blob: 72048e6a4ff08ae0b09aa1ad82b96a5b5512d2e7 [file] [log] [blame]
/*
* Copyright © 2016 Red Hat.
* Copyright © 2016 Bas Nieuwenhuizen
*
* based in part on anv driver which is:
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef TU_PRIVATE_H
#define TU_PRIVATE_H
#include <assert.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef HAVE_VALGRIND
#include <memcheck.h>
#include <valgrind.h>
#define VG(x) x
#else
#define VG(x) ((void)0)
#endif
#include "c11/threads.h"
#include "main/macros.h"
#include "util/list.h"
#include "util/macros.h"
#include "vk_alloc.h"
#include "vk_debug_report.h"
#include "wsi_common.h"
#include "drm-uapi/msm_drm.h"
#include "ir3/ir3_compiler.h"
#include "ir3/ir3_shader.h"
#include "adreno_common.xml.h"
#include "adreno_pm4.xml.h"
#include "a6xx.xml.h"
#include "tu_descriptor_set.h"
#include "tu_extensions.h"
/* Pre-declarations needed for WSI entrypoints */
struct wl_surface;
struct wl_display;
typedef struct xcb_connection_t xcb_connection_t;
typedef uint32_t xcb_visualid_t;
typedef uint32_t xcb_window_t;
#include <vulkan/vk_android_native_buffer.h>
#include <vulkan/vk_icd.h>
#include <vulkan/vulkan.h>
#include <vulkan/vulkan_intel.h>
#include "tu_entrypoints.h"
#define MAX_VBS 32
#define MAX_VERTEX_ATTRIBS 32
#define MAX_RTS 8
#define MAX_VSC_PIPES 32
#define MAX_VIEWPORTS 1
#define MAX_SCISSORS 16
#define MAX_DISCARD_RECTANGLES 4
#define MAX_PUSH_CONSTANTS_SIZE 128
#define MAX_PUSH_DESCRIPTORS 32
#define MAX_DYNAMIC_UNIFORM_BUFFERS 16
#define MAX_DYNAMIC_STORAGE_BUFFERS 8
#define MAX_DYNAMIC_BUFFERS \
(MAX_DYNAMIC_UNIFORM_BUFFERS + MAX_DYNAMIC_STORAGE_BUFFERS)
#define MAX_SAMPLES_LOG2 4
#define NUM_META_FS_KEYS 13
#define TU_MAX_DRM_DEVICES 8
#define MAX_VIEWS 8
/* The Qualcomm driver exposes 0x20000058 */
#define MAX_STORAGE_BUFFER_RANGE 0x20000000
#define NUM_DEPTH_CLEAR_PIPELINES 3
/*
* This is the point we switch from using CP to compute shader
* for certain buffer operations.
*/
#define TU_BUFFER_OPS_CS_THRESHOLD 4096
#define A6XX_TEX_CONST_DWORDS 16
#define A6XX_TEX_SAMP_DWORDS 4
enum tu_mem_heap
{
TU_MEM_HEAP_VRAM,
TU_MEM_HEAP_VRAM_CPU_ACCESS,
TU_MEM_HEAP_GTT,
TU_MEM_HEAP_COUNT
};
enum tu_mem_type
{
TU_MEM_TYPE_VRAM,
TU_MEM_TYPE_GTT_WRITE_COMBINE,
TU_MEM_TYPE_VRAM_CPU_ACCESS,
TU_MEM_TYPE_GTT_CACHED,
TU_MEM_TYPE_COUNT
};
#define tu_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
static inline uint32_t
align_u32(uint32_t v, uint32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline uint32_t
align_u32_npot(uint32_t v, uint32_t a)
{
return (v + a - 1) / a * a;
}
static inline uint64_t
align_u64(uint64_t v, uint64_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
static inline int32_t
align_i32(int32_t v, int32_t a)
{
assert(a != 0 && a == (a & -a));
return (v + a - 1) & ~(a - 1);
}
/** Alignment must be a power of 2. */
static inline bool
tu_is_aligned(uintmax_t n, uintmax_t a)
{
assert(a == (a & -a));
return (n & (a - 1)) == 0;
}
static inline uint32_t
round_up_u32(uint32_t v, uint32_t a)
{
return (v + a - 1) / a;
}
static inline uint64_t
round_up_u64(uint64_t v, uint64_t a)
{
return (v + a - 1) / a;
}
static inline uint32_t
tu_minify(uint32_t n, uint32_t levels)
{
if (unlikely(n == 0))
return 0;
else
return MAX2(n >> levels, 1);
}
static inline float
tu_clamp_f(float f, float min, float max)
{
assert(min < max);
if (f > max)
return max;
else if (f < min)
return min;
else
return f;
}
static inline bool
tu_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
{
if (*inout_mask & clear_mask) {
*inout_mask &= ~clear_mask;
return true;
} else {
return false;
}
}
#define for_each_bit(b, dword) \
for (uint32_t __dword = (dword); \
(b) = __builtin_ffs(__dword) - 1, __dword; __dword &= ~(1 << (b)))
#define typed_memcpy(dest, src, count) \
({ \
STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
memcpy((dest), (src), (count) * sizeof(*(src))); \
})
#define COND(bool, val) ((bool) ? (val) : 0)
/* Whenever we generate an error, pass it through this function. Useful for
* debugging, where we can break on it. Only call at error site, not when
* propagating errors. Might be useful to plug in a stack trace here.
