blob: 40d1809d3d646637ac205185a0b03f94d10ff05b [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 6.1
*
* Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file imports.h
* Standard C library function wrappers.
*
* This file provides wrappers for all the standard C library functions
* like malloc(), free(), printf(), getenv(), etc.
*/
#ifndef IMPORTS_H
#define IMPORTS_H
/* XXX some of the stuff in glheader.h should be moved into this file.
*/
#include "glheader.h"
#ifdef __cplusplus
extern "C" {
#endif
/**********************************************************************/
/** \name General macros */
/*@{*/
#ifndef NULL
#define NULL 0
#endif
/*@}*/
/**********************************************************************/
/** Memory macros */
/*@{*/
/** Allocate \p BYTES bytes */
#define MALLOC(BYTES) _mesa_malloc(BYTES)
/** Allocate and zero \p BYTES bytes */
#define CALLOC(BYTES) _mesa_calloc(BYTES)
/** Allocate a structure of type \p T */
#define MALLOC_STRUCT(T) (struct T *) _mesa_malloc(sizeof(struct T))
/** Allocate and zero a structure of type \p T */
#define CALLOC_STRUCT(T) (struct T *) _mesa_calloc(sizeof(struct T))
/** Free memory */
#define FREE(PTR) _mesa_free(PTR)
/** Allocate \p BYTES aligned at \p N bytes */
#define ALIGN_MALLOC(BYTES, N) _mesa_align_malloc(BYTES, N)
/** Allocate and zero \p BYTES bytes aligned at \p N bytes */
#define ALIGN_CALLOC(BYTES, N) _mesa_align_calloc(BYTES, N)
/** Allocate a structure of type \p T aligned at \p N bytes */
#define ALIGN_MALLOC_STRUCT(T, N) (struct T *) _mesa_align_malloc(sizeof(struct T), N)
/** Allocate and zero a structure of type \p T aligned at \p N bytes */
#define ALIGN_CALLOC_STRUCT(T, N) (struct T *) _mesa_align_calloc(sizeof(struct T), N)
/** Free aligned memory */
#define ALIGN_FREE(PTR) _mesa_align_free(PTR)
/** Copy \p BYTES bytes from \p SRC into \p DST */
#define MEMCPY( DST, SRC, BYTES) _mesa_memcpy(DST, SRC, BYTES)
/** Set \p N bytes in \p DST to \p VAL */
#define MEMSET( DST, VAL, N ) _mesa_memset(DST, VAL, N)
#define MEMSET16( DST, VAL, N ) _mesa_memset16( (DST), (VAL), (size_t) (N) )
/*@}*/
/*
* For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
* as offsets into buffer stores. Since the vertex array pointer and
* buffer store pointer are both pointers and we need to add them, we use
* this macro.
* Both pointers/offsets are expressed in bytes.
*/
#define ADD_POINTERS(A, B) ( (A) + (unsigned long) (B) )
/**********************************************************************/
/** \name [Pseudo] static array declaration.
*
* MACs and BeOS don't support static larger than 32kb, so ...
*/
/*@{*/
/**
* \def DEFARRAY
* Define a [static] unidimensional array
*/
/**
* \def DEFMARRAY
* Define a [static] bi-dimensional array
*/
/**
* \def DEFMNARRAY
* Define a [static] tri-dimensional array
*/
/**
* \def CHECKARRAY
* Verifies a [static] array was properly allocated.
*/
/**
* \def UNDEFARRAY
* Undefine (free) a [static] array.
