example, if type is vec4,
* this creates a constant value of 1.0 having type float.
*
* If the given type is invalid for increment and decrement operators, return
* a floating point 1--the error will be detected later.
*/
static ir_rvalue *
constant_one_for_inc_dec(void *ctx, const glsl_type *type)
{
switch (type->base_type) {
case GLSL_TYPE_UINT:
return new(ctx) ir_constant((unsigned) 1);
case GLSL_TYPE_INT:
return new(ctx) ir_constant(1);
default:
case GLSL_TYPE_FLOAT:
return new(ctx) ir_constant(1.0f);
}
}
ir_rvalue *
ast_expression::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
return do_hir(instructions, state, true);
}
void
ast_expression::hir_no_rvalue(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
do_hir(instructions, state, false);
}
ir_rvalue *
ast_expression::do_hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state,
bool needs_rvalue)
{
void *ctx = state;
static const int operations[AST_NUM_OPERATORS] = {
-1, /* ast_assign doesn't convert to ir_expression. */
-1, /* ast_plus doesn't convert to ir_expression. */
ir_unop_neg,
ir_binop_add,
ir_binop_sub,
ir_binop_mul,
ir_binop_div,
ir_binop_mod,
ir_binop_lshift,
ir_binop_rshift,
ir_binop_less,
ir_binop_greater,
ir_binop_lequal,
ir_binop_gequal,
ir_binop_all_equal,
ir_binop_any_nequal,
ir_binop_bit_and,
ir_binop_bit_xor,
ir_binop_bit_or,
ir_unop_bit_not,
ir_binop_logic_and,
ir_binop_logic_xor,
ir_binop_logic_or,
ir_unop_logic_not,
/* Note: The following block of expression types actually convert
* to multiple IR instructions.
*/
ir_binop_mul, /* ast_mul_assign */
ir_binop_div, /* ast_div_assign */
ir_binop_mod, /* ast_mod_assign */
ir_binop_add, /* ast_add_assign */
ir_binop_sub, /* ast_sub_assign */
ir_binop_lshift, /* ast_ls_assign */
ir_binop_rshift, /* ast_rs_assign */
ir_binop_bit_and, /* ast_and_assign */
ir_binop_bit_xor, /* ast_xor_assign */
ir_binop_bit_or, /* ast_or_assign */
-1, /* ast_conditional doesn't convert to ir_expression. */
ir_binop_add, /* ast_pre_inc. */
ir_binop_sub, /* ast_pre_dec. */
ir_binop_add, /* ast_post_inc. */
ir_binop_sub, /* ast_post_dec. */
-1, /* ast_field_selection doesn't conv to ir_expression. */
-1, /* ast_array_index doesn't convert to ir_expression. */
-1, /* ast_function_call doesn't conv to ir_expression. */
-1, /* ast_identifier doesn't convert to ir_expression. */
-1, /* ast_int_constant doesn't convert to ir_expression. */
-1, /* ast_uint_constant doesn't conv to ir_expression. */
-1, /* ast_float_constant doesn't conv to ir_expression. */
-1, /* ast_bool_constant doesn't conv to ir_expression. */
-1, /* ast_sequence doesn't convert to ir_expression. */
};
ir_rvalue *result = NULL;
ir_rvalue *op[3];
const struct glsl_type *type; /* a temporary variable for switch cases */
bool error_emitted = false;
YYLTYPE loc;
loc = this->get_location();
switch (this->oper) {
case ast_aggregate:
assert(!"ast_aggregate: Should never get here.");
break;
case ast_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0], op[1], &result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_plus:
op[0] = this->subexpressions[0]->hir(instructions, state);
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
error_emitted = type->is_error();
result = op[0];
break;
case ast_neg:
op[0] = this->subexpressions[0]->hir(instructions, state);
type = unary_arithmetic_result_type(op[0]->type, state, & loc);
error_emitted = type->is_error();
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], NULL);
break;
case ast_add:
case ast_sub:
case ast_mul:
case ast_div:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0], op[1],
(this->oper == ast_mul),
state, & loc);
error_emitted = type->is_error();
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
break;
case ast_mod:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
assert(operations[this->oper] == ir_binop_mod);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = type->is_error();
break;
case ast_lshift:
case ast_rshift:
if (!state->check_bitwise_operations_allowed(&loc)) {
error_emitted = true;
}
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
&loc);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
break;
case ast_less:
case ast_greater:
case ast_lequal:
case ast_gequal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = relational_result_type(op[0], op[1], state, & loc);
/* The relational operators must either generate an error or result
* in a scalar boolean. See page 57 of the GLSL 1.50 spec.
*/
assert(type->is_error()
|| ((type->base_type == GLSL_TYPE_BOOL)
&& type->is_scalar()));
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = type->is_error();
break;
case ast_nequal:
case ast_equal:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
/* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
*
* "The equality operators equal (==), and not equal (!=)
* operate on all types. They result in a scalar Boolean. If
* the operand types do not match, then there must be a
* conversion from Section 4.1.10 "Implicit Conversions"
* applied to one operand that can make them match, in which
* case this conversion is done."
*/
if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
_mesa_glsl_error(& loc, state, "`%s': wrong operand types: "
"no operation `%1$s' exists that takes a left-hand "
"operand of type 'void' or a right operand of type "
"'void'", (this->oper == ast_equal) ? "==" : "!=");
error_emitted = true;
} else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
&& !apply_implicit_conversion(op[1]->type, op[0], state))
|| (op[0]->type != op[1]->type)) {
_mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
"type", (this->oper == ast_equal) ? "==" : "!=");
error_emitted = true;
} else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
!state->check_version(120, 300, &loc,
"array comparisons forbidden")) {
error_emitted = true;
} else if ((op[0]->type->contains_opaque() ||
op[1]->type->contains_opaque())) {
_mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
error_emitted = true;
}
if (error_emitted) {
result = new(ctx) ir_constant(false);
} else {
result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
assert(result->type == glsl_type::bool_type);
}
break;
case ast_bit_and:
case ast_bit_xor:
case ast_bit_or:
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
state, &loc);
result = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
break;
case ast_bit_not:
op[0] = this->subexpressions[0]->hir(instructions, state);
if (!state->check_bitwise_operations_allowed(&loc)) {
error_emitted = true;
}
if (!op[0]->type->is_integer()) {
_mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
error_emitted = true;
}
type = error_emitted ? glsl_type::error_type : op[0]->type;
result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
break;
case ast_logic_and: {
exec_list rhs_instructions;
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
"LHS", &error_emitted);
op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
"RHS", &error_emitted);
if (rhs_instructions.is_empty()) {
result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
type = result->type;
} else {
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
"and_tmp",
ir_var_temporary);
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
stmt->then_instructions.append_list(&rhs_instructions);
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, op[1]);
stmt->then_instructions.push_tail(then_assign);
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
type = tmp->type;
}
break;
}
case ast_logic_or: {
exec_list rhs_instructions;
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
"LHS", &error_emitted);
op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
"RHS", &error_emitted);
if (rhs_instructions.is_empty()) {
result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
type = result->type;
} else {
ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
"or_tmp",
ir_var_temporary);
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
stmt->then_instructions.push_tail(then_assign);
stmt->else_instructions.append_list(&rhs_instructions);
ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, op[1]);
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
type = tmp->type;
}
break;
}
case ast_logic_xor:
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
*
* "The logical binary operators and (&&), or ( | | ), and
* exclusive or (^^). They operate only on two Boolean
* expressions and result in a Boolean expression."
*/
op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
&error_emitted);
op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
&error_emitted);
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], op[1]);
break;
case ast_logic_not:
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
"operand", &error_emitted);
result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
op[0], NULL);
break;
case ast_mul_assign:
case ast_div_assign:
case ast_add_assign:
case ast_sub_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = arithmetic_result_type(op[0], op[1],
(this->oper == ast_mul_assign),
state, & loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
/* GLSL 1.10 does not allow array assignment. However, we don't have to
* explicitly test for this because none of the binary expression
* operators allow array operands either.
*/
break;
}
case ast_mod_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
assert(operations[this->oper] == ir_binop_mod);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_ls_assign:
case ast_rs_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
&loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
type, op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_and_assign:
case ast_xor_assign:
case ast_or_assign: {
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = this->subexpressions[1]->hir(instructions, state);
type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
state, &loc);
ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
type, op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_conditional: {
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
*
* "The ternary selection operator (?:). It operates on three
* expressions (exp1 ? exp2 : exp3). This operator evaluates the
* first expression, which must result in a scalar Boolean."
*/
op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
"condition", &error_emitted);
/* The :? operator is implemented by generating an anonymous temporary
* followed by an if-statement. The last instruction in each branch of
* the if-statement assigns a value to the anonymous temporary. This
* temporary is the r-value of the expression.
*/
exec_list then_instructions;
exec_list else_instructions;
op[1] = this->subexpressions[1]->hir(&then_instructions, state);
op[2] = this->subexpressions[2]->hir(&else_instructions, state);
/* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
*
* "The second and third expressions can be any type, as
* long their types match, or there is a conversion in
* Section 4.1.10 "Implicit Conversions" that can be applied
* to one of the expressions to make their types match. This
* resulting matching type is the type of the entire
* expression."
*/
if ((!apply_implicit_conversion(op[1]->type, op[2], state)
&& !apply_implicit_conversion(op[2]->type, op[1], state))
|| (op[1]->type != op[2]->type)) {
YYLTYPE loc = this->subexpressions[1]->get_location();
_mesa_glsl_error(& loc, state, "second and third operands of ?: "
"operator must have matching types");
error_emitted = true;
type = glsl_type::error_type;
} else {
type = op[1]->type;
}
/* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
*
* "The second and third expressions must be the same type, but can
* be of any type other than an array."
*/
if (type->is_array() &&
!state->check_version(120, 300, &loc,
"second and third operands of ?: operator "
"cannot be arrays")) {
error_emitted = true;
}
/* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
*
* "Except for array indexing, structure member selection, and
* parentheses, opaque variables are not allowed to be operands in
* expressions; such use results in a compile-time error."
*/
if (type->contains_opaque()) {
_mesa_glsl_error(&loc, state, "opaque variables cannot be operands "
"of the ?: operator");
error_emitted = true;
}
ir_constant *cond_val = op[0]->constant_expression_value();
if (then_instructions.is_empty()
&& else_instructions.is_empty()
&& cond_val != NULL) {
result = cond_val->value.b[0] ? op[1] : op[2];
} else {
/* The copy to conditional_tmp reads the whole array. */
if (type->is_array()) {
mark_whole_array_access(op[1]);
mark_whole_array_access(op[2]);
}
ir_variable *const tmp =
new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
instructions->push_tail(tmp);
ir_if *const stmt = new(ctx) ir_if(op[0]);
instructions->push_tail(stmt);
then_instructions.move_nodes_to(& stmt->then_instructions);
ir_dereference *const then_deref =
new(ctx) ir_dereference_variable(tmp);
ir_assignment *const then_assign =
new(ctx) ir_assignment(then_deref, op[1]);
stmt->then_instructions.push_tail(then_assign);
else_instructions.move_nodes_to(& stmt->else_instructions);
ir_dereference *const else_deref =
new(ctx) ir_dereference_variable(tmp);
ir_assignment *const else_assign =
new(ctx) ir_assignment(else_deref, op[2]);
stmt->else_instructions.push_tail(else_assign);
result = new(ctx) ir_dereference_variable(tmp);
}
break;
}
case ast_pre_inc:
case ast_pre_dec: {
this->non_lvalue_description = (this->oper == ast_pre_inc)
? "pre-increment operation" : "pre-decrement operation";
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&result, needs_rvalue, false,
this->subexpressions[0]->get_location());
break;
}
case ast_post_inc:
case ast_post_dec: {
this->non_lvalue_description = (this->oper == ast_post_inc)
? "post-increment operation" : "post-decrement operation";
op[0] = this->subexpressions[0]->hir(instructions, state);
op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
type = arithmetic_result_type(op[0], op[1], false, state, & loc);
ir_rvalue *temp_rhs;
temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
op[0], op[1]);
/* Get a temporary of a copy of the lvalue before it's modified.
* This may get thrown away later.
*/
result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
ir_rvalue *junk_rvalue;
error_emitted =
do_assignment(instructions, state,
this->subexpressions[0]->non_lvalue_description,
op[0]->clone(ctx, NULL), temp_rhs,
&junk_rvalue, false, false,
this->subexpressions[0]->get_location());
break;
}
case ast_field_selection:
result = _mesa_ast_field_selection_to_hir(this, instructions, state);
break;
case ast_array_index: {
YYLTYPE index_loc = subexpressions[1]->get_location();
op[0] = subexpressions[0]->hir(instructions, state);
op[1] = subexpressions[1]->hir(instructions, state);
result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
loc, index_loc);
if (result->type->is_error())
error_emitted = true;
break;
}
case ast_function_call:
/* Should *NEVER* get here. ast_function_call should always be handled
* by ast_function_expression::hir.
*/
assert(0);
break;
case ast_identifier: {
/* ast_identifier can appear several places in a full abstract syntax
* tree. This particular use must be at location specified in the grammar
* as 'variable_identifier'.
*/
ir_variable *var =
state->symbols->get_variable(this->primary_expression.identifier);
if (var != NULL) {
var->data.used = true;
result = new(ctx) ir_dereference_variable(var);
} else {
_mesa_glsl_error(& loc, state, "`%s' undeclared",
this->primary_expression.identifier);
result = ir_rvalue::error_value(ctx);
error_emitted = true;
}
break;
}
case ast_int_constant:
result = new(ctx) ir_constant(this->primary_expression.int_constant);
break;
case ast_uint_constant:
result = new(ctx) ir_constant(this->primary_expression.uint_constant);
break;
case ast_float_constant:
result = new(ctx) ir_constant(this->primary_expression.float_constant);
break;
case ast_bool_constant:
result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
break;
case ast_double_constant:
result = new(ctx) ir_constant(this->primary_expression.double_constant);
break;
case ast_sequence: {
/* It should not be possible to generate a sequence in the AST without
* any expressions in it.
*/
assert(!this->expressions.is_empty());
/* The r-value of a sequence is the last expression in the sequence. If
* the other expressions in the sequence do not have side-effects (and
* therefore add instructions to the instruction list), they get dropped
* on the floor.
*/
exec_node *previous_tail_pred = NULL;
YYLTYPE previous_operand_loc = loc;
foreach_list_typed (ast_node, ast, link, &this->expressions) {
/* If one of the operands of comma operator does not generate any
* code, we want to emit a warning. At each pass through the loop
* previous_tail_pred will point to the last instruction in the
* stream *before* processing the previous operand. Naturally,
* instructions->tail_pred will point to the last instruction in the
* stream *after* processing the previous operand. If the two
* pointers match, then the previous operand had no effect.
*
* The warning behavior here differs slightly from GCC. GCC will
* only emit a warning if none of the left-hand operands have an
* effect. However, it will emit a warning for each. I believe that
* there are some cases in C (especially with GCC extensions) where
* it is useful to have an intermediate step in a sequence have no
* effect, but I don't think these cases exist in GLSL. Either way,
* it would be a giant hassle to replicate that behavior.
*/
if (previous_tail_pred == instructions->tail_pred) {
_mesa_glsl_warning(&previous_operand_loc, state,
"left-hand operand of comma expression has "
"no effect");
}
/* tail_pred is directly accessed instead of using the get_tail()
* method for performance reasons. get_tail() has extra code to
* return NULL when the list is empty. We don't care about that
* here, so using tail_pred directly is fine.
*/
previous_tail_pred = instructions->tail_pred;
previous_operand_loc = ast->get_location();
result = ast->hir(instructions, state);
}
/* Any errors should have already been emitted in the loop above.
*/
error_emitted = true;
break;
}
}
type = NULL; /* use result->type, not type. */
assert(result != NULL || !needs_rvalue);
if (result && result->type->is_error() && !error_emitted)
_mesa_glsl_error(& loc, state, "type mismatch");
return result;
}
ir_rvalue *
ast_expression_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
/* It is possible to have expression statements that don't have an
* expression. This is the solitary semicolon:
*
* for (i = 0; i < 5; i++)
* ;
*
* In this case the expression will be NULL. Test for NULL and don't do
* anything in that case.
*/
if (expression != NULL)
expression->hir_no_rvalue(instructions, state);
/* Statements do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_compound_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (new_scope)
state->symbols->push_scope();
foreach_list_typed (ast_node, ast, link, &this->statements)
ast->hir(instructions, state);
if (new_scope)
state->symbols->pop_scope();
/* Compound statements do not have r-values.
*/
return NULL;
}
/**
* Evaluate the given exec_node (which should be an ast_node representing
* a single array dimension) and return its integer value.
*/
static unsigned
process_array_size(exec_node *node,
struct _mesa_glsl_parse_state *state)
{
exec_list dummy_instructions;
ast_node *array_size = exec_node_data(ast_node, node, link);
ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
YYLTYPE loc = array_size->get_location();
if (ir == NULL) {
_mesa_glsl_error(& loc, state,
"array size could not be resolved");
return 0;
}
if (!ir->type->is_integer()) {
_mesa_glsl_error(& loc, state,
"array size must be integer type");
return 0;
}
if (!ir->type->is_scalar()) {
_mesa_glsl_error(& loc, state,
"array size must be scalar type");
return 0;
}
ir_constant *const size = ir->constant_expression_value();
if (size == NULL) {
_mesa_glsl_error(& loc, state, "array size must be a "
"constant valued expression");
return 0;
}
if (size->value.i[0] <= 0) {
_mesa_glsl_error(& loc, state, "array size must be > 0");
return 0;
}
assert(size->type == ir->type);
/* If the array size is const (and we've verified that
* it is) then no instructions should have been emitted
* when we converted it to HIR. If they were emitted,
* then either the array size isn't const after all, or
* we are emitting unnecessary instructions.
*/
assert(dummy_instructions.is_empty());
return size->value.u[0];
}
static const glsl_type *
process_array_type(YYLTYPE *loc, const glsl_type *base,
ast_array_specifier *array_specifier,
struct _mesa_glsl_parse_state *state)
{
const glsl_type *array_type = base;
if (array_specifier != NULL) {
if (base->is_array()) {
/* From page 19 (page 25) of the GLSL 1.20 spec:
*
* "Only one-dimensional arrays may be declared."