*/
struct tu_instance;
VkResult
__vk_errorf(struct tu_instance *instance,
VkResult error,
const char *file,
int line,
const char *format,
...);
#define vk_error(instance, error) \
__vk_errorf(instance, error, __FILE__, __LINE__, NULL);
#define vk_errorf(instance, error, format, ...) \
__vk_errorf(instance, error, __FILE__, __LINE__, format, ##__VA_ARGS__);
void
__tu_finishme(const char *file, int line, const char *format, ...)
tu_printflike(3, 4);
void
tu_loge(const char *format, ...) tu_printflike(1, 2);
void
tu_loge_v(const char *format, va_list va);
void
tu_logi(const char *format, ...) tu_printflike(1, 2);
void
tu_logi_v(const char *format, va_list va);
/**
* Print a FINISHME message, including its source location.
*/
#define tu_finishme(format, ...) \
do { \
static bool reported = false; \
if (!reported) { \
__tu_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
reported = true; \
} \
} while (0)
/* A non-fatal assert. Useful for debugging. */
#ifdef DEBUG
#define tu_assert(x) \
({ \
if (unlikely(!(x))) \
fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
})
#else
#define tu_assert(x)
#endif
/* Suppress -Wunused in stub functions */
#define tu_use_args(...) __tu_use_args(0, ##__VA_ARGS__)
static inline void
__tu_use_args(int ignore, ...)
{
}
#define tu_stub() \
do { \
tu_finishme("stub %s", __func__); \
} while (0)
void *
tu_lookup_entrypoint_unchecked(const char *name);
void *
tu_lookup_entrypoint_checked(
const char *name,
uint32_t core_version,
const struct tu_instance_extension_table *instance,
const struct tu_device_extension_table *device);
struct tu_physical_device
{
VK_LOADER_DATA _loader_data;
struct tu_instance *instance;
char path[20];
char name[VK_MAX_PHYSICAL_DEVICE_NAME_SIZE];
uint8_t driver_uuid[VK_UUID_SIZE];
uint8_t device_uuid[VK_UUID_SIZE];
uint8_t cache_uuid[VK_UUID_SIZE];
struct wsi_device wsi_device;
int local_fd;
int master_fd;
unsigned gpu_id;
uint32_t gmem_size;
uint32_t tile_align_w;
uint32_t tile_align_h;
/* This is the drivers on-disk cache used as a fallback as opposed to
* the pipeline cache defined by apps.
*/
struct disk_cache *disk_cache;
struct tu_device_extension_table supported_extensions;
};
enum tu_debug_flags
{
TU_DEBUG_STARTUP = 1 << 0,
TU_DEBUG_NIR = 1 << 1,
TU_DEBUG_IR3 = 1 << 2,
TU_DEBUG_NOBIN = 1 << 3,
};
struct tu_instance
{
VK_LOADER_DATA _loader_data;
VkAllocationCallbacks alloc;
uint32_t api_version;
int physical_device_count;
struct tu_physical_device physical_devices[TU_MAX_DRM_DEVICES];
enum tu_debug_flags debug_flags;
struct vk_debug_report_instance debug_report_callbacks;
struct tu_instance_extension_table enabled_extensions;
};
VkResult
tu_wsi_init(struct tu_physical_device *physical_device);
void
tu_wsi_finish(struct tu_physical_device *physical_device);
bool
tu_instance_extension_supported(const char *name);
uint32_t
tu_physical_device_api_version(struct tu_physical_device *dev);
bool
tu_physical_device_extension_supported(struct tu_physical_device *dev,
const char *name);
struct cache_entry;
struct tu_pipeline_cache
{
struct tu_device *device;
pthread_mutex_t mutex;
uint32_t total_size;
uint32_t table_size;
uint32_t kernel_count;
struct cache_entry **hash_table;
bool modified;
VkAllocationCallbacks alloc;
};
struct tu_pipeline_key
{
};
void
tu_pipeline_cache_init(struct tu_pipeline_cache *cache,
struct tu_device *device);
void
tu_pipeline_cache_finish(struct tu_pipeline_cache *cache);
void
tu_pipeline_cache_load(struct tu_pipeline_cache *cache,
const void *data,
size_t size);
struct tu_shader_variant;
bool
tu_create_shader_variants_from_pipeline_cache(
struct tu_device *device,
struct tu_pipeline_cache *cache,
const unsigned char *sha1,
struct tu_shader_variant **variants);
void
tu_pipeline_cache_insert_shaders(struct tu_device *device,
struct tu_pipeline_cache *cache,
const unsigned char *sha1,
struct tu_shader_variant **variants,
const void *const *codes,
const unsigned *code_sizes);
struct tu_meta_state
{
VkAllocationCallbacks alloc;
struct tu_pipeline_cache cache;
};
/* queue types */
#define TU_QUEUE_GENERAL 0
#define TU_MAX_QUEUE_FAMILIES 1
struct tu_fence
{
struct wsi_fence *fence_wsi;
bool signaled;
int fd;
};
void
tu_fence_init(struct tu_fence *fence, bool signaled);
void
tu_fence_finish(struct tu_fence *fence);
void
tu_fence_update_fd(struct tu_fence *fence, int fd);
void
tu_fence_copy(struct tu_fence *fence, const struct tu_fence *src);
void
tu_fence_signal(struct tu_fence *fence);
void
tu_fence_wait_idle(struct tu_fence *fence);
struct tu_queue
{
VK_LOADER_DATA _loader_data;
struct tu_device *device;
uint32_t queue_family_index;
int queue_idx;
VkDeviceQueueCreateFlags flags;
uint32_t msm_queue_id;
struct tu_fence submit_fence;
};
struct tu_device
{
VK_LOADER_DATA _loader_data;
VkAllocationCallbacks alloc;
struct tu_instance *instance;
struct tu_meta_state meta_state;