*/
#if defined(macintosh) && !defined(__MRC__)
/*extern char *AGLAlloc(int size);*/
/*extern void AGLFree(char* ptr);*/
# define DEFARRAY(TYPE,NAME,SIZE) TYPE *NAME = (TYPE*)_mesa_alloc(sizeof(TYPE)*(SIZE))
# define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE (*NAME)[SIZE2] = (TYPE(*)[SIZE2])_mesa_alloc(sizeof(TYPE)*(SIZE1)*(SIZE2))
# define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE (*NAME)[SIZE2][SIZE3] = (TYPE(*)[SIZE2][SIZE3])_mesa_alloc(sizeof(TYPE)*(SIZE1)*(SIZE2)*(SIZE3))
# define CHECKARRAY(NAME,CMD) do {if (!(NAME)) {CMD;}} while (0)
# define UNDEFARRAY(NAME) do {if ((NAME)) {_mesa_free((char*)NAME);} }while (0)
#elif defined(__BEOS__)
# define DEFARRAY(TYPE,NAME,SIZE) TYPE *NAME = (TYPE*)_mesa_malloc(sizeof(TYPE)*(SIZE))
# define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE (*NAME)[SIZE2] = (TYPE(*)[SIZE2])_mesa_malloc(sizeof(TYPE)*(SIZE1)*(SIZE2))
# define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE (*NAME)[SIZE2][SIZE3] = (TYPE(*)[SIZE2][SIZE3])_mesa_malloc(sizeof(TYPE)*(SIZE1)*(SIZE2)*(SIZE3))
# define CHECKARRAY(NAME,CMD) do {if (!(NAME)) {CMD;}} while (0)
# define UNDEFARRAY(NAME) do {if ((NAME)) {_mesa_free((char*)NAME);} }while (0)
#else
# define DEFARRAY(TYPE,NAME,SIZE) TYPE NAME[SIZE]
# define DEFMARRAY(TYPE,NAME,SIZE1,SIZE2) TYPE NAME[SIZE1][SIZE2]
# define DEFMNARRAY(TYPE,NAME,SIZE1,SIZE2,SIZE3) TYPE NAME[SIZE1][SIZE2][SIZE3]
# define CHECKARRAY(NAME,CMD) do {} while(0)
# define UNDEFARRAY(NAME)
#endif
/*@}*/
/**********************************************************************/
/** \name External pixel buffer allocation.
*
* If you want Mesa's depth/stencil/accum/etc buffers to be allocated with a
* specialized allocator you can define MESA_EXTERNAL_BUFFERALLOC and implement
* _ext_mesa_alloc_pixelbuffer() _ext_mesa_free_pixelbuffer() in your
* application.
*
* \author
* Contributed by Gerk Huisma (gerk@five-d.demon.nl).
*/
/*@{*/
/**
* \def MESA_PBUFFER_ALLOC
* Allocate a pixel buffer.
*/
/**
* \def MESA_PBUFFER_FREE
* Free a pixel buffer.
*/
#ifdef MESA_EXTERNAL_BUFFERALLOC
extern void *_ext_mesa_alloc_pixelbuffer( unsigned int size );
extern void _ext_mesa_free_pixelbuffer( void *pb );
#define MESA_PBUFFER_ALLOC(BYTES) (void *) _ext_mesa_alloc_pixelbuffer(BYTES)
#define MESA_PBUFFER_FREE(PTR) _ext_mesa_free_pixelbuffer(PTR)
#else
/* Default buffer allocation uses the aligned allocation routines: */
#define MESA_PBUFFER_ALLOC(BYTES) (void *) _mesa_align_malloc(BYTES, 512)
#define MESA_PBUFFER_FREE(PTR) _mesa_align_free(PTR)
#endif
/*@}*/
/**********************************************************************
* Math macros
*/
#define MAX_GLUSHORT 0xffff
#define MAX_GLUINT 0xffffffff
#ifndef M_PI
#define M_PI (3.1415926536)
#endif
/* XXX this is a bit of a hack needed for compilation within XFree86 */
#ifndef FLT_MIN
#define FLT_MIN (1.0e-37)
#endif
/* Degrees to radians conversion: */
#define DEG2RAD (M_PI/180.0)
/***
*** USE_IEEE: Determine if we're using IEEE floating point
***/
#if defined(__i386__) || defined(__386__) || defined(__sparc__) || \
defined(__s390x__) || defined(__powerpc__) || \
defined(__AMD64__) || \
defined(ia64) || defined(__ia64__) || \
(defined(__alpha__) && (defined(__IEEE_FLOAT) || !defined(VMS)))
#define USE_IEEE
#define IEEE_ONE 0x3f800000
#endif
/***
*** SQRTF: single-precision square root
***/
#if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
# define SQRTF(X) _mesa_sqrtf(X)
#elif defined(XFree86LOADER) && defined(IN_MODULE)
# define SQRTF(X) (float) xf86sqrt((float) (X))
#else
# define SQRTF(X) (float) sqrt((float) (X))
#endif
/***
*** INV_SQRTF: single-precision inverse square root
***/
#if 0
#define INV_SQRTF(X) _mesa_inv_sqrt(X)
#else
#define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
#endif
/***
*** LOG2: Log base 2 of float
***/
#ifdef USE_IEEE
#if 0
/* This is pretty fast, but not accurate enough (only 2 fractional bits).
* Based on code from http://www.stereopsis.com/log2.html
*/
static INLINE GLfloat LOG2(GLfloat x)
{
const GLfloat y = x * x * x * x;
const GLuint ix = *((GLuint *) &y);
const GLuint exp = (ix >> 23) & 0xFF;
const GLint log2 = ((GLint) exp) - 127;
return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
}
#endif
/* Pretty fast, and accurate.