*/
if (!state->ARB_arrays_of_arrays_enable) {
_mesa_glsl_error(loc, state,
"invalid array of `%s'"
"GL_ARB_arrays_of_arrays "
"required for defining arrays of arrays",
base->name);
return glsl_type::error_type;
}
if (base->length == 0) {
_mesa_glsl_error(loc, state,
"only the outermost array dimension can "
"be unsized",
base->name);
return glsl_type::error_type;
}
}
for (exec_node *node = array_specifier->array_dimensions.tail_pred;
!node->is_head_sentinel(); node = node->prev) {
unsigned array_size = process_array_size(node, state);
array_type = glsl_type::get_array_instance(array_type, array_size);
}
if (array_specifier->is_unsized_array)
array_type = glsl_type::get_array_instance(array_type, 0);
}
return array_type;
}
const glsl_type *
ast_type_specifier::glsl_type(const char **name,
struct _mesa_glsl_parse_state *state) const
{
const struct glsl_type *type;
type = state->symbols->get_type(this->type_name);
*name = this->type_name;
YYLTYPE loc = this->get_location();
type = process_array_type(&loc, type, this->array_specifier, state);
return type;
}
const glsl_type *
ast_fully_specified_type::glsl_type(const char **name,
struct _mesa_glsl_parse_state *state) const
{
const struct glsl_type *type = this->specifier->glsl_type(name, state);
if (type == NULL)
return NULL;
if (type->base_type == GLSL_TYPE_FLOAT
&& state->es_shader
&& state->stage == MESA_SHADER_FRAGMENT
&& this->qualifier.precision == ast_precision_none
&& state->symbols->get_variable("#default precision") == NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"no precision specified this scope for type `%s'",
type->name);
}
return type;
}
/**
* Determine whether a toplevel variable declaration declares a varying. This
* function operates by examining the variable's mode and the shader target,
* so it correctly identifies linkage variables regardless of whether they are
* declared using the deprecated "varying" syntax or the new "in/out" syntax.
*
* Passing a non-toplevel variable declaration (e.g. a function parameter) to
* this function will produce undefined results.
*/
static bool
is_varying_var(ir_variable *var, gl_shader_stage target)
{
switch (target) {
case MESA_SHADER_VERTEX:
return var->data.mode == ir_var_shader_out;
case MESA_SHADER_FRAGMENT:
return var->data.mode == ir_var_shader_in;
default:
return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
}
}
/**
* Matrix layout qualifiers are only allowed on certain types
*/
static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
YYLTYPE *loc,
const glsl_type *type,
ir_variable *var)
{
if (var && !var->is_in_buffer_block()) {
/* Layout qualifiers may only apply to interface blocks and fields in
* them.
*/
_mesa_glsl_error(loc, state,
"uniform block layout qualifiers row_major and "
"column_major may not be applied to variables "
"outside of uniform blocks");
} else if (!type->is_matrix()) {
/* The OpenGL ES 3.0 conformance tests did not originally allow
* matrix layout qualifiers on non-matrices. However, the OpenGL
* 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
* amended to specifically allow these layouts on all types. Emit
* a warning so that people know their code may not be portable.
*/
_mesa_glsl_warning(loc, state,
"uniform block layout qualifiers row_major and "
"column_major applied to non-matrix types may "
"be rejected by older compilers");
} else if (type->is_record()) {
/* We allow 'layout(row_major)' on structure types because it's the only
* way to get row-major layouts on matrices contained in structures.
*/
_mesa_glsl_warning(loc, state,
"uniform block layout qualifiers row_major and "
"column_major applied to structure types is not "
"strictly conformant and may be rejected by other "
"compilers");
}
}
static bool
validate_binding_qualifier(struct _mesa_glsl_parse_state *state,
YYLTYPE *loc,
const glsl_type *type,
const ast_type_qualifier *qual)
{
if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
_mesa_glsl_error(loc, state,
"the \"binding\" qualifier only applies to uniforms and "
"shader storage buffer objects");
return false;
}
if (qual->binding < 0) {
_mesa_glsl_error(loc, state, "binding values must be >= 0");
return false;
}
const struct gl_context *const ctx = state->ctx;
unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
unsigned max_index = qual->binding + elements - 1;
const glsl_type *base_type = type->without_array();
if (base_type->is_interface()) {
/* UBOs. From page 60 of the GLSL 4.20 specification:
* "If the binding point for any uniform block instance is less than zero,
* or greater than or equal to the implementation-dependent maximum
* number of uniform buffer bindings, a compilation error will occur.
* When the binding identifier is used with a uniform block instanced as
* an array of size N, all elements of the array from binding through
* binding + N – 1 must be within this range."
*
* The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
*/
if (qual->flags.q.uniform &&
max_index >= ctx->Const.MaxUniformBufferBindings) {
_mesa_glsl_error(loc, state, "layout(binding = %d) for %d UBOs exceeds "
"the maximum number of UBO binding points (%d)",
qual->binding, elements,
ctx->Const.MaxUniformBufferBindings);
return false;
}
/* SSBOs. From page 67 of the GLSL 4.30 specification:
* "If the binding point for any uniform or shader storage block instance
* is less than zero, or greater than or equal to the
* implementation-dependent maximum number of uniform buffer bindings, a
* compile-time error will occur. When the binding identifier is used
* with a uniform or shader storage block instanced as an array of size
* N, all elements of the array from binding through binding + N – 1 must
* be within this range."
*/
if (qual->flags.q.buffer &&
max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
_mesa_glsl_error(loc, state, "layout(binding = %d) for %d SSBOs exceeds "
"the maximum number of SSBO binding points (%d)",
qual->binding, elements,
ctx->Const.MaxShaderStorageBufferBindings);
return false;
}
} else if (base_type->is_sampler()) {
/* Samplers. From page 63 of the GLSL 4.20 specification:
* "If the binding is less than zero, or greater than or equal to the
* implementation-dependent maximum supported number of units, a
* compilation error will occur. When the binding identifier is used
* with an array of size N, all elements of the array from binding
* through binding + N - 1 must be within this range."
*/
unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
if (max_index >= limit) {
_mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
"exceeds the maximum number of texture image units "
"(%d)", qual->binding, elements, limit);
return false;
}
} else if (base_type->contains_atomic()) {
assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
if (unsigned(qual->binding) >= ctx->Const.MaxAtomicBufferBindings) {
_mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
" maximum number of atomic counter buffer bindings"
"(%d)", qual->binding,
ctx->Const.MaxAtomicBufferBindings);
return false;
}
} else if (state->is_version(420, 310) && base_type->is_image()) {
assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
if (max_index >= ctx->Const.MaxImageUnits) {
_mesa_glsl_error(loc, state, "Image binding %d exceeds the "
" maximum number of image units (%d)", max_index,
ctx->Const.MaxImageUnits);
return false;
}
} else {
_mesa_glsl_error(loc, state,
"the \"binding\" qualifier only applies to uniform "
"blocks, opaque variables, or arrays thereof");
return false;
}
return true;
}
static glsl_interp_qualifier
interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
ir_variable_mode mode,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc)
{
glsl_interp_qualifier interpolation;
if (qual->flags.q.flat)
interpolation = INTERP_QUALIFIER_FLAT;
else if (qual->flags.q.noperspective)
interpolation = INTERP_QUALIFIER_NOPERSPECTIVE;
else if (qual->flags.q.smooth)
interpolation = INTERP_QUALIFIER_SMOOTH;
else
interpolation = INTERP_QUALIFIER_NONE;
if (interpolation != INTERP_QUALIFIER_NONE) {
if (mode != ir_var_shader_in && mode != ir_var_shader_out) {
_mesa_glsl_error(loc, state,
"interpolation qualifier `%s' can only be applied to "
"shader inputs or outputs.",
interpolation_string(interpolation));
}
if ((state->stage == MESA_SHADER_VERTEX && mode == ir_var_shader_in) ||
(state->stage == MESA_SHADER_FRAGMENT && mode == ir_var_shader_out)) {
_mesa_glsl_error(loc, state,
"interpolation qualifier `%s' cannot be applied to "
"vertex shader inputs or fragment shader outputs",
interpolation_string(interpolation));
}
}
return interpolation;
}
static void
validate_explicit_location(const struct ast_type_qualifier *qual,
ir_variable *var,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc)
{
bool fail = false;
/* Checks for GL_ARB_explicit_uniform_location. */
if (qual->flags.q.uniform) {
if (!state->check_explicit_uniform_location_allowed(loc, var))
return;
const struct gl_context *const ctx = state->ctx;
unsigned max_loc = qual->location + var->type->uniform_locations() - 1;
/* ARB_explicit_uniform_location specification states:
*
* "The explicitly defined locations and the generated locations
* must be in the range of 0 to MAX_UNIFORM_LOCATIONS minus one."
*
* "Valid locations for default-block uniform variable locations
* are in the range of 0 to the implementation-defined maximum
* number of uniform locations."
*/
if (qual->location < 0) {
_mesa_glsl_error(loc, state,
"explicit location < 0 for uniform %s", var->name);
return;
}
if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
_mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
ctx->Const.MaxUserAssignableUniformLocations);
return;
}
var->data.explicit_location = true;
var->data.location = qual->location;
return;
}
/* Between GL_ARB_explicit_attrib_location an
* GL_ARB_separate_shader_objects, the inputs and outputs of any shader
* stage can be assigned explicit locations. The checking here associates
* the correct extension with the correct stage's input / output:
*
* input output
* ----- ------
* vertex explicit_loc sso
* tess control sso sso
* tess eval sso sso
* geometry sso sso
* fragment sso explicit_loc
*/
switch (state->stage) {
case MESA_SHADER_VERTEX:
if (var->data.mode == ir_var_shader_in) {
if (!state->check_explicit_attrib_location_allowed(loc, var))
return;
break;
}
if (var->data.mode == ir_var_shader_out) {
if (!state->check_separate_shader_objects_allowed(loc, var))
return;
break;
}
fail = true;
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
case MESA_SHADER_GEOMETRY:
if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
if (!state->check_separate_shader_objects_allowed(loc, var))
return;
break;
}
fail = true;
break;
case MESA_SHADER_FRAGMENT:
if (var->data.mode == ir_var_shader_in) {
if (!state->check_separate_shader_objects_allowed(loc, var))
return;
break;
}
if (var->data.mode == ir_var_shader_out) {
if (!state->check_explicit_attrib_location_allowed(loc, var))
return;
break;
}
fail = true;
break;
case MESA_SHADER_COMPUTE:
_mesa_glsl_error(loc, state,
"compute shader variables cannot be given "
"explicit locations");
return;
};
if (fail) {
_mesa_glsl_error(loc, state,
"%s cannot be given an explicit location in %s shader",
mode_string(var),
_mesa_shader_stage_to_string(state->stage));
} else {
var->data.explicit_location = true;
/* This bit of silliness is needed because invalid explicit locations
* are supposed to be flagged during linking. Small negative values
* biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
* built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
* The linker needs to be able to differentiate these cases. This
* ensures that negative values stay negative.
*/
if (qual->location >= 0) {
switch (state->stage) {
case MESA_SHADER_VERTEX:
var->data.location = (var->data.mode == ir_var_shader_in)
? (qual->location + VERT_ATTRIB_GENERIC0)
: (qual->location + VARYING_SLOT_VAR0);
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
case MESA_SHADER_GEOMETRY:
if (var->data.patch)
var->data.location = qual->location + VARYING_SLOT_PATCH0;
else
var->data.location = qual->location + VARYING_SLOT_VAR0;
break;
case MESA_SHADER_FRAGMENT:
var->data.location = (var->data.mode == ir_var_shader_out)
? (qual->location + FRAG_RESULT_DATA0)
: (qual->location + VARYING_SLOT_VAR0);
break;
case MESA_SHADER_COMPUTE:
assert(!"Unexpected shader type");
break;
}
} else {
var->data.location = qual->location;
}
if (qual->flags.q.explicit_index) {
/* From the GLSL 4.30 specification, section 4.4.2 (Output
* Layout Qualifiers):
*
* "It is also a compile-time error if a fragment shader
* sets a layout index to less than 0 or greater than 1."
*
* Older specifications don't mandate a behavior; we take
* this as a clarification and always generate the error.
*/
if (qual->index < 0 || qual->index > 1) {
_mesa_glsl_error(loc, state,
"explicit index may only be 0 or 1");
} else {
var->data.explicit_index = true;
var->data.index = qual->index;
}
}
}
}
static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
ir_variable *var,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc)
{
const glsl_type *base_type = var->type->without_array();
if (base_type->is_image()) {
if (var->data.mode != ir_var_uniform &&
var->data.mode != ir_var_function_in) {
_mesa_glsl_error(loc, state, "image variables may only be declared as "
"function parameters or uniform-qualified "
"global variables");
}
var->data.image_read_only |= qual->flags.q.read_only;
var->data.image_write_only |= qual->flags.q.write_only;
var->data.image_coherent |= qual->flags.q.coherent;
var->data.image_volatile |= qual->flags.q._volatile;
var->data.image_restrict |= qual->flags.q.restrict_flag;
var->data.read_only = true;
if (qual->flags.q.explicit_image_format) {
if (var->data.mode == ir_var_function_in) {
_mesa_glsl_error(loc, state, "format qualifiers cannot be "
"used on image function parameters");
}
if (qual->image_base_type != base_type->sampler_type) {
_mesa_glsl_error(loc, state, "format qualifier doesn't match the "
"base data type of the image");
}
var->data.image_format = qual->image_format;
} else {
if (var->data.mode == ir_var_uniform) {
if (state->es_shader) {
_mesa_glsl_error(loc, state, "all image uniforms "
"must have a format layout qualifier");
} else if (!qual->flags.q.write_only) {
_mesa_glsl_error(loc, state, "image uniforms not qualified with "
"`writeonly' must have a format layout "
"qualifier");
}
}
var->data.image_format = GL_NONE;
}
/* From page 70 of the GLSL ES 3.1 specification:
*
* "Except for image variables qualified with the format qualifiers
* r32f, r32i, and r32ui, image variables must specify either memory
* qualifier readonly or the memory qualifier writeonly."
*/
if (state->es_shader &&
var->data.image_format != GL_R32F &&
var->data.image_format != GL_R32I &&
var->data.image_format != GL_R32UI &&
!var->data.image_read_only &&
!var->data.image_write_only) {
_mesa_glsl_error(loc, state, "image variables of format other than "
"r32f, r32i or r32ui must be qualified `readonly' or "
"`writeonly'");
}
} else if (qual->flags.q.read_only ||
qual->flags.q.write_only ||
qual->flags.q.coherent ||
qual->flags.q._volatile ||
qual->flags.q.restrict_flag ||
qual->flags.q.explicit_image_format) {
_mesa_glsl_error(loc, state, "memory qualifiers may only be applied to "
"images");
}
}
static inline const char*
get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
{
if (origin_upper_left && pixel_center_integer)
return "origin_upper_left, pixel_center_integer";
else if (origin_upper_left)
return "origin_upper_left";
else if (pixel_center_integer)
return "pixel_center_integer";
else
return " ";
}
static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
const struct ast_type_qualifier *qual)
{
/* If gl_FragCoord was previously declared, and the qualifiers were
* different in any way, return true.
*/
if (state->fs_redeclares_gl_fragcoord) {
return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
|| state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
}
return false;
}
static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
ir_variable *var,
struct _mesa_glsl_parse_state *state,
YYLTYPE *loc,
bool is_parameter)
{
STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
if (qual->flags.q.invariant) {
if (var->data.used) {
_mesa_glsl_error(loc, state,
"variable `%s' may not be redeclared "
"`invariant' after being used",
var->name);
} else {
var->data.invariant = 1;
}
}
if (qual->flags.q.precise) {
if (var->data.used) {
_mesa_glsl_error(loc, state,
"variable `%s' may not be redeclared "
"`precise' after being used",
var->name);
} else {
var->data.precise = 1;
}
}
if (qual->flags.q.subroutine && !qual->flags.q.uniform) {
_mesa_glsl_error(loc, state,
"`subroutine' may only be applied to uniforms, "
"subroutine type declarations, or function definitions");
}
if (qual->flags.q.constant || qual->flags.q.attribute
|| qual->flags.q.uniform
|| (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
var->data.read_only = 1;
if (qual->flags.q.centroid)
var->data.centroid = 1;
if (qual->flags.q.sample)
var->data.sample = 1;
if (state->stage == MESA_SHADER_GEOMETRY &&
qual->flags.q.out && qual->flags.q.stream) {
var->data.stream = qual->stream;
}
if (qual->flags.q.patch)
var->data.patch = 1;
if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
var->type = glsl_type::error_type;
_mesa_glsl_error(loc, state,
"`attribute' variables may not be declared in the "
"%s shader",
_mesa_shader_stage_to_string(state->stage));
}
/* Disallow layout qualifiers which may only appear on layout declarations. */
if (qual->flags.q.prim_type) {
_mesa_glsl_error(loc, state,
"Primitive type may only be specified on GS input or output "
"layout declaration, not on variables.");
}
/* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
*
* "However, the const qualifier cannot be used with out or inout."
*
* The same section of the GLSL 4.40 spec further clarifies this saying:
*
* "The const qualifier cannot be used with out or inout, or a
* compile-time error results."
*/
if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
_mesa_glsl_error(loc, state,
"`const' may not be applied to `out' or `inout' "
"function parameters");
}
/* If there is no qualifier that changes the mode of the variable, leave
* the setting alone.
*/
assert(var->data.mode != ir_var_temporary);
if (qual->flags.q.in && qual->flags.q.out)
var->data.mode = ir_var_function_inout;
else if (qual->flags.q.in)
var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
else if (qual->flags.q.attribute
|| (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
var->data.mode = ir_var_shader_in;
else if (qual->flags.q.out)
var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
var->data.mode = ir_var_shader_out;
else if (qual->flags.q.uniform)
var->data.mode = ir_var_uniform;
else if (qual->flags.q.buffer)
var->data.mode = ir_var_shader_storage;
if (!is_parameter && is_varying_var(var, state->stage)) {
/* User-defined ins/outs are not permitted in compute shaders. */
if (state->stage == MESA_SHADER_COMPUTE) {
_mesa_glsl_error(loc, state,
"user-defined input and output variables are not "
"permitted in compute shaders");
}
/* This variable is being used to link data between shader stages (in
* pre-glsl-1.30 parlance, it's a "varying"). Check that it has a type
* that is allowed for such purposes.
*
* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
*
* "The varying qualifier can be used only with the data types
* float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
* these."
*
* This was relaxed in GLSL version 1.30 and GLSL ES version 3.00. From
* page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
*
* "Fragment inputs can only be signed and unsigned integers and
* integer vectors, float, floating-point vectors, matrices, or
* arrays of these. Structures cannot be input.