struct tu_queue *queues[TU_MAX_QUEUE_FAMILIES];
int queue_count[TU_MAX_QUEUE_FAMILIES];
struct tu_physical_device *physical_device;
struct ir3_compiler *compiler;
/* Backup in-memory cache to be used if the app doesn't provide one */
struct tu_pipeline_cache *mem_cache;
struct list_head shader_slabs;
mtx_t shader_slab_mutex;
struct tu_device_extension_table enabled_extensions;
};
struct tu_bo
{
uint32_t gem_handle;
uint64_t size;
uint64_t iova;
void *map;
};
VkResult
tu_bo_init_new(struct tu_device *dev, struct tu_bo *bo, uint64_t size);
VkResult
tu_bo_init_dmabuf(struct tu_device *dev,
struct tu_bo *bo,
uint64_t size,
int fd);
int
tu_bo_export_dmabuf(struct tu_device *dev, struct tu_bo *bo);
void
tu_bo_finish(struct tu_device *dev, struct tu_bo *bo);
VkResult
tu_bo_map(struct tu_device *dev, struct tu_bo *bo);
struct tu_cs_entry
{
/* No ownership */
const struct tu_bo *bo;
uint32_t size;
uint32_t offset;
};
struct ts_cs_memory {
uint32_t *map;
uint64_t iova;
};
enum tu_cs_mode
{
/*
* A command stream in TU_CS_MODE_GROW mode grows automatically whenever it
* is full. tu_cs_begin must be called before command packet emission and
* tu_cs_end must be called after.
*
* This mode may create multiple entries internally. The entries must be
* submitted together.
*/
TU_CS_MODE_GROW,
/*
* A command stream in TU_CS_MODE_EXTERNAL mode wraps an external,
* fixed-size buffer. tu_cs_begin and tu_cs_end are optional and have no
* effect on it.
*
* This mode does not create any entry or any BO.
*/
TU_CS_MODE_EXTERNAL,
/*
* A command stream in TU_CS_MODE_SUB_STREAM mode does not support direct
* command packet emission. tu_cs_begin_sub_stream must be called to get a
* sub-stream to emit comamnd packets to. When done with the sub-stream,
* tu_cs_end_sub_stream must be called.
*
* This mode does not create any entry internally.
*/
TU_CS_MODE_SUB_STREAM,
};
struct tu_cs
{
uint32_t *start;
uint32_t *cur;
uint32_t *reserved_end;
uint32_t *end;
enum tu_cs_mode mode;
uint32_t next_bo_size;
struct tu_cs_entry *entries;
uint32_t entry_count;
uint32_t entry_capacity;
struct tu_bo **bos;
uint32_t bo_count;
uint32_t bo_capacity;
};
struct tu_device_memory
{
struct tu_bo bo;
VkDeviceSize size;
/* for dedicated allocations */
struct tu_image *image;
struct tu_buffer *buffer;
uint32_t type_index;
void *map;
void *user_ptr;
};
struct tu_descriptor_range
{
uint64_t va;
uint32_t size;
};
struct tu_descriptor_set
{
const struct tu_descriptor_set_layout *layout;
uint32_t size;
uint64_t va;
uint32_t *mapped_ptr;
struct tu_descriptor_range *dynamic_descriptors;
struct tu_bo *descriptors[0];
};
struct tu_push_descriptor_set
{
struct tu_descriptor_set set;
uint32_t capacity;
};
struct tu_descriptor_pool_entry
{
uint32_t offset;
uint32_t size;
struct tu_descriptor_set *set;
};
struct tu_descriptor_pool
{
struct tu_bo bo;
uint64_t current_offset;
uint64_t size;
uint8_t *host_memory_base;
uint8_t *host_memory_ptr;
uint8_t *host_memory_end;
uint32_t entry_count;
uint32_t max_entry_count;
struct tu_descriptor_pool_entry entries[0];
};
struct tu_descriptor_update_template_entry
{
VkDescriptorType descriptor_type;
/* The number of descriptors to update */
uint32_t descriptor_count;
/* Into mapped_ptr or dynamic_descriptors, in units of the respective array
*/
uint32_t dst_offset;
/* In dwords. Not valid/used for dynamic descriptors */
uint32_t dst_stride;
uint32_t buffer_offset;
/* Only valid for combined image samplers and samplers */
uint16_t has_sampler;
/* In bytes */
size_t src_offset;
size_t src_stride;
/* For push descriptors */
const uint32_t *immutable_samplers;
};
struct tu_descriptor_update_template
{
uint32_t entry_count;
VkPipelineBindPoint bind_point;
struct tu_descriptor_update_template_entry entry[0];
};
struct tu_buffer
{
VkDeviceSize size;
VkBufferUsageFlags usage;
VkBufferCreateFlags flags;
struct tu_bo *bo;
VkDeviceSize bo_offset;
};
static inline uint64_t
tu_buffer_iova(struct tu_buffer *buffer)
{
return buffer->bo->iova + buffer->bo_offset;
}
enum tu_dynamic_state_bits
{
TU_DYNAMIC_VIEWPORT = 1 << 0,
TU_DYNAMIC_SCISSOR = 1 << 1,
TU_DYNAMIC_LINE_WIDTH = 1 << 2,
TU_DYNAMIC_DEPTH_BIAS = 1 << 3,
TU_DYNAMIC_BLEND_CONSTANTS = 1 << 4,
TU_DYNAMIC_DEPTH_BOUNDS = 1 << 5,
TU_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6,
TU_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7,
TU_DYNAMIC_STENCIL_REFERENCE = 1 << 8,
TU_DYNAMIC_DISCARD_RECTANGLE = 1 << 9,
TU_DYNAMIC_ALL = (1 << 10) - 1,
};
struct tu_vertex_binding
{
struct tu_buffer *buffer;
VkDeviceSize offset;
};
struct tu_viewport_state
{
uint32_t count;
VkViewport viewports[MAX_VIEWPORTS];
};
struct tu_scissor_state
{
uint32_t count;
VkRect2D scissors[MAX_SCISSORS];
};
struct tu_discard_rectangle_state
{
uint32_t count;
VkRect2D rectangles[MAX_DISCARD_RECTANGLES];
};
struct tu_dynamic_state
{
/**
* Bitmask of (1 << VK_DYNAMIC_STATE_*).