* Based on code from http://www.flipcode.com/totd/
*/
static INLINE GLfloat LOG2(GLfloat val)
{
fi_type num;
GLint log_2;
num.f = val;
log_2 = ((num.i >> 23) & 255) - 128;
num.i &= ~(255 << 23);
num.i += 127 << 23;
num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
return num.f + log_2;
}
#elif defined(XFree86LOADER) && defined(IN_MODULE)
#define LOG2(x) ((GLfloat) (xf86log(x) * 1.442695))
#else
/*
* NOTE: log_base_2(x) = log(x) / log(2)
* NOTE: 1.442695 = 1/log(2).
*/
#define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
#endif
/***
*** IS_INF_OR_NAN: test if float is infinite or NaN
***/
#ifdef USE_IEEE
static INLINE int IS_INF_OR_NAN( float x )
{
fi_type tmp;
tmp.f = x;
return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
}
#elif defined(isfinite)
#define IS_INF_OR_NAN(x) (!isfinite(x))
#elif defined(finite)
#define IS_INF_OR_NAN(x) (!finite(x))
#elif defined(__VMS)
#define IS_INF_OR_NAN(x) (!finite(x))
#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
#define IS_INF_OR_NAN(x) (!isfinite(x))
#else
#define IS_INF_OR_NAN(x) (!finite(x))
#endif
/***
*** IS_NEGATIVE: test if float is negative
***/
#if defined(USE_IEEE)
#define GET_FLOAT_BITS(x) ((fi_type *) &(x))->i
#define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) & (1<<31))
#else
#define IS_NEGATIVE(x) (x < 0.0F)
#endif
/***
*** DIFFERENT_SIGNS: test if two floats have opposite signs
***/
#if defined(USE_IEEE)
#define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
#else
/* Could just use (x*y<0) except for the flatshading requirements.
* Maybe there's a better way?
*/
#define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
#endif
/***
*** CEILF: ceiling of float
*** FLOORF: floor of float
*** FABSF: absolute value of float
***/
#if defined(XFree86LOADER) && defined(IN_MODULE)
#define CEILF(x) ((GLfloat) xf86ceil(x))
#define FLOORF(x) ((GLfloat) xf86floor(x))
#define FABSF(x) ((GLfloat) xf86fabs(x))
#elif defined(__gnu_linux__)
/* C99 functions */
#define CEILF(x) ceilf(x)
#define FLOORF(x) floorf(x)
#define FABSF(x) fabsf(x)
#else
#define CEILF(x) ((GLfloat) ceil(x))
#define FLOORF(x) ((GLfloat) floor(x))
#define FABSF(x) ((GLfloat) fabs(x))
#endif
/***
*** IROUND: return (as an integer) float rounded to nearest integer
***/
#if defined(USE_SPARC_ASM) && defined(__GNUC__) && defined(__sparc__)
static INLINE int iround(float f)
{
int r;
__asm__ ("fstoi %1, %0" : "=f" (r) : "f" (f));
return r;
}
#define IROUND(x) iround(x)
#elif defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
static INLINE int iround(float f)
{
int r;
__asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
return r;
}
#define IROUND(x) iround(x)
#elif defined(USE_X86_ASM) && defined(__MSC__) && defined(__WIN32__)
static INLINE int iround(float f)
{
int r;
_asm {
fld f
fistp r
}
return r;
}
#define IROUND(x) iround(x)
#elif defined(__WATCOMC__) && defined(__386__)
long iround(float f);
#pragma aux iround = \
"push eax" \
"fistp dword ptr [esp]" \
"pop eax" \
parm [8087] \
value [eax] \
modify exact [eax];
#define IROUND(x) iround(x)
#else
#define IROUND(f) ((int) (((f) >= 0.0F) ? ((f) + 0.5F) : ((f) - 0.5F)))
#endif
/***
*** IROUND_POS: return (as an integer) positive float rounded to nearest int
***/
#ifdef DEBUG
#define IROUND_POS(f) (assert((f) >= 0.0F), IROUND(f))
#else
#define IROUND_POS(f) (IROUND(f))
#endif
/***
*** IFLOOR: return (as an integer) floor of float
***/
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
/*
* IEEE floor for computers that round to nearest or even.
* 'f' must be between -4194304 and 4194303.
* This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
* but uses some IEEE specific tricks for better speed.