*
* Similar text exists in the section on vertex shader outputs.
*
* Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
* 3.00 spec allows structs as well. Varying structs are also allowed
* in GLSL 1.50.
*/
switch (var->type->get_scalar_type()->base_type) {
case GLSL_TYPE_FLOAT:
/* Ok in all GLSL versions */
break;
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
if (state->is_version(130, 300))
break;
_mesa_glsl_error(loc, state,
"varying variables must be of base type float in %s",
state->get_version_string());
break;
case GLSL_TYPE_STRUCT:
if (state->is_version(150, 300))
break;
_mesa_glsl_error(loc, state,
"varying variables may not be of type struct");
break;
case GLSL_TYPE_DOUBLE:
break;
default:
_mesa_glsl_error(loc, state, "illegal type for a varying variable");
break;
}
}
if (state->all_invariant && (state->current_function == NULL)) {
switch (state->stage) {
case MESA_SHADER_VERTEX:
if (var->data.mode == ir_var_shader_out)
var->data.invariant = true;
break;
case MESA_SHADER_TESS_CTRL:
case MESA_SHADER_TESS_EVAL:
case MESA_SHADER_GEOMETRY:
if ((var->data.mode == ir_var_shader_in)
|| (var->data.mode == ir_var_shader_out))
var->data.invariant = true;
break;
case MESA_SHADER_FRAGMENT:
if (var->data.mode == ir_var_shader_in)
var->data.invariant = true;
break;
case MESA_SHADER_COMPUTE:
/* Invariance isn't meaningful in compute shaders. */
break;
}
}
var->data.interpolation =
interpret_interpolation_qualifier(qual, (ir_variable_mode) var->data.mode,
state, loc);
var->data.pixel_center_integer = qual->flags.q.pixel_center_integer;
var->data.origin_upper_left = qual->flags.q.origin_upper_left;
if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
&& (strcmp(var->name, "gl_FragCoord") != 0)) {
const char *const qual_string = (qual->flags.q.origin_upper_left)
? "origin_upper_left" : "pixel_center_integer";
_mesa_glsl_error(loc, state,
"layout qualifier `%s' can only be applied to "
"fragment shader input `gl_FragCoord'",
qual_string);
}
if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
/* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
*
* "Within any shader, the first redeclarations of gl_FragCoord
* must appear before any use of gl_FragCoord."
*
* Generate a compiler error if above condition is not met by the
* fragment shader.
*/
ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
if (earlier != NULL &&
earlier->data.used &&
!state->fs_redeclares_gl_fragcoord) {
_mesa_glsl_error(loc, state,
"gl_FragCoord used before its first redeclaration "
"in fragment shader");
}
/* Make sure all gl_FragCoord redeclarations specify the same layout
* qualifiers.
*/
if (is_conflicting_fragcoord_redeclaration(state, qual)) {
const char *const qual_string =
get_layout_qualifier_string(qual->flags.q.origin_upper_left,
qual->flags.q.pixel_center_integer);
const char *const state_string =
get_layout_qualifier_string(state->fs_origin_upper_left,
state->fs_pixel_center_integer);
_mesa_glsl_error(loc, state,
"gl_FragCoord redeclared with different layout "
"qualifiers (%s) and (%s) ",
state_string,
qual_string);
}
state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
!qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
state->fs_redeclares_gl_fragcoord =
state->fs_origin_upper_left ||
state->fs_pixel_center_integer ||
state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
}
if (qual->flags.q.explicit_location) {
validate_explicit_location(qual, var, state, loc);
} else if (qual->flags.q.explicit_index) {
_mesa_glsl_error(loc, state, "explicit index requires explicit location");
}
if (qual->flags.q.explicit_binding &&
validate_binding_qualifier(state, loc, var->type, qual)) {
var->data.explicit_binding = true;
var->data.binding = qual->binding;
}
if (var->type->contains_atomic()) {
if (var->data.mode == ir_var_uniform) {
if (var->data.explicit_binding) {
unsigned *offset =
&state->atomic_counter_offsets[var->data.binding];
if (*offset % ATOMIC_COUNTER_SIZE)
_mesa_glsl_error(loc, state,
"misaligned atomic counter offset");
var->data.atomic.offset = *offset;
*offset += var->type->atomic_size();
} else {
_mesa_glsl_error(loc, state,
"atomic counters require explicit binding point");
}
} else if (var->data.mode != ir_var_function_in) {
_mesa_glsl_error(loc, state, "atomic counters may only be declared as "
"function parameters or uniform-qualified "
"global variables");
}
}
/* Does the declaration use the deprecated 'attribute' or 'varying'
* keywords?
*/
const bool uses_deprecated_qualifier = qual->flags.q.attribute
|| qual->flags.q.varying;
/* Validate auxiliary storage qualifiers */
/* From section 4.3.4 of the GLSL 1.30 spec:
* "It is an error to use centroid in in a vertex shader."
*
* From section 4.3.4 of the GLSL ES 3.00 spec:
* "It is an error to use centroid in or interpolation qualifiers in
* a vertex shader input."
*/
/* Section 4.3.6 of the GLSL 1.30 specification states:
* "It is an error to use centroid out in a fragment shader."
*
* The GL_ARB_shading_language_420pack extension specification states:
* "It is an error to use auxiliary storage qualifiers or interpolation
* qualifiers on an output in a fragment shader."
*/
if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
_mesa_glsl_error(loc, state,
"sample qualifier may only be used on `in` or `out` "
"variables between shader stages");
}
if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
_mesa_glsl_error(loc, state,
"centroid qualifier may only be used with `in', "
"`out' or `varying' variables between shader stages");
}
/* Is the 'layout' keyword used with parameters that allow relaxed checking.
* Many implementations of GL_ARB_fragment_coord_conventions_enable and some
* implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
* allowed the layout qualifier to be used with 'varying' and 'attribute'.
* These extensions and all following extensions that add the 'layout'
* keyword have been modified to require the use of 'in' or 'out'.
*
* The following extension do not allow the deprecated keywords:
*
* GL_AMD_conservative_depth
* GL_ARB_conservative_depth
* GL_ARB_gpu_shader5
* GL_ARB_separate_shader_objects
* GL_ARB_tessellation_shader
* GL_ARB_transform_feedback3
* GL_ARB_uniform_buffer_object
*
* It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
* allow layout with the deprecated keywords.
*/
const bool relaxed_layout_qualifier_checking =
state->ARB_fragment_coord_conventions_enable;
if (qual->has_layout() && uses_deprecated_qualifier) {
if (relaxed_layout_qualifier_checking) {
_mesa_glsl_warning(loc, state,
"`layout' qualifier may not be used with "
"`attribute' or `varying'");
} else {
_mesa_glsl_error(loc, state,
"`layout' qualifier may not be used with "
"`attribute' or `varying'");
}
}
/* Layout qualifiers for gl_FragDepth, which are enabled by extension
* AMD_conservative_depth.
*/
int depth_layout_count = qual->flags.q.depth_any
+ qual->flags.q.depth_greater
+ qual->flags.q.depth_less
+ qual->flags.q.depth_unchanged;
if (depth_layout_count > 0
&& !state->AMD_conservative_depth_enable
&& !state->ARB_conservative_depth_enable) {
_mesa_glsl_error(loc, state,
"extension GL_AMD_conservative_depth or "
"GL_ARB_conservative_depth must be enabled "
"to use depth layout qualifiers");
} else if (depth_layout_count > 0
&& strcmp(var->name, "gl_FragDepth") != 0) {
_mesa_glsl_error(loc, state,
"depth layout qualifiers can be applied only to "
"gl_FragDepth");
} else if (depth_layout_count > 1
&& strcmp(var->name, "gl_FragDepth") == 0) {
_mesa_glsl_error(loc, state,
"at most one depth layout qualifier can be applied to "
"gl_FragDepth");
}
if (qual->flags.q.depth_any)
var->data.depth_layout = ir_depth_layout_any;
else if (qual->flags.q.depth_greater)
var->data.depth_layout = ir_depth_layout_greater;
else if (qual->flags.q.depth_less)
var->data.depth_layout = ir_depth_layout_less;
else if (qual->flags.q.depth_unchanged)
var->data.depth_layout = ir_depth_layout_unchanged;
else
var->data.depth_layout = ir_depth_layout_none;
if (qual->flags.q.std140 ||
qual->flags.q.std430 ||
qual->flags.q.packed ||
qual->flags.q.shared) {
_mesa_glsl_error(loc, state,
"uniform and shader storage block layout qualifiers "
"std140, std430, packed, and shared can only be "
"applied to uniform or shader storage blocks, not "
"members");
}
if (qual->flags.q.row_major || qual->flags.q.column_major) {
validate_matrix_layout_for_type(state, loc, var->type, var);
}
apply_image_qualifier_to_variable(qual, var, state, loc);
/* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
* Inputs):
*
* "Fragment shaders also allow the following layout qualifier on in only
* (not with variable declarations)
* layout-qualifier-id
* early_fragment_tests
* [...]"
*/
if (qual->flags.q.early_fragment_tests) {
_mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
"valid in fragment shader input layout declaration.");
}
}
/**
* Get the variable that is being redeclared by this declaration
*
* Semantic checks to verify the validity of the redeclaration are also
* performed. If semantic checks fail, compilation error will be emitted via
* \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
*
* \returns
* A pointer to an existing variable in the current scope if the declaration
* is a redeclaration, \c NULL otherwise.
*/
static ir_variable *
get_variable_being_redeclared(ir_variable *var, YYLTYPE loc,
struct _mesa_glsl_parse_state *state,
bool allow_all_redeclarations)
{
/* Check if this declaration is actually a re-declaration, either to
* resize an array or add qualifiers to an existing variable.
*
* This is allowed for variables in the current scope, or when at
* global scope (for built-ins in the implicit outer scope).
*/
ir_variable *earlier = state->symbols->get_variable(var->name);
if (earlier == NULL ||
(state->current_function != NULL &&
!state->symbols->name_declared_this_scope(var->name))) {
return NULL;
}
/* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
*
* "It is legal to declare an array without a size and then
* later re-declare the same name as an array of the same
* type and specify a size."
*/
if (earlier->type->is_unsized_array() && var->type->is_array()
&& (var->type->fields.array == earlier->type->fields.array)) {
/* FINISHME: This doesn't match the qualifiers on the two
* FINISHME: declarations. It's not 100% clear whether this is
* FINISHME: required or not.
*/
const unsigned size = unsigned(var->type->array_size());
check_builtin_array_max_size(var->name, size, loc, state);
if ((size > 0) && (size <= earlier->data.max_array_access)) {
_mesa_glsl_error(& loc, state, "array size must be > %u due to "
"previous access",
earlier->data.max_array_access);
}
earlier->type = var->type;
delete var;
var = NULL;
} else if ((state->ARB_fragment_coord_conventions_enable ||
state->is_version(150, 0))
&& strcmp(var->name, "gl_FragCoord") == 0
&& earlier->type == var->type
&& earlier->data.mode == var->data.mode) {
/* Allow redeclaration of gl_FragCoord for ARB_fcc layout
* qualifiers.
*/
earlier->data.origin_upper_left = var->data.origin_upper_left;
earlier->data.pixel_center_integer = var->data.pixel_center_integer;
/* According to section 4.3.7 of the GLSL 1.30 spec,
* the following built-in varaibles can be redeclared with an
* interpolation qualifier:
* * gl_FrontColor
* * gl_BackColor
* * gl_FrontSecondaryColor
* * gl_BackSecondaryColor
* * gl_Color
* * gl_SecondaryColor
*/
} else if (state->is_version(130, 0)
&& (strcmp(var->name, "gl_FrontColor") == 0
|| strcmp(var->name, "gl_BackColor") == 0
|| strcmp(var->name, "gl_FrontSecondaryColor") == 0
|| strcmp(var->name, "gl_BackSecondaryColor") == 0
|| strcmp(var->name, "gl_Color") == 0
|| strcmp(var->name, "gl_SecondaryColor") == 0)
&& earlier->type == var->type
&& earlier->data.mode == var->data.mode) {
earlier->data.interpolation = var->data.interpolation;
/* Layout qualifiers for gl_FragDepth. */
} else if ((state->AMD_conservative_depth_enable ||
state->ARB_conservative_depth_enable)
&& strcmp(var->name, "gl_FragDepth") == 0
&& earlier->type == var->type
&& earlier->data.mode == var->data.mode) {
/** From the AMD_conservative_depth spec:
* Within any shader, the first redeclarations of gl_FragDepth
* must appear before any use of gl_FragDepth.
*/
if (earlier->data.used) {
_mesa_glsl_error(&loc, state,
"the first redeclaration of gl_FragDepth "
"must appear before any use of gl_FragDepth");
}
/* Prevent inconsistent redeclaration of depth layout qualifier. */
if (earlier->data.depth_layout != ir_depth_layout_none
&& earlier->data.depth_layout != var->data.depth_layout) {
_mesa_glsl_error(&loc, state,
"gl_FragDepth: depth layout is declared here "
"as '%s, but it was previously declared as "
"'%s'",
depth_layout_string(var->data.depth_layout),
depth_layout_string(earlier->data.depth_layout));
}
earlier->data.depth_layout = var->data.depth_layout;
} else if (allow_all_redeclarations) {
if (earlier->data.mode != var->data.mode) {
_mesa_glsl_error(&loc, state,
"redeclaration of `%s' with incorrect qualifiers",
var->name);
} else if (earlier->type != var->type) {
_mesa_glsl_error(&loc, state,
"redeclaration of `%s' has incorrect type",
var->name);
}
} else {
_mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
}
return earlier;
}
/**
* Generate the IR for an initializer in a variable declaration
*/
ir_rvalue *
process_initializer(ir_variable *var, ast_declaration *decl,
ast_fully_specified_type *type,
exec_list *initializer_instructions,
struct _mesa_glsl_parse_state *state)
{
ir_rvalue *result = NULL;
YYLTYPE initializer_loc = decl->initializer->get_location();
/* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
*
* "All uniform variables are read-only and are initialized either
* directly by an application via API commands, or indirectly by
* OpenGL."
*/
if (var->data.mode == ir_var_uniform) {
state->check_version(120, 0, &initializer_loc,
"cannot initialize uniforms");
}
/* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
*
* "Buffer variables cannot have initializers."
*/
if (var->data.mode == ir_var_shader_storage) {
_mesa_glsl_error(& initializer_loc, state,
"SSBO variables cannot have initializers");
}
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "Opaque variables [...] are initialized only through the
* OpenGL API; they cannot be declared with an initializer in a
* shader."
*/
if (var->type->contains_opaque()) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize opaque variable");
}
if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
_mesa_glsl_error(& initializer_loc, state,
"cannot initialize %s shader input / %s",
_mesa_shader_stage_to_string(state->stage),
(state->stage == MESA_SHADER_VERTEX)
? "attribute" : "varying");
}
/* If the initializer is an ast_aggregate_initializer, recursively store
* type information from the LHS into it, so that its hir() function can do
* type checking.
*/
if (decl->initializer->oper == ast_aggregate)
_mesa_ast_set_aggregate_type(var->type, decl->initializer);
ir_dereference *const lhs = new(state) ir_dereference_variable(var);
ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
/* Calculate the constant value if this is a const or uniform
* declaration.
*/
if (type->qualifier.flags.q.constant
|| type->qualifier.flags.q.uniform) {
ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
lhs, rhs, true);
if (new_rhs != NULL) {
rhs = new_rhs;
ir_constant *constant_value = rhs->constant_expression_value();
if (!constant_value) {
/* If ARB_shading_language_420pack is enabled, initializers of
* const-qualified local variables do not have to be constant
* expressions. Const-qualified global variables must still be
* initialized with constant expressions.
*/
if (!state->ARB_shading_language_420pack_enable
|| state->current_function == NULL) {
_mesa_glsl_error(& initializer_loc, state,
"initializer of %s variable `%s' must be a "
"constant expression",
(type->qualifier.flags.q.constant)
? "const" : "uniform",
decl->identifier);
if (var->type->is_numeric()) {
/* Reduce cascading errors. */
var->constant_value = ir_constant::zero(state, var->type);
}
}
} else {
rhs = constant_value;
var->constant_value = constant_value;
}
} else {
if (var->type->is_numeric()) {
/* Reduce cascading errors. */
var->constant_value = ir_constant::zero(state, var->type);
}
}
}
if (rhs && !rhs->type->is_error()) {
bool temp = var->data.read_only;
if (type->qualifier.flags.q.constant)
var->data.read_only = false;
/* Never emit code to initialize a uniform.
*/
const glsl_type *initializer_type;
if (!type->qualifier.flags.q.uniform) {
do_assignment(initializer_instructions, state,
NULL,
lhs, rhs,
&result, true,
true,
type->get_location());
initializer_type = result->type;
} else
initializer_type = rhs->type;
var->constant_initializer = rhs->constant_expression_value();
var->data.has_initializer = true;
/* If the declared variable is an unsized array, it must inherrit
* its full type from the initializer. A declaration such as
*
* uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
*
* becomes
*
* uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
*
* The assignment generated in the if-statement (below) will also
* automatically handle this case for non-uniforms.
*
* If the declared variable is not an array, the types must
* already match exactly. As a result, the type assignment
* here can be done unconditionally. For non-uniforms the call
* to do_assignment can change the type of the initializer (via
* the implicit conversion rules). For uniforms the initializer
* must be a constant expression, and the type of that expression
* was validated above.
*/
var->type = initializer_type;
var->data.read_only = temp;
}
return result;
}
static void
validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
YYLTYPE loc, ir_variable *var,
unsigned num_vertices,
unsigned *size,
const char *var_category)
{
if (var->type->is_unsized_array()) {
/* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
*
* All geometry shader input unsized array declarations will be
* sized by an earlier input layout qualifier, when present, as per
* the following table.
*
* Followed by a table mapping each allowed input layout qualifier to
* the corresponding input length.
*
* Similarly for tessellation control shader outputs.
*/
if (num_vertices != 0)
var->type = glsl_type::get_array_instance(var->type->fields.array,
num_vertices);
} else {
/* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
* includes the following examples of compile-time errors:
*
* // code sequence within one shader...
* in vec4 Color1[]; // size unknown
* ...Color1.length()...// illegal, length() unknown
* in vec4 Color2[2]; // size is 2
* ...Color1.length()...// illegal, Color1 still has no size
* in vec4 Color3[3]; // illegal, input sizes are inconsistent
* layout(lines) in; // legal, input size is 2, matching
* in vec4 Color4[3]; // illegal, contradicts layout
* ...
