blob: b6c3d9090bea198804fe9cdbadebc1a5ea4db8ae [file] [log] [blame]
/*
* Mesa 3-D graphics library
* Version: 6.1
*
* Copyright (C) 1999-2004 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**
* \file rastpos.c
* Raster position operations.
*/
#include "glheader.h"
#include "colormac.h"
#include "context.h"
#include "feedback.h"
#include "light.h"
#include "macros.h"
#include "rastpos.h"
#include "state.h"
#include "simple_list.h"
#include "mtypes.h"
#include "math/m_matrix.h"
/**
* Clip a point against the view volume.
*
* \param v vertex vector describing the point to clip.
*
* \return zero if outside view volume, or one if inside.
*/
static GLuint
viewclip_point( const GLfloat v[] )
{
if ( v[0] > v[3] || v[0] < -v[3]
|| v[1] > v[3] || v[1] < -v[3]
|| v[2] > v[3] || v[2] < -v[3] ) {
return 0;
}
else {
return 1;
}
}
/**
* Clip a point against the far/near Z clipping planes.
*
* \param v vertex vector describing the point to clip.
*
* \return zero if outside view volume, or one if inside.
*/
static GLuint
viewclip_point_z( const GLfloat v[] )
{
if (v[2] > v[3] || v[2] < -v[3] ) {
return 0;
}
else {
return 1;
}
}
/**
* Clip a point against the user clipping planes.
*
* \param ctx GL context.
* \param v vertex vector describing the point to clip.
*
* \return zero if the point was clipped, or one otherwise.
*/
static GLuint
userclip_point( GLcontext *ctx, const GLfloat v[] )
{
GLuint p;
for (p = 0; p < ctx->Const.MaxClipPlanes; p++) {
if (ctx->Transform.ClipPlanesEnabled & (1 << p)) {
GLfloat dot = v[0] * ctx->Transform._ClipUserPlane[p][0]
+ v[1] * ctx->Transform._ClipUserPlane[p][1]
+ v[2] * ctx->Transform._ClipUserPlane[p][2]
+ v[3] * ctx->Transform._ClipUserPlane[p][3];
if (dot < 0.0F) {
return 0;
}
}
}
return 1;
}
/**
* This has been split off to allow the normal shade routines to
* get a little closer to the vertex buffer, and to use the
* GLvector objects directly.
* \param ctx the context
* \param vertex vertex location
* \param normal normal vector
* \param Rcolor returned color
* \param Rspec returned specular color (if separate specular enabled)
* \param Rindex returned color index
*/
static void
shade_rastpos(GLcontext *ctx,
const GLfloat vertex[4],
const GLfloat normal[3],
GLfloat Rcolor[4],
GLfloat Rspec[4],
GLfloat *Rindex)
{
GLfloat (*base)[3] = ctx->Light._BaseColor;
struct gl_light *light;
GLfloat diffuseColor[4], specularColor[4];
GLfloat diffuse = 0, specular = 0;
if (!ctx->_ShineTable[0] || !ctx->_ShineTable[1])
_mesa_validate_all_lighting_tables( ctx );
COPY_3V(diffuseColor, base[0]);
diffuseColor[3] = CLAMP(
ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3], 0.0F, 1.0F );
ASSIGN_4V(specularColor, 0.0, 0.0, 0.0, 0.0);
foreach (light, &ctx->Light.EnabledList) {
GLfloat n_dot_h;
GLfloat attenuation = 1.0;
GLfloat VP[3];
GLfloat n_dot_VP;
GLfloat *h;
GLfloat diffuseContrib[3], specularContrib[3];
GLboolean normalized;
if (!(light->_Flags & LIGHT_POSITIONAL)) {
COPY_3V(VP, light->_VP_inf_norm);
attenuation = light->_VP_inf_spot_attenuation;
}
else {
GLfloat d;
SUB_3V(VP, light->_Position, vertex);
d = (GLfloat) LEN_3FV( VP );
if ( d > 1e-6) {
GLfloat invd = 1.0F / d;
SELF_SCALE_SCALAR_3V(VP, invd);
}
attenuation = 1.0F / (light->ConstantAttenuation + d *
(light->LinearAttenuation + d *
light->QuadraticAttenuation));
if (light->_Flags & LIGHT_SPOT) {
GLfloat PV_dot_dir = - DOT3(VP, light->_NormDirection);
if (PV_dot_dir<light->_CosCutoff) {
continue;
}
else {
double x = PV_dot_dir * (EXP_TABLE_SIZE-1);
int k = (int) x;
GLfloat spot = (GLfloat) (light->_SpotExpTable[k][0]
+ (x-k)*light->_SpotExpTable[k][1]);
attenuation *= spot;
}
}
}
if (attenuation < 1e-3)
continue;
n_dot_VP = DOT3( normal, VP );
if (n_dot_VP < 0.0F) {
ACC_SCALE_SCALAR_3V(diffuseColor, attenuation, light->_MatAmbient[0]);
continue;
}
COPY_3V(diffuseContrib, light->_MatAmbient[0]);
ACC_SCALE_SCALAR_3V(diffuseContrib, n_dot_VP, light->_MatDiffuse[0]);