* Contributed by Josh Vanderhoof
*/
static INLINE int ifloor(float f)
{
int ai, bi;
double af, bf;
af = (3 << 22) + 0.5 + (double)f;
bf = (3 << 22) + 0.5 - (double)f;
/* GCC generates an extra fstp/fld without this. */
__asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
__asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
return (ai - bi) >> 1;
}
#define IFLOOR(x) ifloor(x)
#elif defined(USE_IEEE)
static INLINE int ifloor(float f)
{
int ai, bi;
double af, bf;
fi_type u;
af = (3 << 22) + 0.5 + (double)f;
bf = (3 << 22) + 0.5 - (double)f;
u.f = (float) af; ai = u.i;
u.f = (float) bf; bi = u.i;
return (ai - bi) >> 1;
}
#define IFLOOR(x) ifloor(x)
#else
static INLINE int ifloor(float f)
{
int i = IROUND(f);
return (i > f) ? i - 1 : i;
}
#define IFLOOR(x) ifloor(x)
#endif
/***
*** ICEIL: return (as an integer) ceiling of float
***/
#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
/*
* IEEE ceil for computers that round to nearest or even.
* 'f' must be between -4194304 and 4194303.
* This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
* but uses some IEEE specific tricks for better speed.
* Contributed by Josh Vanderhoof
*/
static INLINE int iceil(float f)
{
int ai, bi;
double af, bf;
af = (3 << 22) + 0.5 + (double)f;
bf = (3 << 22) + 0.5 - (double)f;
/* GCC generates an extra fstp/fld without this. */
__asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
__asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
return (ai - bi + 1) >> 1;
}
#define ICEIL(x) iceil(x)
#elif defined(USE_IEEE)
static INLINE int iceil(float f)
{
int ai, bi;
double af, bf;
fi_type u;
af = (3 << 22) + 0.5 + (double)f;
bf = (3 << 22) + 0.5 - (double)f;
u.f = (float) af; ai = u.i;
u.f = (float) bf; bi = u.i;
return (ai - bi + 1) >> 1;
}
#define ICEIL(x) iceil(x)
#else
static INLINE int iceil(float f)
{
int i = IROUND(f);
return (i < f) ? i + 1 : i;
}
#define ICEIL(x) iceil(x)
#endif
/***
*** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
*** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
***/
#if defined(USE_IEEE) && !defined(DEBUG)
#define IEEE_0996 0x3f7f0000 /* 0.996 or so */
/* This function/macro is sensitive to precision. Test very carefully
* if you change it!
*/
#define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
do { \
fi_type __tmp; \
__tmp.f = (F); \
if (__tmp.i < 0) \
UB = (GLubyte) 0; \
else if (__tmp.i >= IEEE_0996) \
UB = (GLubyte) 255; \
else { \
__tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
UB = (GLubyte) __tmp.i; \
} \
} while (0)
#define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
do { \
fi_type __tmp; \
__tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
UB = (GLubyte) __tmp.i; \
} while (0)
#else
#define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
ub = ((GLubyte) IROUND(CLAMP((f), 0.0F, 1.0F) * 255.0F))
#define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
ub = ((GLubyte) IROUND((f) * 255.0F))
#endif
/***
*** COPY_FLOAT: copy a float from src to dest, avoid slow FP regs if possible
***/
#if defined(USE_IEEE) && !defined(DEBUG)
#define COPY_FLOAT( dst, src ) \
((fi_type *) &(dst))->i = ((fi_type *) &(src))->i
#else
#define COPY_FLOAT( dst, src ) (dst) = (src)
#endif
/***
*** START_FAST_MATH: Set x86 FPU to faster, 32-bit precision mode (and save
*** original mode to a temporary).
*** END_FAST_MATH: Restore x86 FPU to original mode.
***/
#if defined(__GNUC__) && defined(__i386__)
/*
* Set the x86 FPU control word to guarentee only 32 bits of precision
* are stored in registers. Allowing the FPU to store more introduces
* differences between situations where numbers are pulled out of memory
* vs. situations where the compiler is able to optimize register usage.
*
* In the worst case, we force the compiler to use a memory access to
* truncate the float, by specifying the 'volatile' keyword.
*/
/* Hardware default: All exceptions masked, extended double precision,
* round to nearest (IEEE compliant):
*/
#define DEFAULT_X86_FPU 0x037f
/* All exceptions masked, single precision, round to nearest:
*/
#define FAST_X86_FPU 0x003f
/* The fldcw instruction will cause any pending FP exceptions to be
* raised prior to entering the block, and we clear any pending
* exceptions before exiting the block. Hence, asm code has free
* reign over the FPU while in the fast math block.