*
* To detect the case illustrated by Color3, we verify that the size of
* an explicitly-sized array matches the size of any previously declared
* explicitly-sized array. To detect the case illustrated by Color4, we
* verify that the size of an explicitly-sized array is consistent with
* any previously declared input layout.
*/
if (num_vertices != 0 && var->type->length != num_vertices) {
_mesa_glsl_error(&loc, state,
"%s size contradicts previously declared layout "
"(size is %u, but layout requires a size of %u)",
var_category, var->type->length, num_vertices);
} else if (*size != 0 && var->type->length != *size) {
_mesa_glsl_error(&loc, state,
"%s sizes are inconsistent (size is %u, but a "
"previous declaration has size %u)",
var_category, var->type->length, *size);
} else {
*size = var->type->length;
}
}
}
static void
handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
YYLTYPE loc, ir_variable *var)
{
unsigned num_vertices = 0;
if (state->tcs_output_vertices_specified) {
num_vertices = state->out_qualifier->vertices;
}
if (!var->type->is_array() && !var->data.patch) {
_mesa_glsl_error(&loc, state,
"tessellation control shader outputs must be arrays");
/* To avoid cascading failures, short circuit the checks below. */
return;
}
if (var->data.patch)
return;
validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
&state->tcs_output_size,
"tessellation control shader output");
}
/**
* Do additional processing necessary for tessellation control/evaluation shader
* input declarations. This covers both interface block arrays and bare input
* variables.
*/
static void
handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
YYLTYPE loc, ir_variable *var)
{
if (!var->type->is_array() && !var->data.patch) {
_mesa_glsl_error(&loc, state,
"per-vertex tessellation shader inputs must be arrays");
/* Avoid cascading failures. */
return;
}
if (var->data.patch)
return;
/* Unsized arrays are implicitly sized to gl_MaxPatchVertices. */
if (var->type->is_unsized_array()) {
var->type = glsl_type::get_array_instance(var->type->fields.array,
state->Const.MaxPatchVertices);
}
}
/**
* Do additional processing necessary for geometry shader input declarations
* (this covers both interface blocks arrays and bare input variables).
*/
static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
YYLTYPE loc, ir_variable *var)
{
unsigned num_vertices = 0;
if (state->gs_input_prim_type_specified) {
num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
}
/* Geometry shader input variables must be arrays. Caller should have
* reported an error for this.
*/
if (!var->type->is_array()) {
assert(state->error);
/* To avoid cascading failures, short circuit the checks below. */
return;
}
validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
&state->gs_input_size,
"geometry shader input");
}
void
validate_identifier(const char *identifier, YYLTYPE loc,
struct _mesa_glsl_parse_state *state)
{
/* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
*
* "Identifiers starting with "gl_" are reserved for use by
* OpenGL, and may not be declared in a shader as either a
* variable or a function."
*/
if (is_gl_identifier(identifier)) {
_mesa_glsl_error(&loc, state,
"identifier `%s' uses reserved `gl_' prefix",
identifier);
} else if (strstr(identifier, "__")) {
/* From page 14 (page 20 of the PDF) of the GLSL 1.10
* spec:
*
* "In addition, all identifiers containing two
* consecutive underscores (__) are reserved as
* possible future keywords."
*
* The intention is that names containing __ are reserved for internal
* use by the implementation, and names prefixed with GL_ are reserved
* for use by Khronos. Names simply containing __ are dangerous to use,
* but should be allowed.
*
* A future version of the GLSL specification will clarify this.
*/
_mesa_glsl_warning(&loc, state,
"identifier `%s' uses reserved `__' string",
identifier);
}
}
static bool
precision_qualifier_allowed(const glsl_type *type)
{
/* Precision qualifiers apply to floating point, integer and opaque
* types.
*
* Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
* "Any floating point or any integer declaration can have the type
* preceded by one of these precision qualifiers [...] Literal
* constants do not have precision qualifiers. Neither do Boolean
* variables.
*
* Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
* spec also says:
*
* "Precision qualifiers are added for code portability with OpenGL
* ES, not for functionality. They have the same syntax as in OpenGL
* ES."
*
* Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
*
* "uniform lowp sampler2D sampler;
* highp vec2 coord;
* ...
* lowp vec4 col = texture2D (sampler, coord);
* // texture2D returns lowp"
*
* From this, we infer that GLSL 1.30 (and later) should allow precision
* qualifiers on sampler types just like float and integer types.
*/
return type->is_float()
|| type->is_integer()
|| type->is_record()
|| type->contains_opaque();
}
ir_rvalue *
ast_declarator_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
const struct glsl_type *decl_type;
const char *type_name = NULL;
ir_rvalue *result = NULL;
YYLTYPE loc = this->get_location();
/* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
*
* "To ensure that a particular output variable is invariant, it is
* necessary to use the invariant qualifier. It can either be used to
* qualify a previously declared variable as being invariant
*
* invariant gl_Position; // make existing gl_Position be invariant"
*
* In these cases the parser will set the 'invariant' flag in the declarator
* list, and the type will be NULL.
*/
if (this->invariant) {
assert(this->type == NULL);
if (state->current_function != NULL) {
_mesa_glsl_error(& loc, state,
"all uses of `invariant' keyword must be at global "
"scope");
}
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
assert(decl->array_specifier == NULL);
assert(decl->initializer == NULL);
ir_variable *const earlier =
state->symbols->get_variable(decl->identifier);
if (earlier == NULL) {
_mesa_glsl_error(& loc, state,
"undeclared variable `%s' cannot be marked "
"invariant", decl->identifier);
} else if (!is_varying_var(earlier, state->stage)) {
_mesa_glsl_error(&loc, state,
"`%s' cannot be marked invariant; interfaces between "
"shader stages only.", decl->identifier);
} else if (earlier->data.used) {
_mesa_glsl_error(& loc, state,
"variable `%s' may not be redeclared "
"`invariant' after being used",
earlier->name);
} else {
earlier->data.invariant = true;
}
}
/* Invariant redeclarations do not have r-values.
*/
return NULL;
}
if (this->precise) {
assert(this->type == NULL);
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
assert(decl->array_specifier == NULL);
assert(decl->initializer == NULL);
ir_variable *const earlier =
state->symbols->get_variable(decl->identifier);
if (earlier == NULL) {
_mesa_glsl_error(& loc, state,
"undeclared variable `%s' cannot be marked "
"precise", decl->identifier);
} else if (state->current_function != NULL &&
!state->symbols->name_declared_this_scope(decl->identifier)) {
/* Note: we have to check if we're in a function, since
* builtins are treated as having come from another scope.
*/
_mesa_glsl_error(& loc, state,
"variable `%s' from an outer scope may not be "
"redeclared `precise' in this scope",
earlier->name);
} else if (earlier->data.used) {
_mesa_glsl_error(& loc, state,
"variable `%s' may not be redeclared "
"`precise' after being used",
earlier->name);
} else {
earlier->data.precise = true;
}
}
/* Precise redeclarations do not have r-values either. */
return NULL;
}
assert(this->type != NULL);
assert(!this->invariant);
assert(!this->precise);
/* The type specifier may contain a structure definition. Process that
* before any of the variable declarations.
*/
(void) this->type->specifier->hir(instructions, state);
decl_type = this->type->glsl_type(& type_name, state);
/* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
* "Buffer variables may only be declared inside interface blocks
* (section 4.3.9 “Interface Blocks”), which are then referred to as
* shader storage blocks. It is a compile-time error to declare buffer
* variables at global scope (outside a block)."
*/
if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
_mesa_glsl_error(&loc, state,
"buffer variables cannot be declared outside "
"interface blocks");
}
/* An offset-qualified atomic counter declaration sets the default
* offset for the next declaration within the same atomic counter
* buffer.
*/
if (decl_type && decl_type->contains_atomic()) {
if (type->qualifier.flags.q.explicit_binding &&
type->qualifier.flags.q.explicit_offset)
state->atomic_counter_offsets[type->qualifier.binding] =
type->qualifier.offset;
}
if (this->declarations.is_empty()) {
/* If there is no structure involved in the program text, there are two
* possible scenarios:
*
* - The program text contained something like 'vec4;'. This is an
* empty declaration. It is valid but weird. Emit a warning.
*
* - The program text contained something like 'S;' and 'S' is not the
* name of a known structure type. This is both invalid and weird.
* Emit an error.
*
* - The program text contained something like 'mediump float;'
* when the programmer probably meant 'precision mediump
* float;' Emit a warning with a description of what they
* probably meant to do.
*
* Note that if decl_type is NULL and there is a structure involved,
* there must have been some sort of error with the structure. In this
* case we assume that an error was already generated on this line of
* code for the structure. There is no need to generate an additional,
* confusing error.
*/
assert(this->type->specifier->structure == NULL || decl_type != NULL
|| state->error);
if (decl_type == NULL) {
_mesa_glsl_error(&loc, state,
"invalid type `%s' in empty declaration",
type_name);
} else if (decl_type->base_type == GLSL_TYPE_ATOMIC_UINT) {
/* Empty atomic counter declarations are allowed and useful
* to set the default offset qualifier.
*/
return NULL;
} else if (this->type->qualifier.precision != ast_precision_none) {
if (this->type->specifier->structure != NULL) {
_mesa_glsl_error(&loc, state,
"precision qualifiers can't be applied "
"to structures");
} else {
static const char *const precision_names[] = {
"highp",
"highp",
"mediump",
"lowp"
};
_mesa_glsl_warning(&loc, state,
"empty declaration with precision qualifier, "
"to set the default precision, use "
"`precision %s %s;'",
precision_names[this->type->qualifier.precision],
type_name);
}
} else if (this->type->specifier->structure == NULL) {
_mesa_glsl_warning(&loc, state, "empty declaration");
}
}
foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
const struct glsl_type *var_type;
ir_variable *var;
const char *identifier = decl->identifier;
/* FINISHME: Emit a warning if a variable declaration shadows a
* FINISHME: declaration at a higher scope.
*/
if ((decl_type == NULL) || decl_type->is_void()) {
if (type_name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
type_name, decl->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
decl->identifier);
}
continue;
}
if (this->type->qualifier.flags.q.subroutine) {
const glsl_type *t;
const char *name;
t = state->symbols->get_type(this->type->specifier->type_name);
if (!t)
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
decl->identifier);
name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
identifier = name;
}
var_type = process_array_type(&loc, decl_type, decl->array_specifier,
state);
var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
/* The 'varying in' and 'varying out' qualifiers can only be used with
* ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
* yet.
*/
if (this->type->qualifier.flags.q.varying) {
if (this->type->qualifier.flags.q.in) {
_mesa_glsl_error(& loc, state,
"`varying in' qualifier in declaration of "
"`%s' only valid for geometry shaders using "
"ARB_geometry_shader4 or EXT_geometry_shader4",
decl->identifier);
} else if (this->type->qualifier.flags.q.out) {
_mesa_glsl_error(& loc, state,
"`varying out' qualifier in declaration of "
"`%s' only valid for geometry shaders using "
"ARB_geometry_shader4 or EXT_geometry_shader4",
decl->identifier);
}
}
/* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
*
* "Global variables can only use the qualifiers const,
* attribute, uniform, or varying. Only one may be
* specified.
*
* Local variables can only use the qualifier const."
*
* This is relaxed in GLSL 1.30 and GLSL ES 3.00. It is also relaxed by
* any extension that adds the 'layout' keyword.
*/
if (!state->is_version(130, 300)
&& !state->has_explicit_attrib_location()
&& !state->has_separate_shader_objects()
&& !state->ARB_fragment_coord_conventions_enable) {
if (this->type->qualifier.flags.q.out) {
_mesa_glsl_error(& loc, state,
"`out' qualifier in declaration of `%s' "
"only valid for function parameters in %s",
decl->identifier, state->get_version_string());
}
if (this->type->qualifier.flags.q.in) {
_mesa_glsl_error(& loc, state,
"`in' qualifier in declaration of `%s' "
"only valid for function parameters in %s",
decl->identifier, state->get_version_string());
}
/* FINISHME: Test for other invalid qualifiers. */
}
apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
& loc, false);
if (this->type->qualifier.flags.q.invariant) {
if (!is_varying_var(var, state->stage)) {
_mesa_glsl_error(&loc, state,
"`%s' cannot be marked invariant; interfaces between "
"shader stages only", var->name);
}
}
if (state->current_function != NULL) {
const char *mode = NULL;
const char *extra = "";
/* There is no need to check for 'inout' here because the parser will
* only allow that in function parameter lists.
*/
if (this->type->qualifier.flags.q.attribute) {
mode = "attribute";
} else if (this->type->qualifier.flags.q.subroutine) {
mode = "subroutine uniform";
} else if (this->type->qualifier.flags.q.uniform) {
mode = "uniform";
} else if (this->type->qualifier.flags.q.varying) {
mode = "varying";
} else if (this->type->qualifier.flags.q.in) {
mode = "in";
extra = " or in function parameter list";
} else if (this->type->qualifier.flags.q.out) {
mode = "out";
extra = " or in function parameter list";
}
if (mode) {
_mesa_glsl_error(& loc, state,
"%s variable `%s' must be declared at "
"global scope%s",
mode, var->name, extra);
}
} else if (var->data.mode == ir_var_shader_in) {
var->data.read_only = true;
if (state->stage == MESA_SHADER_VERTEX) {
bool error_emitted = false;
/* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. Vertex shader inputs can also form arrays of these
* types, but not structures."
*
* From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. They cannot be arrays or structures."
*
* From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
*
* "The attribute qualifier can be used only with float,
* floating-point vectors, and matrices. Attribute variables
* cannot be declared as arrays or structures."
*
* From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
*
* "Vertex shader inputs can only be float, floating-point
* vectors, matrices, signed and unsigned integers and integer
* vectors. Vertex shader inputs cannot be arrays or
* structures."
*/
const glsl_type *check_type = var->type->without_array();
switch (check_type->base_type) {
case GLSL_TYPE_FLOAT:
break;
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
if (state->is_version(120, 300))
break;
case GLSL_TYPE_DOUBLE:
if (check_type->base_type == GLSL_TYPE_DOUBLE && (state->is_version(410, 0) || state->ARB_vertex_attrib_64bit_enable))
break;
/* FALLTHROUGH */
default:
_mesa_glsl_error(& loc, state,
"vertex shader input / attribute cannot have "
"type %s`%s'",
var->type->is_array() ? "array of " : "",
check_type->name);
error_emitted = true;
}
if (!error_emitted && var->type->is_array() &&
!state->check_version(150, 0, &loc,
"vertex shader input / attribute "
"cannot have array type")) {
error_emitted = true;
}
} else if (state->stage == MESA_SHADER_GEOMETRY) {
/* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
*
* Geometry shader input variables get the per-vertex values
* written out by vertex shader output variables of the same
* names. Since a geometry shader operates on a set of
* vertices, each input varying variable (or input block, see
* interface blocks below) needs to be declared as an array.
*/
if (!var->type->is_array()) {
_mesa_glsl_error(&loc, state,
"geometry shader inputs must be arrays");
}
handle_geometry_shader_input_decl(state, loc, var);
} else if (state->stage == MESA_SHADER_FRAGMENT) {
/* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
*
* It is a compile-time error to declare a fragment shader
* input with, or that contains, any of the following types:
*
* * A boolean type
* * An opaque type
* * An array of arrays
* * An array of structures
* * A structure containing an array
* * A structure containing a structure
*/
if (state->es_shader) {
const glsl_type *check_type = var->type->without_array();
if (check_type->is_boolean() ||
check_type->contains_opaque()) {
_mesa_glsl_error(&loc, state,
"fragment shader input cannot have type %s",
check_type->name);
}
if (var->type->is_array() &&
var->type->fields.array->is_array()) {
_mesa_glsl_error(&loc, state,
"%s shader output "
"cannot have an array of arrays",
_mesa_shader_stage_to_string(state->stage));
}
if (var->type->is_array() &&
var->type->fields.array->is_record()) {
_mesa_glsl_error(&loc, state,
"fragment shader input "
"cannot have an array of structs");
}
if (var->type->is_record()) {
for (unsigned i = 0; i < var->type->length; i++) {
if (var->type->fields.structure[i].type->is_array() ||
var->type->fields.structure[i].type->is_record())
_mesa_glsl_error(&loc, state,
"fragement shader input cannot have "
"a struct that contains an "
"array or struct");
}
}
}
} else if (state->stage == MESA_SHADER_TESS_CTRL ||
state->stage == MESA_SHADER_TESS_EVAL) {
handle_tess_shader_input_decl(state, loc, var);
}
} else if (var->data.mode == ir_var_shader_out) {
const glsl_type *check_type = var->type->without_array();
/* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
*
* It is a compile-time error to declare a vertex, tessellation
* evaluation, tessellation control, or geometry shader output
* that contains any of the following:
*
* * A Boolean type (bool, bvec2 ...)
* * An opaque type
*/
if (check_type->is_boolean() || check_type->contains_opaque())
_mesa_glsl_error(&loc, state,
"%s shader output cannot have type %s",
_mesa_shader_stage_to_string(state->stage),
check_type->name);
/* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
*
* It is a compile-time error to declare a fragment shader output
* that contains any of the following:
*
* * A Boolean type (bool, bvec2 ...)
* * A double-precision scalar or vector (double, dvec2 ...)
* * An opaque type
* * Any matrix type
* * A structure
*/
if (state->stage == MESA_SHADER_FRAGMENT) {
if (check_type->is_record() || check_type->is_matrix())
_mesa_glsl_error(&loc, state,
"fragment shader output "
"cannot have struct or matrix type");
switch (check_type->base_type) {
case GLSL_TYPE_UINT:
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
break;
default:
_mesa_glsl_error(&loc, state,
"fragment shader output cannot have "
"type %s", check_type->name);
}
}
/* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
*
* It is a compile-time error to declare a vertex shader output
* with, or that contains, any of the following types:
*
* * A boolean type
* * An opaque type
* * An array of arrays
* * An array of structures
* * A structure containing an array
* * A structure containing a structure
*
* It is a compile-time error to declare a fragment shader output
* with, or that contains, any of the following types:
*
* * A boolean type
* * An opaque type
* * A matrix
* * A structure
* * An array of array
*/
if (state->es_shader) {
if (var->type->is_array() &&
var->type->fields.array->is_array()) {
_mesa_glsl_error(&loc, state,
"%s shader output "
"cannot have an array of arrays",
_mesa_shader_stage_to_string(state->stage));
}
if (state->stage == MESA_SHADER_VERTEX) {
if (var->type->is_array() &&
var->type->fields.array->is_record()) {
_mesa_glsl_error(&loc, state,
"vertex shader output "
"cannot have an array of structs");
}
if (var->type->is_record()) {
for (unsigned i = 0; i < var->type->length; i++) {
if (var->type->fields.structure[i].type->is_array() ||
var->type->fields.structure[i].type->is_record())
_mesa_glsl_error(&loc, state,
"vertex shader output cannot have a "
"struct that contains an "
"array or struct");
}
}
}
}
if (state->stage == MESA_SHADER_TESS_CTRL) {
handle_tess_ctrl_shader_output_decl(state, loc, var);
}
} else if (var->type->contains_subroutine()) {
/* declare subroutine uniforms as hidden */
var->data.how_declared = ir_var_hidden;
}
/* Integer fragment inputs must be qualified with 'flat'. In GLSL ES,
* so must integer vertex outputs.