* Defines the set of saved dynamic state.
*/
uint32_t mask;
struct tu_viewport_state viewport;
struct tu_scissor_state scissor;
float line_width;
struct
{
float bias;
float clamp;
float slope;
} depth_bias;
float blend_constants[4];
struct
{
float min;
float max;
} depth_bounds;
struct
{
uint32_t front;
uint32_t back;
} stencil_compare_mask;
struct
{
uint32_t front;
uint32_t back;
} stencil_write_mask;
struct
{
uint32_t front;
uint32_t back;
} stencil_reference;
struct tu_discard_rectangle_state discard_rectangle;
};
extern const struct tu_dynamic_state default_dynamic_state;
const char *
tu_get_debug_option_name(int id);
const char *
tu_get_perftest_option_name(int id);
/**
* Attachment state when recording a renderpass instance.
*
* The clear value is valid only if there exists a pending clear.
*/
struct tu_attachment_state
{
VkImageAspectFlags pending_clear_aspects;
uint32_t cleared_views;
VkClearValue clear_value;
VkImageLayout current_layout;
};
struct tu_descriptor_state
{
struct tu_descriptor_set *sets[MAX_SETS];
uint32_t dirty;
uint32_t valid;
struct tu_push_descriptor_set push_set;
bool push_dirty;
uint64_t dynamic_buffers[MAX_DYNAMIC_BUFFERS];
};
struct tu_tile
{
uint8_t pipe;
uint8_t slot;
VkOffset2D begin;
VkOffset2D end;
};
struct tu_tiling_config
{
VkRect2D render_area;
uint32_t buffer_cpp[MAX_RTS + 2];
uint32_t buffer_count;
/* position and size of the first tile */
VkRect2D tile0;
/* number of tiles */
VkExtent2D tile_count;
uint32_t gmem_offsets[MAX_RTS + 2];
/* size of the first VSC pipe */
VkExtent2D pipe0;
/* number of VSC pipes */
VkExtent2D pipe_count;
/* pipe register values */
uint32_t pipe_config[MAX_VSC_PIPES];
uint32_t pipe_sizes[MAX_VSC_PIPES];
};
enum tu_cmd_dirty_bits
{
TU_CMD_DIRTY_PIPELINE = 1 << 0,
TU_CMD_DIRTY_COMPUTE_PIPELINE = 1 << 1,
TU_CMD_DIRTY_VERTEX_BUFFERS = 1 << 2,
TU_CMD_DIRTY_DESCRIPTOR_SETS = 1 << 3,
TU_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 16,
TU_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 17,
TU_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 18,
TU_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 19,
};
struct tu_cmd_state
{
uint32_t dirty;
struct tu_pipeline *pipeline;
struct tu_pipeline *compute_pipeline;
/* Vertex buffers */
struct
{
struct tu_buffer *buffers[MAX_VBS];
VkDeviceSize offsets[MAX_VBS];
} vb;
struct tu_dynamic_state dynamic;
/* Index buffer */
struct tu_buffer *index_buffer;
uint64_t index_offset;
uint32_t index_type;
uint32_t max_index_count;
uint64_t index_va;
const struct tu_render_pass *pass;
const struct tu_subpass *subpass;
const struct tu_framebuffer *framebuffer;
struct tu_attachment_state *attachments;
struct tu_tiling_config tiling_config;
struct tu_cs_entry tile_load_ib;
struct tu_cs_entry tile_store_ib;
};
struct tu_cmd_pool
{
VkAllocationCallbacks alloc;
struct list_head cmd_buffers;
struct list_head free_cmd_buffers;
uint32_t queue_family_index;
};
struct tu_cmd_buffer_upload
{
uint8_t *map;
unsigned offset;
uint64_t size;
struct list_head list;
};
enum tu_cmd_buffer_status
{
TU_CMD_BUFFER_STATUS_INVALID,
TU_CMD_BUFFER_STATUS_INITIAL,
TU_CMD_BUFFER_STATUS_RECORDING,
TU_CMD_BUFFER_STATUS_EXECUTABLE,
TU_CMD_BUFFER_STATUS_PENDING,
};
struct tu_bo_list
{
uint32_t count;
uint32_t capacity;
struct drm_msm_gem_submit_bo *bo_infos;
};
#define TU_BO_LIST_FAILED (~0)
void
tu_bo_list_init(struct tu_bo_list *list);
void
tu_bo_list_destroy(struct tu_bo_list *list);
void