*/
#if defined(NO_FAST_MATH)
#define START_FAST_MATH(x) \
do { \
static GLuint mask = DEFAULT_X86_FPU; \
__asm__ ( "fnstcw %0" : "=m" (*&(x)) ); \
__asm__ ( "fldcw %0" : : "m" (mask) ); \
} while (0)
#else
#define START_FAST_MATH(x) \
do { \
static GLuint mask = FAST_X86_FPU; \
__asm__ ( "fnstcw %0" : "=m" (*&(x)) ); \
__asm__ ( "fldcw %0" : : "m" (mask) ); \
} while (0)
#endif
/* Restore original FPU mode, and clear any exceptions that may have
* occurred in the FAST_MATH block.
*/
#define END_FAST_MATH(x) \
do { \
__asm__ ( "fnclex ; fldcw %0" : : "m" (*&(x)) ); \
} while (0)
#elif defined(__WATCOMC__) && defined(__386__)
#define DEFAULT_X86_FPU 0x037f /* See GCC comments above */
#define FAST_X86_FPU 0x003f /* See GCC comments above */
void _watcom_start_fast_math(unsigned short *x,unsigned short *mask);
#pragma aux _watcom_start_fast_math = \
"fnstcw word ptr [eax]" \
"fldcw word ptr [ecx]" \
parm [eax] [ecx] \
modify exact [];
void _watcom_end_fast_math(unsigned short *x);
#pragma aux _watcom_end_fast_math = \
"fnclex" \
"fldcw word ptr [eax]" \
parm [eax] \
modify exact [];
#if defined(NO_FAST_MATH)
#define START_FAST_MATH(x) \
do { \
static GLushort mask = DEFAULT_X86_FPU; \
_watcom_start_fast_math(&x,&mask); \
} while (0)
#else
#define START_FAST_MATH(x) \
do { \
static GLushort mask = FAST_X86_FPU; \
_watcom_start_fast_math(&x,&mask); \
} while (0)
#endif
#define END_FAST_MATH(x) _watcom_end_fast_math(&x)
#else
#define START_FAST_MATH(x) x = 0
#define END_FAST_MATH(x) (void)(x)
#endif
/**********************************************************************
* Functions
*/
extern void *
_mesa_malloc( size_t bytes );
extern void *
_mesa_calloc( size_t bytes );
extern void
_mesa_free( void *ptr );
extern void *
_mesa_align_malloc( size_t bytes, unsigned long alignment );
extern void *
_mesa_align_calloc( size_t bytes, unsigned long alignment );
extern void
_mesa_align_free( void *ptr );
extern void *
_mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
extern void *
_mesa_memcpy( void *dest, const void *src, size_t n );
extern void
_mesa_memset( void *dst, int val, size_t n );
extern void
_mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
extern void
_mesa_bzero( void *dst, size_t n );
extern double
_mesa_sin(double a);
extern double
_mesa_cos(double a);
extern double
_mesa_sqrtd(double x);
extern float
_mesa_sqrtf(float x);
extern float
_mesa_inv_sqrtf(float x);
extern double
_mesa_pow(double x, double y);
extern float
_mesa_log2(float x);
extern unsigned int
_mesa_bitcount(unsigned int n);
extern GLhalfARB
_mesa_float_to_half(float f);
extern float
_mesa_half_to_float(GLhalfARB h);
extern char *
_mesa_getenv( const char *var );
extern char *
_mesa_strstr( const char *haystack, const char *needle );
extern char *
_mesa_strncat( char *dest, const char *src, size_t n );
extern char *
_mesa_strcpy( char *dest, const char *src );
extern char *
_mesa_strncpy( char *dest, const char *src, size_t n );
extern size_t
_mesa_strlen( const char *s );
extern int
_mesa_strcmp( const char *s1, const char *s2 );
extern int
_mesa_strncmp( const char *s1, const char *s2, size_t n );
extern char *
_mesa_strdup( const char *s );
extern int
_mesa_atoi( const char *s );
extern double
_mesa_strtod( const char *s, char **end );
extern int
_mesa_sprintf( char *str, const char *fmt, ... );
extern void
_mesa_printf( const char *fmtString, ... );
extern void
_mesa_warning( __GLcontext *gc, const char *fmtString, ... );
extern void
_mesa_problem( const __GLcontext *ctx, const char *fmtString, ... );
extern void
_mesa_error( __GLcontext *ctx, GLenum error, const char *fmtString, ... );
extern void
_mesa_debug( const __GLcontext *ctx, const char *fmtString, ... );
extern void
_mesa_init_default_imports( __GLimports *imports, void *driverCtx );
#ifdef __cplusplus
}
#endif
#endif /* IMPORTS_H */