*
* From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
* "Fragment shader inputs that are signed or unsigned integers or
* integer vectors must be qualified with the interpolation qualifier
* flat."
*
* From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
* "Fragment shader inputs that are, or contain, signed or unsigned
* integers or integer vectors must be qualified with the
* interpolation qualifier flat."
*
* From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
* "Vertex shader outputs that are, or contain, signed or unsigned
* integers or integer vectors must be qualified with the
* interpolation qualifier flat."
*
* Note that prior to GLSL 1.50, this requirement applied to vertex
* outputs rather than fragment inputs. That creates problems in the
* presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
* desktop GL shaders. For GLSL ES shaders, we follow the spec and
* apply the restriction to both vertex outputs and fragment inputs.
*
* Note also that the desktop GLSL specs are missing the text "or
* contain"; this is presumably an oversight, since there is no
* reasonable way to interpolate a fragment shader input that contains
* an integer.
*/
if (state->is_version(130, 300) &&
var->type->contains_integer() &&
var->data.interpolation != INTERP_QUALIFIER_FLAT &&
((state->stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_in)
|| (state->stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_out
&& state->es_shader))) {
const char *var_type = (state->stage == MESA_SHADER_VERTEX) ?
"vertex output" : "fragment input";
_mesa_glsl_error(&loc, state, "if a %s is (or contains) "
"an integer, then it must be qualified with 'flat'",
var_type);
}
/* Double fragment inputs must be qualified with 'flat'. */
if (var->type->contains_double() &&
var->data.interpolation != INTERP_QUALIFIER_FLAT &&
state->stage == MESA_SHADER_FRAGMENT &&
var->data.mode == ir_var_shader_in) {
_mesa_glsl_error(&loc, state, "if a fragment input is (or contains) "
"a double, then it must be qualified with 'flat'",
var_type);
}
/* Interpolation qualifiers cannot be applied to 'centroid' and
* 'centroid varying'.
*
* From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
* "interpolation qualifiers may only precede the qualifiers in,
* centroid in, out, or centroid out in a declaration. They do not apply
* to the deprecated storage qualifiers varying or centroid varying."
*
* These deprecated storage qualifiers do not exist in GLSL ES 3.00.
*/
if (state->is_version(130, 0)
&& this->type->qualifier.has_interpolation()
&& this->type->qualifier.flags.q.varying) {
const char *i = this->type->qualifier.interpolation_string();
assert(i != NULL);
const char *s;
if (this->type->qualifier.flags.q.centroid)
s = "centroid varying";
else
s = "varying";
_mesa_glsl_error(&loc, state,
"qualifier '%s' cannot be applied to the "
"deprecated storage qualifier '%s'", i, s);
}
/* Interpolation qualifiers can only apply to vertex shader outputs and
* fragment shader inputs.
*
* From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
* "Outputs from a vertex shader (out) and inputs to a fragment
* shader (in) can be further qualified with one or more of these
* interpolation qualifiers"
*
* From page 31 (page 37 of the PDF) of the GLSL ES 3.00 spec:
* "These interpolation qualifiers may only precede the qualifiers
* in, centroid in, out, or centroid out in a declaration. They do
* not apply to inputs into a vertex shader or outputs from a
* fragment shader."
*/
if (state->is_version(130, 300)
&& this->type->qualifier.has_interpolation()) {
const char *i = this->type->qualifier.interpolation_string();
assert(i != NULL);
switch (state->stage) {
case MESA_SHADER_VERTEX:
if (this->type->qualifier.flags.q.in) {
_mesa_glsl_error(&loc, state,
"qualifier '%s' cannot be applied to vertex "
"shader inputs", i);
}
break;
case MESA_SHADER_FRAGMENT:
if (this->type->qualifier.flags.q.out) {
_mesa_glsl_error(&loc, state,
"qualifier '%s' cannot be applied to fragment "
"shader outputs", i);
}
break;
default:
break;
}
}
/* From section 4.3.4 of the GLSL 4.00 spec:
* "Input variables may not be declared using the patch in qualifier
* in tessellation control or geometry shaders."
*
* From section 4.3.6 of the GLSL 4.00 spec:
* "It is an error to use patch out in a vertex, tessellation
* evaluation, or geometry shader."
*
* This doesn't explicitly forbid using them in a fragment shader, but
* that's probably just an oversight.
*/
if (state->stage != MESA_SHADER_TESS_EVAL
&& this->type->qualifier.flags.q.patch
&& this->type->qualifier.flags.q.in) {
_mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
"tessellation evaluation shader");
}
if (state->stage != MESA_SHADER_TESS_CTRL
&& this->type->qualifier.flags.q.patch
&& this->type->qualifier.flags.q.out) {
_mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
"tessellation control shader");
}
/* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
*/
if (this->type->qualifier.precision != ast_precision_none) {
state->check_precision_qualifiers_allowed(&loc);
}
/* If a precision qualifier is allowed on a type, it is allowed on
* an array of that type.
*/
if (!(this->type->qualifier.precision == ast_precision_none
|| precision_qualifier_allowed(var->type->without_array()))) {
_mesa_glsl_error(&loc, state,
"precision qualifiers apply only to floating point"
", integer and opaque types");
}
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "[Opaque types] can only be declared as function
* parameters or uniform-qualified variables."
*/
if (var_type->contains_opaque() &&
!this->type->qualifier.flags.q.uniform) {
_mesa_glsl_error(&loc, state,
"opaque variables must be declared uniform");
}
/* Process the initializer and add its instructions to a temporary
* list. This list will be added to the instruction stream (below) after
* the declaration is added. This is done because in some cases (such as
* redeclarations) the declaration may not actually be added to the
* instruction stream.
*/
exec_list initializer_instructions;
/* Examine var name here since var may get deleted in the next call */
bool var_is_gl_id = is_gl_identifier(var->name);
ir_variable *earlier =
get_variable_being_redeclared(var, decl->get_location(), state,
false /* allow_all_redeclarations */);
if (earlier != NULL) {
if (var_is_gl_id &&
earlier->data.how_declared == ir_var_declared_in_block) {
_mesa_glsl_error(&loc, state,
"`%s' has already been redeclared using "
"gl_PerVertex", earlier->name);
}
earlier->data.how_declared = ir_var_declared_normally;
}
if (decl->initializer != NULL) {
result = process_initializer((earlier == NULL) ? var : earlier,
decl, this->type,
&initializer_instructions, state);
}
/* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
*
* "It is an error to write to a const variable outside of
* its declaration, so they must be initialized when
* declared."
*/
if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
_mesa_glsl_error(& loc, state,
"const declaration of `%s' must be initialized",
decl->identifier);
}
if (state->es_shader) {
const glsl_type *const t = (earlier == NULL)
? var->type : earlier->type;
if (t->is_unsized_array())
/* Section 10.17 of the GLSL ES 1.00 specification states that
* unsized array declarations have been removed from the language.
* Arrays that are sized using an initializer are still explicitly
* sized. However, GLSL ES 1.00 does not allow array
* initializers. That is only allowed in GLSL ES 3.00.
*
* Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
*
* "An array type can also be formed without specifying a size
* if the definition includes an initializer:
*
* float x[] = float[2] (1.0, 2.0); // declares an array of size 2
* float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
*
* float a[5];
* float b[] = a;"
*/
_mesa_glsl_error(& loc, state,
"unsized array declarations are not allowed in "
"GLSL ES");
}
/* If the declaration is not a redeclaration, there are a few additional
* semantic checks that must be applied. In addition, variable that was
* created for the declaration should be added to the IR stream.
*/
if (earlier == NULL) {
validate_identifier(decl->identifier, loc, state);
/* Add the variable to the symbol table. Note that the initializer's
* IR was already processed earlier (though it hasn't been emitted
* yet), without the variable in scope.
*
* This differs from most C-like languages, but it follows the GLSL
* specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
* spec:
*
* "Within a declaration, the scope of a name starts immediately
* after the initializer if present or immediately after the name
* being declared if not."
*/
if (!state->symbols->add_variable(var)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "name `%s' already taken in the "
"current scope", decl->identifier);
continue;
}
/* Push the variable declaration to the top. It means that all the
* variable declarations will appear in a funny last-to-first order,
* but otherwise we run into trouble if a function is prototyped, a
* global var is decled, then the function is defined with usage of
* the global var. See glslparsertest's CorrectModule.frag.
*/
instructions->push_head(var);
}
instructions->append_list(&initializer_instructions);
}
/* Generally, variable declarations do not have r-values. However,
* one is used for the declaration in
*
* while (bool b = some_condition()) {
* ...
* }
*
* so we return the rvalue from the last seen declaration here.
*/
return result;
}
ir_rvalue *
ast_parameter_declarator::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
const struct glsl_type *type;
const char *name = NULL;
YYLTYPE loc = this->get_location();
type = this->type->glsl_type(& name, state);
if (type == NULL) {
if (name != NULL) {
_mesa_glsl_error(& loc, state,
"invalid type `%s' in declaration of `%s'",
name, this->identifier);
} else {
_mesa_glsl_error(& loc, state,
"invalid type in declaration of `%s'",
this->identifier);
}
type = glsl_type::error_type;
}
/* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
*
* "Functions that accept no input arguments need not use void in the
* argument list because prototypes (or definitions) are required and
* therefore there is no ambiguity when an empty argument list "( )" is
* declared. The idiom "(void)" as a parameter list is provided for
* convenience."
*
* Placing this check here prevents a void parameter being set up
* for a function, which avoids tripping up checks for main taking
* parameters and lookups of an unnamed symbol.
*/
if (type->is_void()) {
if (this->identifier != NULL)
_mesa_glsl_error(& loc, state,
"named parameter cannot have type `void'");
is_void = true;
return NULL;
}
if (formal_parameter && (this->identifier == NULL)) {
_mesa_glsl_error(& loc, state, "formal parameter lacks a name");
return NULL;
}
/* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
* call already handled the "vec4[..] foo" case.
*/
type = process_array_type(&loc, type, this->array_specifier, state);
if (!type->is_error() && type->is_unsized_array()) {
_mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
"a declared size");
type = glsl_type::error_type;
}
is_void = false;
ir_variable *var = new(ctx)
ir_variable(type, this->identifier, ir_var_function_in);
/* Apply any specified qualifiers to the parameter declaration. Note that
* for function parameters the default mode is 'in'.
*/
apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
true);
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "Opaque variables cannot be treated as l-values; hence cannot
* be used as out or inout function parameters, nor can they be
* assigned into."
*/
if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
&& type->contains_opaque()) {
_mesa_glsl_error(&loc, state, "out and inout parameters cannot "
"contain opaque variables");
type = glsl_type::error_type;
}
/* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
*
* "When calling a function, expressions that do not evaluate to
* l-values cannot be passed to parameters declared as out or inout."
*
* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
*
* "Other binary or unary expressions, non-dereferenced arrays,
* function names, swizzles with repeated fields, and constants
* cannot be l-values."
*
* So for GLSL 1.10, passing an array as an out or inout parameter is not
* allowed. This restriction is removed in GLSL 1.20, and in GLSL ES.
*/
if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
&& type->is_array()
&& !state->check_version(120, 100, &loc,
"arrays cannot be out or inout parameters")) {
type = glsl_type::error_type;
}
instructions->push_tail(var);
/* Parameter declarations do not have r-values.
*/
return NULL;
}
void
ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
bool formal,
exec_list *ir_parameters,
_mesa_glsl_parse_state *state)
{
ast_parameter_declarator *void_param = NULL;
unsigned count = 0;
foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
param->formal_parameter = formal;
param->hir(ir_parameters, state);
if (param->is_void)
void_param = param;
count++;
}
if ((void_param != NULL) && (count > 1)) {
YYLTYPE loc = void_param->get_location();
_mesa_glsl_error(& loc, state,
"`void' parameter must be only parameter");
}
}
void
emit_function(_mesa_glsl_parse_state *state, ir_function *f)
{
/* IR invariants disallow function declarations or definitions
* nested within other function definitions. But there is no
* requirement about the relative order of function declarations
* and definitions with respect to one another. So simply insert
* the new ir_function block at the end of the toplevel instruction
* list.
*/
state->toplevel_ir->push_tail(f);
}
ir_rvalue *
ast_function::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_function *f = NULL;
ir_function_signature *sig = NULL;
exec_list hir_parameters;
YYLTYPE loc = this->get_location();
const char *const name = identifier;
/* New functions are always added to the top-level IR instruction stream,
* so this instruction list pointer is ignored. See also emit_function
* (called below).
*/
(void) instructions;
/* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
*
* "Function declarations (prototypes) cannot occur inside of functions;
* they must be at global scope, or for the built-in functions, outside
* the global scope."
*
* From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
*
* "User defined functions may only be defined within the global scope."
*
* Note that this language does not appear in GLSL 1.10.
*/
if ((state->current_function != NULL) &&
state->is_version(120, 100)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"declaration of function `%s' not allowed within "
"function body", name);
}
validate_identifier(name, this->get_location(), state);
/* Convert the list of function parameters to HIR now so that they can be
* used below to compare this function's signature with previously seen
* signatures for functions with the same name.
*/
ast_parameter_declarator::parameters_to_hir(& this->parameters,
is_definition,
& hir_parameters, state);
const char *return_type_name;
const glsl_type *return_type =
this->return_type->glsl_type(& return_type_name, state);
if (!return_type) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"function `%s' has undeclared return type `%s'",
name, return_type_name);
return_type = glsl_type::error_type;
}
/* ARB_shader_subroutine states:
* "Subroutine declarations cannot be prototyped. It is an error to prepend
* subroutine(...) to a function declaration."
*/
if (this->return_type->qualifier.flags.q.subroutine_def && !is_definition) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"function declaration `%s' cannot have subroutine prepended",
name);
}
/* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
* "No qualifier is allowed on the return type of a function."
*/
if (this->return_type->has_qualifiers()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"function `%s' return type has qualifiers", name);
}
/* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
*
* "Arrays are allowed as arguments and as the return type. In both
* cases, the array must be explicitly sized."
*/
if (return_type->is_unsized_array()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"function `%s' return type array must be explicitly "
"sized", name);
}
/* From section 4.1.7 of the GLSL 4.40 spec:
*
* "[Opaque types] can only be declared as function parameters
* or uniform-qualified variables."
*/
if (return_type->contains_opaque()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state,
"function `%s' return type can't contain an opaque type",
name);
}
/* Create an ir_function if one doesn't already exist. */
f = state->symbols->get_function(name);
if (f == NULL) {
f = new(ctx) ir_function(name);
if (!this->return_type->qualifier.flags.q.subroutine) {
if (!state->symbols->add_function(f)) {
/* This function name shadows a non-function use of the same name. */
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
"non-function", name);
return NULL;
}
}
emit_function(state, f);
}
/* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
*
* "A shader cannot redefine or overload built-in functions."
*
* While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
*
* "User code can overload the built-in functions but cannot redefine
* them."
*/
if (state->es_shader && state->language_version >= 300) {
/* Local shader has no exact candidates; check the built-ins. */
_mesa_glsl_initialize_builtin_functions();
if (_mesa_glsl_find_builtin_function_by_name(name)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"A shader cannot redefine or overload built-in "
"function `%s' in GLSL ES 3.00", name);
return NULL;
}
}
/* Verify that this function's signature either doesn't match a previously
* seen signature for a function with the same name, or, if a match is found,
* that the previously seen signature does not have an associated definition.
*/
if (state->es_shader || f->has_user_signature()) {
sig = f->exact_matching_signature(state, &hir_parameters);
if (sig != NULL) {
const char *badvar = sig->qualifiers_match(&hir_parameters);
if (badvar != NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
"qualifiers don't match prototype", name, badvar);
}
if (sig->return_type != return_type) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
"match prototype", name);
}
if (sig->is_defined) {
if (is_definition) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function `%s' redefined", name);
} else {
/* We just encountered a prototype that exactly matches a
* function that's already been defined. This is redundant,
* and we should ignore it.
*/
return NULL;
}
}
}
}
/* Verify the return type of main() */
if (strcmp(name, "main") == 0) {
if (! return_type->is_void()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "main() must return void");
}
if (!hir_parameters.is_empty()) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "main() must not take any parameters");
}
}
/* Finish storing the information about this new function in its signature.
*/
if (sig == NULL) {
sig = new(ctx) ir_function_signature(return_type);
f->add_signature(sig);
}
sig->replace_parameters(&hir_parameters);
signature = sig;
if (this->return_type->qualifier.flags.q.subroutine_def) {
int idx;
f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
f->subroutine_types = ralloc_array(state, const struct glsl_type *,
f->num_subroutine_types);
idx = 0;
foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
const struct glsl_type *type;
/* the subroutine type must be already declared */
type = state->symbols->get_type(decl->identifier);
if (!type) {
_mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
}
f->subroutine_types[idx++] = type;
}
state->subroutines = (ir_function **)reralloc(state, state->subroutines,
ir_function *,
state->num_subroutines + 1);
state->subroutines[state->num_subroutines] = f;
state->num_subroutines++;
}
if (this->return_type->qualifier.flags.q.subroutine) {
if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
_mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
return NULL;
}
state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
ir_function *,
state->num_subroutine_types + 1);
state->subroutine_types[state->num_subroutine_types] = f;
state->num_subroutine_types++;
f->is_subroutine = true;
}
/* Function declarations (prototypes) do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_function_definition::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
prototype->is_definition = true;
prototype->hir(instructions, state);
ir_function_signature *signature = prototype->signature;
if (signature == NULL)
return NULL;
assert(state->current_function == NULL);
state->current_function = signature;
state->found_return = false;
/* Duplicate parameters declared in the prototype as concrete variables.
* Add these to the symbol table.