tu_bo_list_reset(struct tu_bo_list *list);
uint32_t
tu_bo_list_add(struct tu_bo_list *list,
const struct tu_bo *bo,
uint32_t flags);
VkResult
tu_bo_list_merge(struct tu_bo_list *list, const struct tu_bo_list *other);
struct tu_cmd_buffer
{
VK_LOADER_DATA _loader_data;
struct tu_device *device;
struct tu_cmd_pool *pool;
struct list_head pool_link;
VkCommandBufferUsageFlags usage_flags;
VkCommandBufferLevel level;
enum tu_cmd_buffer_status status;
struct tu_cmd_state state;
struct tu_vertex_binding vertex_bindings[MAX_VBS];
uint32_t queue_family_index;
uint32_t push_constants[MAX_PUSH_CONSTANTS_SIZE / 4];
VkShaderStageFlags push_constant_stages;
struct tu_descriptor_set meta_push_descriptors;
struct tu_descriptor_state descriptors[VK_PIPELINE_BIND_POINT_RANGE_SIZE];
struct tu_cmd_buffer_upload upload;
VkResult record_result;
struct tu_bo_list bo_list;
struct tu_cs cs;
struct tu_cs draw_cs;
struct tu_cs draw_state;
struct tu_cs tile_cs;
uint16_t marker_reg;
uint32_t marker_seqno;
struct tu_bo scratch_bo;
uint32_t scratch_seqno;
#define VSC_OVERFLOW 0x8
#define VSC_SCRATCH 0x10
struct tu_bo vsc_data;
struct tu_bo vsc_data2;
uint32_t vsc_data_pitch;
uint32_t vsc_data2_pitch;
bool use_vsc_data;
bool wait_for_idle;
};
unsigned
tu6_emit_event_write(struct tu_cmd_buffer *cmd,
struct tu_cs *cs,
enum vgt_event_type event,
bool need_seqno);
bool
tu_get_memory_fd(struct tu_device *device,
struct tu_device_memory *memory,
int *pFD);
static inline struct tu_descriptor_state *
tu_get_descriptors_state(struct tu_cmd_buffer *cmd_buffer,
VkPipelineBindPoint bind_point)
{
return &cmd_buffer->descriptors[bind_point];
}
/*
* Takes x,y,z as exact numbers of invocations, instead of blocks.
*
* Limitations: Can't call normal dispatch functions without binding or
* rebinding
* the compute pipeline.
*/
void
tu_unaligned_dispatch(struct tu_cmd_buffer *cmd_buffer,
uint32_t x,
uint32_t y,
uint32_t z);
struct tu_event
{
struct tu_bo bo;
};
struct tu_shader_module;
#define TU_HASH_SHADER_IS_GEOM_COPY_SHADER (1 << 0)
#define TU_HASH_SHADER_SISCHED (1 << 1)
#define TU_HASH_SHADER_UNSAFE_MATH (1 << 2)
void
tu_hash_shaders(unsigned char *hash,
const VkPipelineShaderStageCreateInfo **stages,
const struct tu_pipeline_layout *layout,
const struct tu_pipeline_key *key,
uint32_t flags);
static inline gl_shader_stage
vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
{
assert(__builtin_popcount(vk_stage) == 1);
return ffs(vk_stage) - 1;
}
static inline VkShaderStageFlagBits
mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
{
return (1 << mesa_stage);
}
#define TU_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
#define tu_foreach_stage(stage, stage_bits) \
for (gl_shader_stage stage, \
__tmp = (gl_shader_stage)((stage_bits) &TU_STAGE_MASK); \
stage = __builtin_ffs(__tmp) - 1, __tmp; __tmp &= ~(1 << (stage)))
struct tu_shader_module
{
unsigned char sha1[20];
uint32_t code_size;
const uint32_t *code[0];
};
struct tu_shader_compile_options
{
struct ir3_shader_key key;
bool optimize;
bool include_binning_pass;
};
struct tu_descriptor_map
{
/* TODO: avoid fixed size array/justify the size */
unsigned num;
int set[64];
int binding[64];
};
struct tu_shader
{
struct ir3_shader ir3_shader;
struct tu_descriptor_map texture_map;
struct tu_descriptor_map sampler_map;
struct tu_descriptor_map ubo_map;
struct tu_descriptor_map ssbo_map;
/* This may be true for vertex shaders. When true, variants[1] is the
* binning variant and binning_binary is non-NULL.