*/
state->symbols->push_scope();
foreach_in_list(ir_variable, var, &signature->parameters) {
assert(var->as_variable() != NULL);
/* The only way a parameter would "exist" is if two parameters have
* the same name.
*/
if (state->symbols->name_declared_this_scope(var->name)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
} else {
state->symbols->add_variable(var);
}
}
/* Convert the body of the function to HIR. */
this->body->hir(&signature->body, state);
signature->is_defined = true;
state->symbols->pop_scope();
assert(state->current_function == signature);
state->current_function = NULL;
if (!signature->return_type->is_void() && !state->found_return) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
"%s, but no return statement",
signature->function_name(),
signature->return_type->name);
}
/* Function definitions do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_jump_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
switch (mode) {
case ast_return: {
ir_return *inst;
assert(state->current_function);
if (opt_return_value) {
ir_rvalue *ret = opt_return_value->hir(instructions, state);
/* The value of the return type can be NULL if the shader says
* 'return foo();' and foo() is a function that returns void.
*
* NOTE: The GLSL spec doesn't say that this is an error. The type
* of the return value is void. If the return type of the function is
* also void, then this should compile without error. Seriously.
*/
const glsl_type *const ret_type =
(ret == NULL) ? glsl_type::void_type : ret->type;
/* Implicit conversions are not allowed for return values prior to
* ARB_shading_language_420pack.
*/
if (state->current_function->return_type != ret_type) {
YYLTYPE loc = this->get_location();
if (state->ARB_shading_language_420pack_enable) {
if (!apply_implicit_conversion(state->current_function->return_type,
ret, state)) {
_mesa_glsl_error(& loc, state,
"could not implicitly convert return value "
"to %s, in function `%s'",
state->current_function->return_type->name,
state->current_function->function_name());
}
} else {
_mesa_glsl_error(& loc, state,
"`return' with wrong type %s, in function `%s' "
"returning %s",
ret_type->name,
state->current_function->function_name(),
state->current_function->return_type->name);
}
} else if (state->current_function->return_type->base_type ==
GLSL_TYPE_VOID) {
YYLTYPE loc = this->get_location();
/* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
* specs add a clarification:
*
* "A void function can only use return without a return argument, even if
* the return argument has void type. Return statements only accept values:
*
* void func1() { }
* void func2() { return func1(); } // illegal return statement"
*/
_mesa_glsl_error(& loc, state,
"void functions can only use `return' without a "
"return argument");
}
inst = new(ctx) ir_return(ret);
} else {
if (state->current_function->return_type->base_type !=
GLSL_TYPE_VOID) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`return' with no value, in function %s returning "
"non-void",
state->current_function->function_name());
}
inst = new(ctx) ir_return;
}
state->found_return = true;
instructions->push_tail(inst);
break;
}
case ast_discard:
if (state->stage != MESA_SHADER_FRAGMENT) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"`discard' may only appear in a fragment shader");
}
instructions->push_tail(new(ctx) ir_discard);
break;
case ast_break:
case ast_continue:
if (mode == ast_continue &&
state->loop_nesting_ast == NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state, "continue may only appear in a loop");
} else if (mode == ast_break &&
state->loop_nesting_ast == NULL &&
state->switch_state.switch_nesting_ast == NULL) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"break may only appear in a loop or a switch");
} else {
/* For a loop, inline the for loop expression again, since we don't
* know where near the end of the loop body the normal copy of it is
* going to be placed. Same goes for the condition for a do-while
* loop.
*/
if (state->loop_nesting_ast != NULL &&
mode == ast_continue && !state->switch_state.is_switch_innermost) {
if (state->loop_nesting_ast->rest_expression) {
state->loop_nesting_ast->rest_expression->hir(instructions,
state);
}
if (state->loop_nesting_ast->mode ==
ast_iteration_statement::ast_do_while) {
state->loop_nesting_ast->condition_to_hir(instructions, state);
}
}
if (state->switch_state.is_switch_innermost &&
mode == ast_continue) {
/* Set 'continue_inside' to true. */
ir_rvalue *const true_val = new (ctx) ir_constant(true);
ir_dereference_variable *deref_continue_inside_var =
new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
true_val));
/* Break out from the switch, continue for the loop will
* be called right after switch. */
ir_loop_jump *const jump =
new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
instructions->push_tail(jump);
} else if (state->switch_state.is_switch_innermost &&
mode == ast_break) {
/* Force break out of switch by inserting a break. */
ir_loop_jump *const jump =
new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
instructions->push_tail(jump);
} else {
ir_loop_jump *const jump =
new(ctx) ir_loop_jump((mode == ast_break)
? ir_loop_jump::jump_break
: ir_loop_jump::jump_continue);
instructions->push_tail(jump);
}
}
break;
}
/* Jump instructions do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_selection_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_rvalue *const condition = this->condition->hir(instructions, state);
/* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
*
* "Any expression whose type evaluates to a Boolean can be used as the
* conditional expression bool-expression. Vector types are not accepted
* as the expression to if."
*
* The checks are separated so that higher quality diagnostics can be
* generated for cases where both rules are violated.
*/
if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
YYLTYPE loc = this->condition->get_location();
_mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
"boolean");
}
ir_if *const stmt = new(ctx) ir_if(condition);
if (then_statement != NULL) {
state->symbols->push_scope();
then_statement->hir(& stmt->then_instructions, state);
state->symbols->pop_scope();
}
if (else_statement != NULL) {
state->symbols->push_scope();
else_statement->hir(& stmt->else_instructions, state);
state->symbols->pop_scope();
}
instructions->push_tail(stmt);
/* if-statements do not have r-values.
*/
return NULL;
}
ir_rvalue *
ast_switch_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_rvalue *const test_expression =
this->test_expression->hir(instructions, state);
/* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
*
* "The type of init-expression in a switch statement must be a
* scalar integer."
*/
if (!test_expression->type->is_scalar() ||
!test_expression->type->is_integer()) {
YYLTYPE loc = this->test_expression->get_location();
_mesa_glsl_error(& loc,
state,
"switch-statement expression must be scalar "
"integer");
}
/* Track the switch-statement nesting in a stack-like manner.
*/
struct glsl_switch_state saved = state->switch_state;
state->switch_state.is_switch_innermost = true;
state->switch_state.switch_nesting_ast = this;
state->switch_state.labels_ht = hash_table_ctor(0, hash_table_pointer_hash,
hash_table_pointer_compare);
state->switch_state.previous_default = NULL;
/* Initalize is_fallthru state to false.
*/
ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
state->switch_state.is_fallthru_var =
new(ctx) ir_variable(glsl_type::bool_type,
"switch_is_fallthru_tmp",
ir_var_temporary);
instructions->push_tail(state->switch_state.is_fallthru_var);
ir_dereference_variable *deref_is_fallthru_var =
new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
is_fallthru_val));
/* Initialize continue_inside state to false.
*/
state->switch_state.continue_inside =
new(ctx) ir_variable(glsl_type::bool_type,
"continue_inside_tmp",
ir_var_temporary);
instructions->push_tail(state->switch_state.continue_inside);
ir_rvalue *const false_val = new (ctx) ir_constant(false);
ir_dereference_variable *deref_continue_inside_var =
new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
false_val));
state->switch_state.run_default =
new(ctx) ir_variable(glsl_type::bool_type,
"run_default_tmp",
ir_var_temporary);
instructions->push_tail(state->switch_state.run_default);
/* Loop around the switch is used for flow control. */
ir_loop * loop = new(ctx) ir_loop();
instructions->push_tail(loop);
/* Cache test expression.
*/
test_to_hir(&loop->body_instructions, state);
/* Emit code for body of switch stmt.
*/
body->hir(&loop->body_instructions, state);
/* Insert a break at the end to exit loop. */
ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
loop->body_instructions.push_tail(jump);
/* If we are inside loop, check if continue got called inside switch. */
if (state->loop_nesting_ast != NULL) {
ir_dereference_variable *deref_continue_inside =
new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
ir_if *irif = new(ctx) ir_if(deref_continue_inside);
ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
if (state->loop_nesting_ast != NULL) {
if (state->loop_nesting_ast->rest_expression) {
state->loop_nesting_ast->rest_expression->hir(&irif->then_instructions,
state);
}
if (state->loop_nesting_ast->mode ==
ast_iteration_statement::ast_do_while) {
state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
}
}
irif->then_instructions.push_tail(jump);
instructions->push_tail(irif);
}
hash_table_dtor(state->switch_state.labels_ht);
state->switch_state = saved;
/* Switch statements do not have r-values. */
return NULL;
}
void
ast_switch_statement::test_to_hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* Cache value of test expression. */
ir_rvalue *const test_val =
test_expression->hir(instructions,
state);
state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
"switch_test_tmp",
ir_var_temporary);
ir_dereference_variable *deref_test_var =
new(ctx) ir_dereference_variable(state->switch_state.test_var);
instructions->push_tail(state->switch_state.test_var);
instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
}
ir_rvalue *
ast_switch_body::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (stmts != NULL)
stmts->hir(instructions, state);
/* Switch bodies do not have r-values. */
return NULL;
}
ir_rvalue *
ast_case_statement_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
exec_list default_case, after_default, tmp;
foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
case_stmt->hir(&tmp, state);
/* Default case. */
if (state->switch_state.previous_default && default_case.is_empty()) {
default_case.append_list(&tmp);
continue;
}
/* If default case found, append 'after_default' list. */
if (!default_case.is_empty())
after_default.append_list(&tmp);
else
instructions->append_list(&tmp);
}
/* Handle the default case. This is done here because default might not be
* the last case. We need to add checks against following cases first to see
* if default should be chosen or not.
*/
if (!default_case.is_empty()) {
ir_rvalue *const true_val = new (state) ir_constant(true);
ir_dereference_variable *deref_run_default_var =
new(state) ir_dereference_variable(state->switch_state.run_default);
/* Choose to run default case initially, following conditional
* assignments might change this.
*/
ir_assignment *const init_var =
new(state) ir_assignment(deref_run_default_var, true_val);
instructions->push_tail(init_var);
/* Default case was the last one, no checks required. */
if (after_default.is_empty()) {
instructions->append_list(&default_case);
return NULL;
}
foreach_in_list(ir_instruction, ir, &after_default) {
ir_assignment *assign = ir->as_assignment();
if (!assign)
continue;
/* Clone the check between case label and init expression. */
ir_expression *exp = (ir_expression*) assign->condition;
ir_expression *clone = exp->clone(state, NULL);
ir_dereference_variable *deref_var =
new(state) ir_dereference_variable(state->switch_state.run_default);
ir_rvalue *const false_val = new (state) ir_constant(false);
ir_assignment *const set_false =
new(state) ir_assignment(deref_var, false_val, clone);
instructions->push_tail(set_false);
}
/* Append default case and all cases after it. */
instructions->append_list(&default_case);
instructions->append_list(&after_default);
}
/* Case statements do not have r-values. */
return NULL;
}
ir_rvalue *
ast_case_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
labels->hir(instructions, state);
/* Guard case statements depending on fallthru state. */
ir_dereference_variable *const deref_fallthru_guard =
new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
foreach_list_typed (ast_node, stmt, link, & this->stmts)
stmt->hir(& test_fallthru->then_instructions, state);
instructions->push_tail(test_fallthru);
/* Case statements do not have r-values. */
return NULL;
}
ir_rvalue *
ast_case_label_list::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
foreach_list_typed (ast_case_label, label, link, & this->labels)
label->hir(instructions, state);
/* Case labels do not have r-values. */
return NULL;
}
ir_rvalue *
ast_case_label::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
ir_dereference_variable *deref_fallthru_var =
new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
ir_rvalue *const true_val = new(ctx) ir_constant(true);
/* If not default case, ... */
if (this->test_value != NULL) {
/* Conditionally set fallthru state based on
* comparison of cached test expression value to case label.
*/
ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
ir_constant *label_const = label_rval->constant_expression_value();
if (!label_const) {
YYLTYPE loc = this->test_value->get_location();
_mesa_glsl_error(& loc, state,
"switch statement case label must be a "
"constant expression");
/* Stuff a dummy value in to allow processing to continue. */
label_const = new(ctx) ir_constant(0);
} else {
ast_expression *previous_label = (ast_expression *)
hash_table_find(state->switch_state.labels_ht,
(void *)(uintptr_t)label_const->value.u[0]);
if (previous_label) {
YYLTYPE loc = this->test_value->get_location();
_mesa_glsl_error(& loc, state, "duplicate case value");
loc = previous_label->get_location();
_mesa_glsl_error(& loc, state, "this is the previous case label");
} else {
hash_table_insert(state->switch_state.labels_ht,
this->test_value,
(void *)(uintptr_t)label_const->value.u[0]);
}
}
ir_dereference_variable *deref_test_var =
new(ctx) ir_dereference_variable(state->switch_state.test_var);
ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
label_const,
deref_test_var);
/*
* From GLSL 4.40 specification section 6.2 ("Selection"):
*
* "The type of the init-expression value in a switch statement must
* be a scalar int or uint. The type of the constant-expression value
* in a case label also must be a scalar int or uint. When any pair
* of these values is tested for "equal value" and the types do not
* match, an implicit conversion will be done to convert the int to a
* uint (see section 4.1.10 “Implicit Conversions”) before the compare
* is done."
*/
if (label_const->type != state->switch_state.test_var->type) {
YYLTYPE loc = this->test_value->get_location();
const glsl_type *type_a = label_const->type;
const glsl_type *type_b = state->switch_state.test_var->type;
/* Check if int->uint implicit conversion is supported. */
bool integer_conversion_supported =
glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
state);
if ((!type_a->is_integer() || !type_b->is_integer()) ||
!integer_conversion_supported) {
_mesa_glsl_error(&loc, state, "type mismatch with switch "
"init-expression and case label (%s != %s)",
type_a->name, type_b->name);
} else {
/* Conversion of the case label. */
if (type_a->base_type == GLSL_TYPE_INT) {
if (!apply_implicit_conversion(glsl_type::uint_type,
test_cond->operands[0], state))
_mesa_glsl_error(&loc, state, "implicit type conversion error");
} else {
/* Conversion of the init-expression value. */
if (!apply_implicit_conversion(glsl_type::uint_type,
test_cond->operands[1], state))
_mesa_glsl_error(&loc, state, "implicit type conversion error");
}
}
}
ir_assignment *set_fallthru_on_test =
new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
instructions->push_tail(set_fallthru_on_test);
} else { /* default case */
if (state->switch_state.previous_default) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(& loc, state,
"multiple default labels in one switch");
loc = state->switch_state.previous_default->get_location();
_mesa_glsl_error(& loc, state, "this is the first default label");
}
state->switch_state.previous_default = this;
/* Set fallthru condition on 'run_default' bool. */
ir_dereference_variable *deref_run_default =
new(ctx) ir_dereference_variable(state->switch_state.run_default);
ir_rvalue *const cond_true = new(ctx) ir_constant(true);
ir_expression *test_cond = new(ctx) ir_expression(ir_binop_all_equal,
cond_true,
deref_run_default);
/* Set falltrhu state. */
ir_assignment *set_fallthru =
new(ctx) ir_assignment(deref_fallthru_var, true_val, test_cond);
instructions->push_tail(set_fallthru);
}
/* Case statements do not have r-values. */
return NULL;
}
void
ast_iteration_statement::condition_to_hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
if (condition != NULL) {
ir_rvalue *const cond =
condition->hir(instructions, state);
if ((cond == NULL)
|| !cond->type->is_boolean() || !cond->type->is_scalar()) {
YYLTYPE loc = condition->get_location();
_mesa_glsl_error(& loc, state,
"loop condition must be scalar boolean");
} else {
/* As the first code in the loop body, generate a block that looks
* like 'if (!condition) break;' as the loop termination condition.
*/
ir_rvalue *const not_cond =
new(ctx) ir_expression(ir_unop_logic_not, cond);
ir_if *const if_stmt = new(ctx) ir_if(not_cond);
ir_jump *const break_stmt =
new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
if_stmt->then_instructions.push_tail(break_stmt);
instructions->push_tail(if_stmt);
}
}
}
ir_rvalue *
ast_iteration_statement::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
void *ctx = state;
/* For-loops and while-loops start a new scope, but do-while loops do not.
*/
if (mode != ast_do_while)
state->symbols->push_scope();
if (init_statement != NULL)
init_statement->hir(instructions, state);
ir_loop *const stmt = new(ctx) ir_loop();
instructions->push_tail(stmt);
/* Track the current loop nesting. */
ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
state->loop_nesting_ast = this;
/* Likewise, indicate that following code is closest to a loop,
* NOT closest to a switch.
*/
bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
state->switch_state.is_switch_innermost = false;
if (mode != ast_do_while)
condition_to_hir(&stmt->body_instructions, state);
if (body != NULL)
body->hir(& stmt->body_instructions, state);
if (rest_expression != NULL)
rest_expression->hir(& stmt->body_instructions, state);
if (mode == ast_do_while)
condition_to_hir(&stmt->body_instructions, state);
if (mode != ast_do_while)
state->symbols->pop_scope();
/* Restore previous nesting before returning. */
state->loop_nesting_ast = nesting_ast;
state->switch_state.is_switch_innermost = saved_is_switch_innermost;
/* Loops do not have r-values.
*/
return NULL;
}
/**
* Determine if the given type is valid for establishing a default precision
* qualifier.
*
* From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
*
* "The precision statement
*
* precision precision-qualifier type;
*
* can be used to establish a default precision qualifier. The type field
* can be either int or float or any of the sampler types, and the
* precision-qualifier can be lowp, mediump, or highp."
*
* GLSL ES 1.00 has similar language. GLSL 1.30 doesn't allow precision
* qualifiers on sampler types, but this seems like an oversight (since the
* intention of including these in GLSL 1.30 is to allow compatibility with ES
* shaders). So we allow int, float, and all sampler types regardless of GLSL
* version.
*/
static bool
is_valid_default_precision_type(const struct glsl_type *const type)
{
if (type == NULL)
return false;
switch (type->base_type) {
case GLSL_TYPE_INT:
case GLSL_TYPE_FLOAT:
/* "int" and "float" are valid, but vectors and matrices are not. */
return type->vector_elements == 1 && type->matrix_columns == 1;
case GLSL_TYPE_SAMPLER:
case GLSL_TYPE_IMAGE:
case GLSL_TYPE_ATOMIC_UINT:
return true;
default:
return false;
}
}
ir_rvalue *
ast_type_specifier::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
if (this->default_precision == ast_precision_none && this->structure == NULL)
return NULL;
YYLTYPE loc = this->get_location();
/* If this is a precision statement, check that the type to which it is
* applied is either float or int.
*
* From section 4.5.3 of the GLSL 1.30 spec:
* "The precision statement
* precision precision-qualifier type;
* can be used to establish a default precision qualifier. The type
* field can be either int or float [...]. Any other types or
* qualifiers will result in an error.
*/
if (this->default_precision != ast_precision_none) {
if (!state->check_precision_qualifiers_allowed(&loc))
return NULL;
if (this->structure != NULL) {
_mesa_glsl_error(&loc, state,
"precision qualifiers do not apply to structures");
return NULL;
}
if (this->array_specifier != NULL) {
_mesa_glsl_error(&loc, state,
"default precision statements do not apply to "
"arrays");
return NULL;
}
const struct glsl_type *const type =
state->symbols->get_type(this->type_name);
if (!is_valid_default_precision_type(type)) {
_mesa_glsl_error(&loc, state,
"default precision statements apply only to "
"float, int, and opaque types");
return NULL;
}
if (type->base_type == GLSL_TYPE_FLOAT
&& state->es_shader
&& state->stage == MESA_SHADER_FRAGMENT) {
/* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
* spec says:
*
* "The fragment language has no default precision qualifier for
* floating point types."
*
* As a result, we have to track whether or not default precision has
* been specified for float in GLSL ES fragment shaders.
*
* Earlier in that same section, the spec says:
*
* "Non-precision qualified declarations will use the precision
* qualifier specified in the most recent precision statement
* that is still in scope. The precision statement has the same
* scoping rules as variable declarations. If it is declared
* inside a compound statement, its effect stops at the end of
* the innermost statement it was declared in. Precision
* statements in nested scopes override precision statements in
* outer scopes. Multiple precision statements for the same basic
* type can appear inside the same scope, with later statements
* overriding earlier statements within that scope."
*
* Default precision specifications follow the same scope rules as
* variables. So, we can track the state of the default float
* precision in the symbol table, and the rules will just work. This
* is a slight abuse of the symbol table, but it has the semantics
* that we want.
*/
ir_variable *const junk =
new(state) ir_variable(type, "#default precision",
ir_var_auto);
state->symbols->add_variable(junk);
}
/* FINISHME: Translate precision statements into IR. */
return NULL;
}
/* _mesa_ast_set_aggregate_type() sets the <structure> field so that
* process_record_constructor() can do type-checking on C-style initializer
* expressions of structs, but ast_struct_specifier should only be translated
* to HIR if it is declaring the type of a structure.
*
* The ->is_declaration field is false for initializers of variables
* declared separately from the struct's type definition.
*
* struct S { ... }; (is_declaration = true)
* struct T { ... } t = { ... }; (is_declaration = true)
* S s = { ... }; (is_declaration = false)
*/
if (this->structure != NULL && this->structure->is_declaration)
return this->structure->hir(instructions, state);
return NULL;
}
/**
* Process a structure or interface block tree into an array of structure fields
*
* After parsing, where there are some syntax differnces, structures and
* interface blocks are almost identical. They are similar enough that the
* AST for each can be processed the same way into a set of
* \c glsl_struct_field to describe the members.
*
* If we're processing an interface block, var_mode should be the type of the
* interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
* ir_var_shader_storage). If we're processing a structure, var_mode should be
* ir_var_auto.
*
* \return
* The number of fields processed. A pointer to the array structure fields is
* stored in \c *fields_ret.
*/
unsigned
ast_process_structure_or_interface_block(exec_list *instructions,
struct _mesa_glsl_parse_state *state,
exec_list *declarations,
YYLTYPE &loc,
glsl_struct_field **fields_ret,
bool is_interface,
enum glsl_matrix_layout matrix_layout,
bool allow_reserved_names,
ir_variable_mode var_mode,
ast_type_qualifier *layout)
{
unsigned decl_count = 0;
/* For blocks that accept memory qualifiers (i.e. shader storage), verify
* that we don't have incompatible qualifiers
*/
if (layout && layout->flags.q.read_only && layout->flags.q.write_only) {
_mesa_glsl_error(&loc, state,
"Interface block sets both readonly and writeonly");
}
/* Make an initial pass over the list of fields to determine how
* many there are. Each element in this list is an ast_declarator_list.
* This means that we actually need to count the number of elements in the
* 'declarations' list in each of the elements.
*/
foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
decl_count += decl_list->declarations.length();
}
/* Allocate storage for the fields and process the field
* declarations. As the declarations are processed, try to also convert
* the types to HIR. This ensures that structure definitions embedded in
* other structure definitions or in interface blocks are processed.
*/
glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
decl_count);
unsigned i = 0;
foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
const char *type_name;
decl_list->type->specifier->hir(instructions, state);
/* Section 10.9 of the GLSL ES 1.00 specification states that
* embedded structure definitions have been removed from the language.
*/
if (state->es_shader && decl_list->type->specifier->structure != NULL) {
_mesa_glsl_error(&loc, state, "embedded structure definitions are "
"not allowed in GLSL ES 1.00");
}
const glsl_type *decl_type =
decl_list->type->glsl_type(& type_name, state);
foreach_list_typed (ast_declaration, decl, link,
&decl_list->declarations) {
if (!allow_reserved_names)
validate_identifier(decl->identifier, loc, state);
/* From section 4.3.9 of the GLSL 4.40 spec:
*
* "[In interface blocks] opaque types are not allowed."
*
* It should be impossible for decl_type to be NULL here. Cases that
* might naturally lead to decl_type being NULL, especially for the
* is_interface case, will have resulted in compilation having
* already halted due to a syntax error.
*/
const struct glsl_type *field_type =
decl_type != NULL ? decl_type : glsl_type::error_type;
if (is_interface && field_type->contains_opaque()) {
YYLTYPE loc = decl_list->get_location();
_mesa_glsl_error(&loc, state,
"uniform/buffer in non-default interface block contains "
"opaque variable");
}
if (field_type->contains_atomic()) {
/* From section 4.1.7.3 of the GLSL 4.40 spec:
*
* "Members of structures cannot be declared as atomic counter
* types."
*/
YYLTYPE loc = decl_list->get_location();
_mesa_glsl_error(&loc, state, "atomic counter in structure, "
"shader storage block or uniform block");
}
if (field_type->contains_image()) {
/* FINISHME: Same problem as with atomic counters.
* FINISHME: Request clarification from Khronos and add
* FINISHME: spec quotation here.
*/
YYLTYPE loc = decl_list->get_location();
_mesa_glsl_error(&loc, state,
"image in structure, shader storage block or "
"uniform block");
}
const struct ast_type_qualifier *const qual =
& decl_list->type->qualifier;
if (qual->flags.q.std140 ||
qual->flags.q.std430 ||
qual->flags.q.packed ||
qual->flags.q.shared) {
_mesa_glsl_error(&loc, state,
"uniform/shader storage block layout qualifiers "
"std140, std430, packed, and shared can only be "
"applied to uniform/shader storage blocks, not "
"members");
}
if (qual->flags.q.constant) {
YYLTYPE loc = decl_list->get_location();
_mesa_glsl_error(&loc, state,
"const storage qualifier cannot be applied "
"to struct or interface block members");
}
field_type = process_array_type(&loc, decl_type,
decl->array_specifier, state);
fields[i].type = field_type;
fields[i].name = decl->identifier;
fields[i].location = -1;
fields[i].interpolation =
interpret_interpolation_qualifier(qual, var_mode, state, &loc);
fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
fields[i].sample = qual->flags.q.sample ? 1 : 0;
fields[i].patch = qual->flags.q.patch ? 1 : 0;
/* Only save explicitly defined streams in block's field */
fields[i].stream = qual->flags.q.explicit_stream ? qual->stream : -1;
if (qual->flags.q.row_major || qual->flags.q.column_major) {
if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
_mesa_glsl_error(&loc, state,
"row_major and column_major can only be "
"applied to interface blocks");
} else
validate_matrix_layout_for_type(state, &loc, field_type, NULL);
}
if (qual->flags.q.uniform && qual->has_interpolation()) {
_mesa_glsl_error(&loc, state,
"interpolation qualifiers cannot be used "
"with uniform interface blocks");
}
if ((qual->flags.q.uniform || !is_interface) &&
qual->has_auxiliary_storage()) {
_mesa_glsl_error(&loc, state,
"auxiliary storage qualifiers cannot be used "
"in uniform blocks or structures.");
}
/* Propogate row- / column-major information down the fields of the
* structure or interface block. Structures need this data because
* the structure may contain a structure that contains ... a matrix
* that need the proper layout.
*/
if (field_type->without_array()->is_matrix()
|| field_type->without_array()->is_record()) {
/* If no layout is specified for the field, inherit the layout
* from the block.
*/
fields[i].matrix_layout = matrix_layout;
if (qual->flags.q.row_major)
fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
else if (qual->flags.q.column_major)
fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
/* If we're processing an interface block, the matrix layout must
* be decided by this point.
*/
assert(!is_interface
|| fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
|| fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
}
/* Image qualifiers are allowed on buffer variables, which can only
* be defined inside shader storage buffer objects
*/
if (layout && var_mode == ir_var_shader_storage) {
if (qual->flags.q.read_only && qual->flags.q.write_only) {
_mesa_glsl_error(&loc, state,
"buffer variable `%s' can't be "
"readonly and writeonly.", fields[i].name);
}
/* For readonly and writeonly qualifiers the field definition,
* if set, overwrites the layout qualifier.
*/
bool read_only = layout->flags.q.read_only;
bool write_only = layout->flags.q.write_only;
if (qual->flags.q.read_only) {
read_only = true;
write_only = false;
} else if (qual->flags.q.write_only) {
read_only = false;
write_only = true;
}
fields[i].image_read_only = read_only;
fields[i].image_write_only = write_only;
/* For other qualifiers, we set the flag if either the layout
* qualifier or the field qualifier are set
*/
fields[i].image_coherent = qual->flags.q.coherent ||
layout->flags.q.coherent;
fields[i].image_volatile = qual->flags.q._volatile ||
layout->flags.q._volatile;
fields[i].image_restrict = qual->flags.q.restrict_flag ||
layout->flags.q.restrict_flag;
}
i++;
}
}
assert(i == decl_count);
*fields_ret = fields;
return decl_count;
}
ir_rvalue *
ast_struct_specifier::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
*
* "Anonymous structures are not supported; so embedded structures must
* have a declarator. A name given to an embedded struct is scoped at
* the same level as the struct it is embedded in."
*
* The same section of the GLSL 1.20 spec says:
*
* "Anonymous structures are not supported. Embedded structures are not
* supported.
*
* struct S { float f; };
* struct T {
* S; // Error: anonymous structures disallowed
* struct { ... }; // Error: embedded structures disallowed
* S s; // Okay: nested structures with name are allowed
* };"
*
* The GLSL ES 1.00 and 3.00 specs have similar langauge and examples. So,
* we allow embedded structures in 1.10 only.
*/
if (state->language_version != 110 && state->struct_specifier_depth != 0)
_mesa_glsl_error(&loc, state,
"embedded structure declarations are not allowed");
state->struct_specifier_depth++;
glsl_struct_field *fields;
unsigned decl_count =
ast_process_structure_or_interface_block(instructions,
state,
&this->declarations,
loc,
&fields,
false,
GLSL_MATRIX_LAYOUT_INHERITED,
false /* allow_reserved_names */,
ir_var_auto,
NULL);
validate_identifier(this->name, loc, state);
const glsl_type *t =
glsl_type::get_record_instance(fields, decl_count, this->name);
if (!state->symbols->add_type(name, t)) {
_mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
} else {
const glsl_type **s = reralloc(state, state->user_structures,
const glsl_type *,
state->num_user_structures + 1);
if (s != NULL) {
s[state->num_user_structures] = t;
state->user_structures = s;
state->num_user_structures++;
}
}
state->struct_specifier_depth--;
/* Structure type definitions do not have r-values.
*/
return NULL;
}
/**
* Visitor class which detects whether a given interface block has been used.
*/
class interface_block_usage_visitor : public ir_hierarchical_visitor
{
public:
interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
: mode(mode), block(block), found(false)
{
}
virtual ir_visitor_status visit(ir_dereference_variable *ir)
{
if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
found = true;
return visit_stop;
}
return visit_continue;
}
bool usage_found() const
{
return this->found;
}
private:
ir_variable_mode mode;
const glsl_type *block;
bool found;
};
static bool
is_unsized_array_last_element(ir_variable *v)
{
const glsl_type *interface_type = v->get_interface_type();
int length = interface_type->length;
assert(v->type->is_unsized_array());
/* Check if it is the last element of the interface */
if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
return true;
return false;
}
ir_rvalue *
ast_interface_block::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* Interface blocks must be declared at global scope */
if (state->current_function != NULL) {
_mesa_glsl_error(&loc, state,
"Interface block `%s' must be declared "
"at global scope",
this->block_name);
}
if (!this->layout.flags.q.buffer &&
this->layout.flags.q.std430) {
_mesa_glsl_error(&loc, state,
"std430 storage block layout qualifier is supported "
"only for shader storage blocks");
}
/* The ast_interface_block has a list of ast_declarator_lists. We
* need to turn those into ir_variables with an association
* with this uniform block.
*/
enum glsl_interface_packing packing;
if (this->layout.flags.q.shared) {
packing = GLSL_INTERFACE_PACKING_SHARED;
} else if (this->layout.flags.q.packed) {
packing = GLSL_INTERFACE_PACKING_PACKED;
} else if (this->layout.flags.q.std430) {
packing = GLSL_INTERFACE_PACKING_STD430;
} else {
/* The default layout is std140.
*/
packing = GLSL_INTERFACE_PACKING_STD140;
}
ir_variable_mode var_mode;
const char *iface_type_name;
if (this->layout.flags.q.in) {
var_mode = ir_var_shader_in;
iface_type_name = "in";
} else if (this->layout.flags.q.out) {
var_mode = ir_var_shader_out;
iface_type_name = "out";
} else if (this->layout.flags.q.uniform) {
var_mode = ir_var_uniform;
iface_type_name = "uniform";
} else if (this->layout.flags.q.buffer) {
var_mode = ir_var_shader_storage;
iface_type_name = "buffer";
} else {
var_mode = ir_var_auto;
iface_type_name = "UNKNOWN";
assert(!"interface block layout qualifier not found!");
}
enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
if (this->layout.flags.q.row_major)
matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
else if (this->layout.flags.q.column_major)
matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
exec_list declared_variables;
glsl_struct_field *fields;
/* Treat an interface block as one level of nesting, so that embedded struct
* specifiers will be disallowed.
*/
state->struct_specifier_depth++;
unsigned int num_variables =
ast_process_structure_or_interface_block(&declared_variables,
state,
&this->declarations,
loc,
&fields,
true,
matrix_layout,
redeclaring_per_vertex,
var_mode,
&this->layout);
state->struct_specifier_depth--;
if (!redeclaring_per_vertex) {
validate_identifier(this->block_name, loc, state);
/* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
*
* "Block names have no other use within a shader beyond interface
* matching; it is a compile-time error to use a block name at global
* scope for anything other than as a block name."
*/
ir_variable *var = state->symbols->get_variable(this->block_name);
if (var && !var->type->is_interface()) {
_mesa_glsl_error(&loc, state, "Block name `%s' is "
"already used in the scope.",
this->block_name);
}
}
const glsl_type *earlier_per_vertex = NULL;
if (redeclaring_per_vertex) {
/* Find the previous declaration of gl_PerVertex. If we're redeclaring
* the named interface block gl_in, we can find it by looking at the
* previous declaration of gl_in. Otherwise we can find it by looking
* at the previous decalartion of any of the built-in outputs,
* e.g. gl_Position.
*
* Also check that the instance name and array-ness of the redeclaration
* are correct.
*/
switch (var_mode) {
case ir_var_shader_in:
if (ir_variable *earlier_gl_in =
state->symbols->get_variable("gl_in")) {
earlier_per_vertex = earlier_gl_in->get_interface_type();
} else {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex input not allowed "
"in the %s shader",
_mesa_shader_stage_to_string(state->stage));
}
if (this->instance_name == NULL ||
strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL) {
_mesa_glsl_error(&loc, state,
"gl_PerVertex input must be redeclared as "
"gl_in[]");
}
break;
case ir_var_shader_out:
if (ir_variable *earlier_gl_Position =
state->symbols->get_variable("gl_Position")) {
earlier_per_vertex = earlier_gl_Position->get_interface_type();
} else if (ir_variable *earlier_gl_out =
state->symbols->get_variable("gl_out")) {
earlier_per_vertex = earlier_gl_out->get_interface_type();
} else {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex output not "
"allowed in the %s shader",
_mesa_shader_stage_to_string(state->stage));
}
if (state->stage == MESA_SHADER_TESS_CTRL) {
if (this->instance_name == NULL ||
strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
_mesa_glsl_error(&loc, state,
"gl_PerVertex output must be redeclared as "
"gl_out[]");
}
} else {
if (this->instance_name != NULL) {
_mesa_glsl_error(&loc, state,
"gl_PerVertex output may not be redeclared with "
"an instance name");
}
}
break;
default:
_mesa_glsl_error(&loc, state,
"gl_PerVertex must be declared as an input or an "
"output");
break;
}
if (earlier_per_vertex == NULL) {
/* An error has already been reported. Bail out to avoid null
* dereferences later in this function.
*/
return NULL;
}
/* Copy locations from the old gl_PerVertex interface block. */
for (unsigned i = 0; i < num_variables; i++) {
int j = earlier_per_vertex->field_index(fields[i].name);
if (j == -1) {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex must be a subset "
"of the built-in members of gl_PerVertex");
} else {
fields[i].location =
earlier_per_vertex->fields.structure[j].location;
fields[i].interpolation =
earlier_per_vertex->fields.structure[j].interpolation;
fields[i].centroid =
earlier_per_vertex->fields.structure[j].centroid;
fields[i].sample =
earlier_per_vertex->fields.structure[j].sample;
fields[i].patch =
earlier_per_vertex->fields.structure[j].patch;
}
}
/* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
* spec:
*
* If a built-in interface block is redeclared, it must appear in
* the shader before any use of any member included in the built-in
* declaration, or a compilation error will result.
*
* This appears to be a clarification to the behaviour established for
* gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
* regardless of GLSL version.