*/
bool has_binning_pass;
void *binary;
void *binning_binary;
struct ir3_shader_variant variants[0];
};
struct tu_shader *
tu_shader_create(struct tu_device *dev,
gl_shader_stage stage,
const VkPipelineShaderStageCreateInfo *stage_info,
const VkAllocationCallbacks *alloc);
void
tu_shader_destroy(struct tu_device *dev,
struct tu_shader *shader,
const VkAllocationCallbacks *alloc);
void
tu_shader_compile_options_init(
struct tu_shader_compile_options *options,
const VkGraphicsPipelineCreateInfo *pipeline_info);
VkResult
tu_shader_compile(struct tu_device *dev,
struct tu_shader *shader,
const struct tu_shader *next_stage,
const struct tu_shader_compile_options *options,
const VkAllocationCallbacks *alloc);
struct tu_program_descriptor_linkage
{
struct ir3_ubo_analysis_state ubo_state;
struct ir3_const_state const_state;
uint32_t constlen;
struct tu_descriptor_map texture_map;
struct tu_descriptor_map sampler_map;
struct tu_descriptor_map ubo_map;
struct tu_descriptor_map ssbo_map;
struct ir3_ibo_mapping image_mapping;
};
struct tu_pipeline
{
struct tu_cs cs;
struct tu_dynamic_state dynamic_state;
struct tu_pipeline_layout *layout;
bool need_indirect_descriptor_sets;
VkShaderStageFlags active_stages;
struct
{
struct tu_bo binary_bo;
struct tu_cs_entry state_ib;
struct tu_cs_entry binning_state_ib;
struct tu_program_descriptor_linkage link[MESA_SHADER_STAGES];
} program;
struct
{
uint8_t bindings[MAX_VERTEX_ATTRIBS];
uint16_t strides[MAX_VERTEX_ATTRIBS];
uint16_t offsets[MAX_VERTEX_ATTRIBS];
uint32_t count;
uint8_t binning_bindings[MAX_VERTEX_ATTRIBS];
uint16_t binning_strides[MAX_VERTEX_ATTRIBS];
uint16_t binning_offsets[MAX_VERTEX_ATTRIBS];
uint32_t binning_count;
struct tu_cs_entry state_ib;
struct tu_cs_entry binning_state_ib;
} vi;
struct
{
enum pc_di_primtype primtype;
bool primitive_restart;
} ia;
struct
{
struct tu_cs_entry state_ib;
} vp;
struct
{
uint32_t gras_su_cntl;
struct tu_cs_entry state_ib;
} rast;
struct
{
struct tu_cs_entry state_ib;
} ds;
struct
{
struct tu_cs_entry state_ib;
} blend;
struct
{
uint32_t local_size[3];
} compute;
};
void
tu6_emit_viewport(struct tu_cs *cs, const VkViewport *viewport);
void
tu6_emit_scissor(struct tu_cs *cs, const VkRect2D *scissor);
void
tu6_emit_gras_su_cntl(struct tu_cs *cs,
uint32_t gras_su_cntl,
float line_width);
void
tu6_emit_depth_bias(struct tu_cs *cs,
float constant_factor,
float clamp,
float slope_factor);
void
tu6_emit_stencil_compare_mask(struct tu_cs *cs,
uint32_t front,
uint32_t back);
void
tu6_emit_stencil_write_mask(struct tu_cs *cs, uint32_t front, uint32_t back);
void
tu6_emit_stencil_reference(struct tu_cs *cs, uint32_t front, uint32_t back);
void
tu6_emit_blend_constants(struct tu_cs *cs, const float constants[4]);
struct tu_userdata_info *
tu_lookup_user_sgpr(struct tu_pipeline *pipeline,
gl_shader_stage stage,
int idx);
struct tu_shader_variant *
tu_get_shader(struct tu_pipeline *pipeline, gl_shader_stage stage);
struct tu_graphics_pipeline_create_info
{
bool use_rectlist;
bool db_depth_clear;
bool db_stencil_clear;
bool db_depth_disable_expclear;
bool db_stencil_disable_expclear;
bool db_flush_depth_inplace;
bool db_flush_stencil_inplace;
bool db_resummarize;
uint32_t custom_blend_mode;
};
struct tu_native_format
{
int vtx; /* VFMTn_xxx or -1 */
int tex; /* TFMTn_xxx or -1 */
int rb; /* RBn_xxx or -1 */
int swap; /* enum a3xx_color_swap */
bool present; /* internal only; always true to external users */
};
const struct tu_native_format *
tu6_get_native_format(VkFormat format);
void
tu_pack_clear_value(const VkClearValue *val,
VkFormat format,
uint32_t buf[4]);
void
tu_2d_clear_color(const VkClearColorValue *val, VkFormat format, uint32_t buf[4]);
void
tu_2d_clear_zs(const VkClearDepthStencilValue *val, VkFormat format, uint32_t buf[4]);
enum a6xx_2d_ifmt tu6_rb_fmt_to_ifmt(enum a6xx_color_fmt fmt);
enum a6xx_depth_format tu6_pipe2depth(VkFormat format);
struct tu_image_level
{
VkDeviceSize offset;
VkDeviceSize size;
uint32_t pitch;
};
struct tu_image
{
VkImageType type;
/* The original VkFormat provided by the client. This may not match any
* of the actual surface formats.