*/
interface_block_usage_visitor v(var_mode, earlier_per_vertex);
v.run(instructions);
if (v.usage_found()) {
_mesa_glsl_error(&loc, state,
"redeclaration of a built-in interface block must "
"appear before any use of any member of the "
"interface block");
}
}
const glsl_type *block_type =
glsl_type::get_interface_instance(fields,
num_variables,
packing,
this->block_name);
if (this->layout.flags.q.explicit_binding)
validate_binding_qualifier(state, &loc, block_type, &this->layout);
if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
YYLTYPE loc = this->get_location();
_mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
"already taken in the current scope",
this->block_name, iface_type_name);
}
/* Since interface blocks cannot contain statements, it should be
* impossible for the block to generate any instructions.
*/
assert(declared_variables.is_empty());
/* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
*
* Geometry shader input variables get the per-vertex values written
* out by vertex shader output variables of the same names. Since a
* geometry shader operates on a set of vertices, each input varying
* variable (or input block, see interface blocks below) needs to be
* declared as an array.
*/
if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
var_mode == ir_var_shader_in) {
_mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
} else if ((state->stage == MESA_SHADER_TESS_CTRL ||
state->stage == MESA_SHADER_TESS_EVAL) &&
this->array_specifier == NULL &&
var_mode == ir_var_shader_in) {
_mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
} else if (state->stage == MESA_SHADER_TESS_CTRL &&
this->array_specifier == NULL &&
var_mode == ir_var_shader_out) {
_mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
}
/* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
* says:
*
* "If an instance name (instance-name) is used, then it puts all the
* members inside a scope within its own name space, accessed with the
* field selector ( . ) operator (analogously to structures)."
*/
if (this->instance_name) {
if (redeclaring_per_vertex) {
/* When a built-in in an unnamed interface block is redeclared,
* get_variable_being_redeclared() calls
* check_builtin_array_max_size() to make sure that built-in array
* variables aren't redeclared to illegal sizes. But we're looking
* at a redeclaration of a named built-in interface block. So we
* have to manually call check_builtin_array_max_size() for all parts
* of the interface that are arrays.
*/
for (unsigned i = 0; i < num_variables; i++) {
if (fields[i].type->is_array()) {
const unsigned size = fields[i].type->array_size();
check_builtin_array_max_size(fields[i].name, size, loc, state);
}
}
} else {
validate_identifier(this->instance_name, loc, state);
}
ir_variable *var;
if (this->array_specifier != NULL) {
/* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
*
* For uniform blocks declared an array, each individual array
* element corresponds to a separate buffer object backing one
* instance of the block. As the array size indicates the number
* of buffer objects needed, uniform block array declarations
* must specify an array size.
*
* And a few paragraphs later:
*
* Geometry shader input blocks must be declared as arrays and
* follow the array declaration and linking rules for all
* geometry shader inputs. All other input and output block
* arrays must specify an array size.
*
* The same applies to tessellation shaders.
*
* The upshot of this is that the only circumstance where an
* interface array size *doesn't* need to be specified is on a
* geometry shader input, tessellation control shader input,
* tessellation control shader output, and tessellation evaluation
* shader input.
*/
if (this->array_specifier->is_unsized_array) {
bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
state->stage == MESA_SHADER_TESS_CTRL ||
state->stage == MESA_SHADER_TESS_EVAL;
bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
if (this->layout.flags.q.in) {
if (!allow_inputs)
_mesa_glsl_error(&loc, state,
"unsized input block arrays not allowed in "
"%s shader",
_mesa_shader_stage_to_string(state->stage));
} else if (this->layout.flags.q.out) {
if (!allow_outputs)
_mesa_glsl_error(&loc, state,
"unsized output block arrays not allowed in "
"%s shader",
_mesa_shader_stage_to_string(state->stage));
} else {
/* by elimination, this is a uniform block array */
_mesa_glsl_error(&loc, state,
"unsized uniform block arrays not allowed in "
"%s shader",
_mesa_shader_stage_to_string(state->stage));
}
}
const glsl_type *block_array_type =
process_array_type(&loc, block_type, this->array_specifier, state);
/* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
*
* * Arrays of arrays of blocks are not allowed
*/
if (state->es_shader && block_array_type->is_array() &&
block_array_type->fields.array->is_array()) {
_mesa_glsl_error(&loc, state,
"arrays of arrays interface blocks are "
"not allowed");
}
if (this->layout.flags.q.explicit_binding)
validate_binding_qualifier(state, &loc, block_array_type,
&this->layout);
var = new(state) ir_variable(block_array_type,
this->instance_name,
var_mode);
} else {
var = new(state) ir_variable(block_type,
this->instance_name,
var_mode);
}
var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
var->data.read_only = true;
if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
handle_geometry_shader_input_decl(state, loc, var);
else if ((state->stage == MESA_SHADER_TESS_CTRL ||
state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
handle_tess_shader_input_decl(state, loc, var);
else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
handle_tess_ctrl_shader_output_decl(state, loc, var);
for (unsigned i = 0; i < num_variables; i++) {
if (fields[i].type->is_unsized_array()) {
if (var_mode == ir_var_shader_storage) {
if (i != (num_variables - 1)) {
_mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
"only last member of a shader storage block "
"can be defined as unsized array",
fields[i].name);
}
} else {
/* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
*
* "If an array is declared as the last member of a shader storage
* block and the size is not specified at compile-time, it is
* sized at run-time. In all other cases, arrays are sized only
* at compile-time."
*/
if (state->es_shader) {
_mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
"only last member of a shader storage block "
"can be defined as unsized array",
fields[i].name);
}
}
}
}
if (ir_variable *earlier =
state->symbols->get_variable(this->instance_name)) {
if (!redeclaring_per_vertex) {
_mesa_glsl_error(&loc, state, "`%s' redeclared",
this->instance_name);
}
earlier->data.how_declared = ir_var_declared_normally;
earlier->type = var->type;
earlier->reinit_interface_type(block_type);
delete var;
} else {
/* Propagate the "binding" keyword into this UBO's fields;
* the UBO declaration itself doesn't get an ir_variable unless it
* has an instance name. This is ugly.
*/
var->data.explicit_binding = this->layout.flags.q.explicit_binding;
var->data.binding = this->layout.binding;
state->symbols->add_variable(var);
instructions->push_tail(var);
}
} else {
/* In order to have an array size, the block must also be declared with
* an instance name.
*/
assert(this->array_specifier == NULL);
for (unsigned i = 0; i < num_variables; i++) {
ir_variable *var =
new(state) ir_variable(fields[i].type,
ralloc_strdup(state, fields[i].name),
var_mode);
var->data.interpolation = fields[i].interpolation;
var->data.centroid = fields[i].centroid;
var->data.sample = fields[i].sample;
var->data.patch = fields[i].patch;
var->init_interface_type(block_type);
if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
var->data.read_only = true;
if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
} else {
var->data.matrix_layout = fields[i].matrix_layout;
}
if (fields[i].stream != -1 &&
((unsigned)fields[i].stream) != this->layout.stream) {
_mesa_glsl_error(&loc, state,
"stream layout qualifier on "
"interface block member `%s' does not match "
"the interface block (%d vs %d)",
var->name, fields[i].stream, this->layout.stream);
}
var->data.stream = this->layout.stream;
if (var->data.mode == ir_var_shader_storage) {
var->data.image_read_only = fields[i].image_read_only;
var->data.image_write_only = fields[i].image_write_only;
var->data.image_coherent = fields[i].image_coherent;
var->data.image_volatile = fields[i].image_volatile;
var->data.image_restrict = fields[i].image_restrict;
}
/* Examine var name here since var may get deleted in the next call */
bool var_is_gl_id = is_gl_identifier(var->name);
if (redeclaring_per_vertex) {
ir_variable *earlier =
get_variable_being_redeclared(var, loc, state,
true /* allow_all_redeclarations */);
if (!var_is_gl_id || earlier == NULL) {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex can only "
"include built-in variables");
} else if (earlier->data.how_declared == ir_var_declared_normally) {
_mesa_glsl_error(&loc, state,
"`%s' has already been redeclared",
earlier->name);
} else {
earlier->data.how_declared = ir_var_declared_in_block;
earlier->reinit_interface_type(block_type);
}
continue;
}
if (state->symbols->get_variable(var->name) != NULL)
_mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
/* Propagate the "binding" keyword into this UBO/SSBO's fields.
* The UBO declaration itself doesn't get an ir_variable unless it
* has an instance name. This is ugly.
*/
var->data.explicit_binding = this->layout.flags.q.explicit_binding;
var->data.binding = this->layout.binding;
if (var->type->is_unsized_array()) {
if (var->is_in_shader_storage_block()) {
if (!is_unsized_array_last_element(var)) {
_mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
"only last member of a shader storage block "
"can be defined as unsized array",
var->name);
}
var->data.from_ssbo_unsized_array = true;
} else {
/* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
*
* "If an array is declared as the last member of a shader storage
* block and the size is not specified at compile-time, it is
* sized at run-time. In all other cases, arrays are sized only
* at compile-time."
*/
if (state->es_shader) {
_mesa_glsl_error(&loc, state, "unsized array `%s' definition: "
"only last member of a shader storage block "
"can be defined as unsized array",
var->name);
}
}
}
state->symbols->add_variable(var);
instructions->push_tail(var);
}
if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
/* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
*
* It is also a compilation error ... to redeclare a built-in
* block and then use a member from that built-in block that was
* not included in the redeclaration.
*
* This appears to be a clarification to the behaviour established
* for gl_PerVertex by GLSL 1.50, therefore we implement this
* behaviour regardless of GLSL version.
*
* To prevent the shader from using a member that was not included in
* the redeclaration, we disable any ir_variables that are still
* associated with the old declaration of gl_PerVertex (since we've
* already updated all of the variables contained in the new
* gl_PerVertex to point to it).
*
* As a side effect this will prevent
* validate_intrastage_interface_blocks() from getting confused and
* thinking there are conflicting definitions of gl_PerVertex in the
* shader.
*/
foreach_in_list_safe(ir_instruction, node, instructions) {
ir_variable *const var = node->as_variable();
if (var != NULL &&
var->get_interface_type() == earlier_per_vertex &&
var->data.mode == var_mode) {
if (var->data.how_declared == ir_var_declared_normally) {
_mesa_glsl_error(&loc, state,
"redeclaration of gl_PerVertex cannot "
"follow a redeclaration of `%s'",
var->name);
}
state->symbols->disable_variable(var->name);
var->remove();
}
}
}
}
return NULL;
}
ir_rvalue *
ast_tcs_output_layout::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* If any tessellation control output layout declaration preceded this
* one, make sure it was consistent with this one.
*/
if (state->tcs_output_vertices_specified &&
state->out_qualifier->vertices != this->vertices) {
_mesa_glsl_error(&loc, state,
"tessellation control shader output layout does not "
"match previous declaration");
return NULL;
}
/* If any shader outputs occurred before this declaration and specified an
* array size, make sure the size they specified is consistent with the
* primitive type.
*/
unsigned num_vertices = this->vertices;
if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
_mesa_glsl_error(&loc, state,
"this tessellation control shader output layout "
"specifies %u vertices, but a previous output "
"is declared with size %u",
num_vertices, state->tcs_output_size);
return NULL;
}
state->tcs_output_vertices_specified = true;
/* If any shader outputs occurred before this declaration and did not
* specify an array size, their size is determined now.
*/
foreach_in_list (ir_instruction, node, instructions) {
ir_variable *var = node->as_variable();
if (var == NULL || var->data.mode != ir_var_shader_out)
continue;
/* Note: Not all tessellation control shader output are arrays. */
if (!var->type->is_unsized_array() || var->data.patch)
continue;
if (var->data.max_array_access >= num_vertices) {
_mesa_glsl_error(&loc, state,
"this tessellation control shader output layout "
"specifies %u vertices, but an access to element "
"%u of output `%s' already exists", num_vertices,
var->data.max_array_access, var->name);
} else {
var->type = glsl_type::get_array_instance(var->type->fields.array,
num_vertices);
}
}
return NULL;
}
ir_rvalue *
ast_gs_input_layout::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* If any geometry input layout declaration preceded this one, make sure it
* was consistent with this one.
*/
if (state->gs_input_prim_type_specified &&
state->in_qualifier->prim_type != this->prim_type) {
_mesa_glsl_error(&loc, state,
"geometry shader input layout does not match"
" previous declaration");
return NULL;
}
/* If any shader inputs occurred before this declaration and specified an
* array size, make sure the size they specified is consistent with the
* primitive type.
*/
unsigned num_vertices = vertices_per_prim(this->prim_type);
if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
_mesa_glsl_error(&loc, state,
"this geometry shader input layout implies %u vertices"
" per primitive, but a previous input is declared"
" with size %u", num_vertices, state->gs_input_size);
return NULL;
}
state->gs_input_prim_type_specified = true;
/* If any shader inputs occurred before this declaration and did not
* specify an array size, their size is determined now.
*/
foreach_in_list(ir_instruction, node, instructions) {
ir_variable *var = node->as_variable();
if (var == NULL || var->data.mode != ir_var_shader_in)
continue;
/* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
* array; skip it.
*/
if (var->type->is_unsized_array()) {
if (var->data.max_array_access >= num_vertices) {
_mesa_glsl_error(&loc, state,
"this geometry shader input layout implies %u"
" vertices, but an access to element %u of input"
" `%s' already exists", num_vertices,
var->data.max_array_access, var->name);
} else {
var->type = glsl_type::get_array_instance(var->type->fields.array,
num_vertices);
}
}
}
return NULL;
}
ir_rvalue *
ast_cs_input_layout::hir(exec_list *instructions,
struct _mesa_glsl_parse_state *state)
{
YYLTYPE loc = this->get_location();
/* If any compute input layout declaration preceded this one, make sure it
* was consistent with this one.
*/
if (state->cs_input_local_size_specified) {
for (int i = 0; i < 3; i++) {
if (state->cs_input_local_size[i] != this->local_size[i]) {
_mesa_glsl_error(&loc, state,
"compute shader input layout does not match"
" previous declaration");
return NULL;
}
}
}
/* From the ARB_compute_shader specification:
*
* If the local size of the shader in any dimension is greater
* than the maximum size supported by the implementation for that
* dimension, a compile-time error results.
*
* It is not clear from the spec how the error should be reported if
* the total size of the work group exceeds
* MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
* report it at compile time as well.
*/
GLuint64 total_invocations = 1;
for (int i = 0; i < 3; i++) {
if (this->local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
_mesa_glsl_error(&loc, state,
"local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
" (%d)", 'x' + i,
state->ctx->Const.MaxComputeWorkGroupSize[i]);
break;
}
total_invocations *= this->local_size[i];
if (total_invocations >
state->ctx->Const.MaxComputeWorkGroupInvocations) {
_mesa_glsl_error(&loc, state,
"product of local_sizes exceeds "
"MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
state->ctx->Const.MaxComputeWorkGroupInvocations);
break;
}
}
state->cs_input_local_size_specified = true;
for (int i = 0; i < 3; i++)
state->cs_input_local_size[i] = this->local_size[i];
/* We may now declare the built-in constant gl_WorkGroupSize (see
* builtin_variable_generator::generate_constants() for why we didn't
* declare it earlier).
*/
ir_variable *var = new(state->symbols)
ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
var->data.how_declared = ir_var_declared_implicitly;
var->data.read_only = true;
instructions->push_tail(var);
state->symbols->add_variable(var);
ir_constant_data data;
memset(&data, 0, sizeof(data));
for (int i = 0; i < 3; i++)
data.u[i] = this->local_size[i];
var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
var->constant_initializer =
new(var) ir_constant(glsl_type::uvec3_type, &data);
var->data.has_initializer = true;
return NULL;
}
static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
exec_list *instructions)
{
bool gl_FragColor_assigned = false;
bool gl_FragData_assigned = false;
bool user_defined_fs_output_assigned = false;
ir_variable *user_defined_fs_output = NULL;
/* It would be nice to have proper location information. */
YYLTYPE loc;
memset(&loc, 0, sizeof(loc));
foreach_in_list(ir_instruction, node, instructions) {
ir_variable *var = node->as_variable();
if (!var || !var->data.assigned)
continue;
if (strcmp(var->name, "gl_FragColor") == 0)
gl_FragColor_assigned = true;
else if (strcmp(var->name, "gl_FragData") == 0)
gl_FragData_assigned = true;
else if (!is_gl_identifier(var->name)) {
if (state->stage == MESA_SHADER_FRAGMENT &&
var->data.mode == ir_var_shader_out) {
user_defined_fs_output_assigned = true;
user_defined_fs_output = var;
}
}
}
/* From the GLSL 1.30 spec:
*
* "If a shader statically assigns a value to gl_FragColor, it
* may not assign a value to any element of gl_FragData. If a
* shader statically writes a value to any element of
* gl_FragData, it may not assign a value to
* gl_FragColor. That is, a shader may assign values to either
* gl_FragColor or gl_FragData, but not both. Multiple shaders
* linked together must also consistently write just one of
* these variables. Similarly, if user declared output
* variables are in use (statically assigned to), then the
* built-in variables gl_FragColor and gl_FragData may not be
* assigned to. These incorrect usages all generate compile
* time errors."
*/
if (gl_FragColor_assigned && gl_FragData_assigned) {
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
"`gl_FragColor' and `gl_FragData'");
} else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
"`gl_FragColor' and `%s'",
user_defined_fs_output->name);
} else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
_mesa_glsl_error(&loc, state, "fragment shader writes to both "
"`gl_FragData' and `%s'",
user_defined_fs_output->name);
}
}
static void
remove_per_vertex_blocks(exec_list *instructions,
_mesa_glsl_parse_state *state, ir_variable_mode mode)
{
/* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
* if it exists in this shader type.
*/
const glsl_type *per_vertex = NULL;
switch (mode) {
case ir_var_shader_in:
if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
per_vertex = gl_in->get_interface_type();
break;
case ir_var_shader_out:
if (ir_variable *gl_Position =
state->symbols->get_variable("gl_Position")) {
per_vertex = gl_Position->get_interface_type();
}
break;
default:
assert(!"Unexpected mode");
break;
}
/* If we didn't find a built-in gl_PerVertex interface block, then we don't
* need to do anything.
*/
if (per_vertex == NULL)
return;
/* If the interface block is used by the shader, then we don't need to do
* anything.
*/
interface_block_usage_visitor v(mode, per_vertex);
v.run(instructions);
if (v.usage_found())
return;
/* Remove any ir_variable declarations that refer to the interface block
* we're removing.
*/
foreach_in_list_safe(ir_instruction, node, instructions) {
ir_variable *const var = node->as_variable();
if (var != NULL && var->get_interface_type() == per_vertex &&
var->data.mode == mode) {
state->symbols->disable_variable(var->name);
var->remove();
}
}
}