*/
VkFormat vk_format;
VkImageAspectFlags aspects;
VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
VkImageTiling tiling; /** VkImageCreateInfo::tiling */
VkImageCreateFlags flags; /** VkImageCreateInfo::flags */
VkExtent3D extent;
uint32_t level_count;
uint32_t layer_count;
VkSampleCountFlagBits samples;
VkDeviceSize size;
uint32_t alignment;
/* memory layout */
VkDeviceSize layer_size;
struct tu_image_level levels[15];
unsigned tile_mode;
unsigned cpp;
struct tu_image_level ubwc_levels[15];
uint32_t ubwc_size;
unsigned queue_family_mask;
bool exclusive;
bool shareable;
/* For VK_ANDROID_native_buffer, the WSI image owns the memory, */
VkDeviceMemory owned_memory;
/* Set when bound */
struct tu_bo *bo;
VkDeviceSize bo_offset;
};
unsigned
tu_image_queue_family_mask(const struct tu_image *image,
uint32_t family,
uint32_t queue_family);
static inline uint32_t
tu_get_layerCount(const struct tu_image *image,
const VkImageSubresourceRange *range)
{
return range->layerCount == VK_REMAINING_ARRAY_LAYERS
? image->layer_count - range->baseArrayLayer
: range->layerCount;
}
static inline uint32_t
tu_get_levelCount(const struct tu_image *image,
const VkImageSubresourceRange *range)
{
return range->levelCount == VK_REMAINING_MIP_LEVELS
? image->level_count - range->baseMipLevel
: range->levelCount;
}
static inline VkDeviceSize
tu_layer_size(struct tu_image *image, int level)
{
if (image->type == VK_IMAGE_TYPE_3D)
return image->levels[level].size;
return image->layer_size;
}
static inline uint32_t
tu_image_stride(struct tu_image *image, int level)
{
return image->levels[level].pitch * image->cpp;
}
static inline uint64_t
tu_image_base(struct tu_image *image, int level, int layer)
{
return image->bo->iova + image->bo_offset + image->levels[level].offset +
layer * tu_layer_size(image, level);
}
static inline VkDeviceSize
tu_image_ubwc_size(struct tu_image *image, int level)
{
return image->ubwc_size;
}
static inline uint32_t
tu_image_ubwc_pitch(struct tu_image *image, int level)
{
return image->ubwc_levels[level].pitch;
}
static inline uint64_t
tu_image_ubwc_base(struct tu_image *image, int level, int layer)
{
return image->bo->iova + image->bo_offset + image->ubwc_levels[level].offset +
layer * tu_image_ubwc_size(image, level);
}
enum a6xx_tile_mode
tu6_get_image_tile_mode(struct tu_image *image, int level);
enum a3xx_msaa_samples
tu_msaa_samples(uint32_t samples);
struct tu_image_view
{
struct tu_image *image; /**< VkImageViewCreateInfo::image */
VkImageViewType type;
VkImageAspectFlags aspect_mask;
VkFormat vk_format;
uint32_t base_layer;
uint32_t layer_count;
uint32_t base_mip;
uint32_t level_count;
VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
uint32_t descriptor[A6XX_TEX_CONST_DWORDS];
/* Descriptor for use as a storage image as opposed to a sampled image.
* This has a few differences for cube maps (e.g. type).
*/
uint32_t storage_descriptor[A6XX_TEX_CONST_DWORDS];
};
struct tu_sampler
{
uint32_t state[A6XX_TEX_SAMP_DWORDS];
bool needs_border;
VkBorderColor border;
};
VkResult
tu_image_create(VkDevice _device,
const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *alloc,
VkImage *pImage,
uint64_t modifier);
VkResult
tu_image_from_gralloc(VkDevice device_h,
const VkImageCreateInfo *base_info,
const VkNativeBufferANDROID *gralloc_info,
const VkAllocationCallbacks *alloc,
VkImage *out_image_h);
void
tu_image_view_init(struct tu_image_view *view,
struct tu_device *device,
const VkImageViewCreateInfo *pCreateInfo);
struct tu_buffer_view
{
VkFormat vk_format;
uint64_t range; /**< VkBufferViewCreateInfo::range */
uint32_t state[4];
};
void
tu_buffer_view_init(struct tu_buffer_view *view,
struct tu_device *device,
const VkBufferViewCreateInfo *pCreateInfo);
static inline struct VkExtent3D
tu_sanitize_image_extent(const VkImageType imageType,
const struct VkExtent3D imageExtent)
{
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return (VkExtent3D) { imageExtent.width, 1, 1 };
case VK_IMAGE_TYPE_2D:
return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
case VK_IMAGE_TYPE_3D:
return imageExtent;
default:
unreachable("invalid image type");
}
}
static inline struct VkOffset3D
tu_sanitize_image_offset(const VkImageType imageType,
const struct VkOffset3D imageOffset)
{
switch (imageType) {
case VK_IMAGE_TYPE_1D:
return (VkOffset3D) { imageOffset.x, 0, 0 };
case VK_IMAGE_TYPE_2D:
return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
case VK_IMAGE_TYPE_3D:
return imageOffset;
default:
unreachable("invalid image type");
}
}
struct tu_attachment_info
{
struct tu_image_view *attachment;
};
struct tu_framebuffer
{
uint32_t width;
uint32_t height;
uint32_t layers;
uint32_t attachment_count;
struct tu_attachment_info attachments[0];
};
struct tu_subpass_barrier
{
VkPipelineStageFlags src_stage_mask;
VkAccessFlags src_access_mask;
VkAccessFlags dst_access_mask;
};
void
tu_subpass_barrier(struct tu_cmd_buffer *cmd_buffer,
const struct tu_subpass_barrier *barrier);
struct tu_subpass_attachment
{
uint32_t attachment;
VkImageLayout layout;
};
struct tu_subpass
{
uint32_t input_count;
uint32_t color_count;
struct tu_subpass_attachment *input_attachments;
struct tu_subpass_attachment *color_attachments;
struct tu_subpass_attachment *resolve_attachments;
struct tu_subpass_attachment depth_stencil_attachment;
struct tu_subpass_barrier start_barrier;
uint32_t view_mask;
VkSampleCountFlagBits max_sample_count;
};
struct tu_render_pass_attachment
{
VkFormat format;
uint32_t samples;
VkAttachmentLoadOp load_op;
VkAttachmentLoadOp stencil_load_op;
VkImageLayout initial_layout;
VkImageLayout final_layout;
uint32_t view_mask;
};
struct tu_render_pass
{
uint32_t attachment_count;
uint32_t subpass_count;
struct tu_subpass_attachment *subpass_attachments;
struct tu_render_pass_attachment *attachments;
struct tu_subpass_barrier end_barrier;
struct tu_subpass subpasses[0];
};
VkResult
tu_device_init_meta(struct tu_device *device);
void
tu_device_finish_meta(struct tu_device *device);
struct tu_query_pool
{
uint32_t stride;
uint32_t availability_offset;
uint64_t size;
char *ptr;
VkQueryType type;
uint32_t pipeline_stats_mask;
};
struct tu_semaphore
{
uint32_t syncobj;
uint32_t temp_syncobj;
};
void
tu_set_descriptor_set(struct tu_cmd_buffer *cmd_buffer,
VkPipelineBindPoint bind_point,
struct tu_descriptor_set *set,
unsigned idx);
void
tu_update_descriptor_sets(struct tu_device *device,
struct tu_cmd_buffer *cmd_buffer,
VkDescriptorSet overrideSet,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites,
uint32_t descriptorCopyCount,
const VkCopyDescriptorSet *pDescriptorCopies);
void
tu_update_descriptor_set_with_template(
struct tu_device *device,
struct tu_cmd_buffer *cmd_buffer,
struct tu_descriptor_set *set,
VkDescriptorUpdateTemplate descriptorUpdateTemplate,
const void *pData);
void
tu_meta_push_descriptor_set(struct tu_cmd_buffer *cmd_buffer,
VkPipelineBindPoint pipelineBindPoint,
VkPipelineLayout _layout,
uint32_t set,
uint32_t descriptorWriteCount,
const VkWriteDescriptorSet *pDescriptorWrites);
int
tu_drm_get_gpu_id(const struct tu_physical_device *dev, uint32_t *id);
int
tu_drm_get_gmem_size(const struct tu_physical_device *dev, uint32_t *size);
int
tu_drm_submitqueue_new(const struct tu_device *dev,
int priority,
uint32_t *queue_id);
void
tu_drm_submitqueue_close(const struct tu_device *dev, uint32_t queue_id);
uint32_t
tu_gem_new(const struct tu_device *dev, uint64_t size, uint32_t flags);
uint32_t
tu_gem_import_dmabuf(const struct tu_device *dev,
int prime_fd,
uint64_t size);
int
tu_gem_export_dmabuf(const struct tu_device *dev, uint32_t gem_handle);
void
tu_gem_close(const struct tu_device *dev, uint32_t gem_handle);
uint64_t
tu_gem_info_offset(const struct tu_device *dev, uint32_t gem_handle);
uint64_t
tu_gem_info_iova(const struct tu_device *dev, uint32_t gem_handle);
#define TU_DEFINE_HANDLE_CASTS(__tu_type, __VkType) \
\
static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
{ \
return (struct __tu_type *) _handle; \
} \
\
static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
{ \
return (__VkType) _obj; \
}
#define TU_DEFINE_NONDISP_HANDLE_CASTS(__tu_type, __VkType) \
\
static inline struct __tu_type *__tu_type##_from_handle(__VkType _handle) \
{ \
return (struct __tu_type *) (uintptr_t) _handle; \
} \
\
static inline __VkType __tu_type##_to_handle(struct __tu_type *_obj) \
{ \
return (__VkType)(uintptr_t) _obj; \
}
#define TU_FROM_HANDLE(__tu_type, __name, __handle) \
struct __tu_type *__name = __tu_type##_from_handle(__handle)
TU_DEFINE_HANDLE_CASTS(tu_cmd_buffer, VkCommandBuffer)
TU_DEFINE_HANDLE_CASTS(tu_device, VkDevice)
TU_DEFINE_HANDLE_CASTS(tu_instance, VkInstance)
TU_DEFINE_HANDLE_CASTS(tu_physical_device, VkPhysicalDevice)
TU_DEFINE_HANDLE_CASTS(tu_queue, VkQueue)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_cmd_pool, VkCommandPool)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer, VkBuffer)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_buffer_view, VkBufferView)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_pool, VkDescriptorPool)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set, VkDescriptorSet)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_set_layout,
VkDescriptorSetLayout)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_descriptor_update_template,
VkDescriptorUpdateTemplate)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_device_memory, VkDeviceMemory)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_fence, VkFence)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_event, VkEvent)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_framebuffer, VkFramebuffer)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image, VkImage)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_image_view, VkImageView);
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_cache, VkPipelineCache)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline, VkPipeline)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_pipeline_layout, VkPipelineLayout)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_query_pool, VkQueryPool)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_render_pass, VkRenderPass)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_sampler, VkSampler)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_shader_module, VkShaderModule)
TU_DEFINE_NONDISP_HANDLE_CASTS(tu_semaphore, VkSemaphore)
#endif /* TU_PRIVATE_H */