diffuse += n_dot_VP * light->_dli * attenuation;
ASSIGN_3V(specularContrib, 0.0, 0.0, 0.0);
{
if (ctx->Light.Model.LocalViewer) {
GLfloat v[3];
COPY_3V(v, vertex);
NORMALIZE_3FV(v);
SUB_3V(VP, VP, v);
h = VP;
normalized = 0;
}
else if (light->_Flags & LIGHT_POSITIONAL) {
h = VP;
ACC_3V(h, ctx->_EyeZDir);
normalized = 0;
}
else {
h = light->_h_inf_norm;
normalized = 1;
}
n_dot_h = DOT3(normal, h);
if (n_dot_h > 0.0F) {
GLfloat (*mat)[4] = ctx->Light.Material.Attrib;
GLfloat spec_coef;
GLfloat shininess = mat[MAT_ATTRIB_FRONT_SHININESS][0];
if (!normalized) {
n_dot_h *= n_dot_h;
n_dot_h /= LEN_SQUARED_3FV( h );
shininess *= .5;
}
GET_SHINE_TAB_ENTRY( ctx->_ShineTable[0], n_dot_h, spec_coef );
if (spec_coef > 1.0e-10) {
if (ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) {
ACC_SCALE_SCALAR_3V( specularContrib, spec_coef,
light->_MatSpecular[0]);
}
else {
ACC_SCALE_SCALAR_3V( diffuseContrib, spec_coef,
light->_MatSpecular[0]);
}
specular += spec_coef * light->_sli * attenuation;
}
}
}
ACC_SCALE_SCALAR_3V( diffuseColor, attenuation, diffuseContrib );
ACC_SCALE_SCALAR_3V( specularColor, attenuation, specularContrib );
}
if (ctx->Visual.rgbMode) {
Rcolor[0] = CLAMP(diffuseColor[0], 0.0F, 1.0F);
Rcolor[1] = CLAMP(diffuseColor[1], 0.0F, 1.0F);
Rcolor[2] = CLAMP(diffuseColor[2], 0.0F, 1.0F);
Rcolor[3] = CLAMP(diffuseColor[3], 0.0F, 1.0F);
Rspec[0] = CLAMP(specularColor[0], 0.0F, 1.0F);
Rspec[1] = CLAMP(specularColor[1], 0.0F, 1.0F);
Rspec[2] = CLAMP(specularColor[2], 0.0F, 1.0F);
Rspec[3] = CLAMP(specularColor[3], 0.0F, 1.0F);
}
else {
GLfloat *ind = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_INDEXES];
GLfloat d_a = ind[MAT_INDEX_DIFFUSE] - ind[MAT_INDEX_AMBIENT];
GLfloat s_a = ind[MAT_INDEX_SPECULAR] - ind[MAT_INDEX_AMBIENT];
GLfloat i = (ind[MAT_INDEX_AMBIENT]
+ diffuse * (1.0F-specular) * d_a
+ specular * s_a);
if (i > ind[MAT_INDEX_SPECULAR]) {
i = ind[MAT_INDEX_SPECULAR];
}
*Rindex = i;
}
}
/**
* Do texgen needed for glRasterPos.
* \param ctx rendering context
* \param vObj object-space vertex coordinate
* \param vEye eye-space vertex coordinate
* \param normal vertex normal
* \param unit texture unit number
* \param texcoord incoming texcoord and resulting texcoord
*/
static void
compute_texgen(GLcontext *ctx, const GLfloat vObj[4], const GLfloat vEye[4],
const GLfloat normal[3], GLuint unit, GLfloat texcoord[4])
{
const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
/* always compute sphere map terms, just in case */
GLfloat u[3], two_nu, rx, ry, rz, m, mInv;
COPY_3V(u, vEye);
NORMALIZE_3FV(u);
two_nu = 2.0F * DOT3(normal, u);
rx = u[0] - normal[0] * two_nu;
ry = u[1] - normal[1] * two_nu;
rz = u[2] - normal[2] * two_nu;
m = rx * rx + ry * ry + (rz + 1.0F) * (rz + 1.0F);
if (m > 0.0F)
mInv = 0.5F * _mesa_inv_sqrtf(m);
else
mInv = 0.0F;
if (texUnit->TexGenEnabled & S_BIT) {
switch (texUnit->GenModeS) {
case GL_OBJECT_LINEAR:
texcoord[0] = DOT4(vObj, texUnit->ObjectPlaneS);
break;
case GL_EYE_LINEAR:
texcoord[0] = DOT4(vEye, texUnit->EyePlaneS);
break;
case GL_SPHERE_MAP:
texcoord[0] = rx * mInv + 0.5F;
break;
case GL_REFLECTION_MAP:
texcoord[0] = rx;
break;
case GL_NORMAL_MAP:
texcoord[0] = normal[0];
break;
default:
_mesa_problem(ctx, "Bad S texgen in compute_texgen()");
return;
}
}
if (texUnit->TexGenEnabled & T_BIT) {
switch (texUnit->GenModeT) {
case GL_OBJECT_LINEAR:
texcoord[1] = DOT4(vObj, texUnit->ObjectPlaneT);
break;
case GL_EYE_LINEAR:
texcoord[1] = DOT4(vEye, texUnit->EyePlaneT);
break;
case GL_SPHERE_MAP:
texcoord[1] = ry * mInv + 0.5F;
break;
case GL_REFLECTION_MAP:
texcoord[1] = ry;
break;
case GL_NORMAL_MAP:
texcoord[1] = normal[1];
break;
default:
_mesa_problem(ctx, "Bad T texgen in compute_texgen()");
return;
}
}
if (texUnit->TexGenEnabled & R_BIT) {
switch (texUnit->GenModeR) {
case GL_OBJECT_LINEAR:
texcoord[2] = DOT4(vObj, texUnit->ObjectPlaneR);
break;
case GL_EYE_LINEAR:
texcoord[2] = DOT4(vEye, texUnit->EyePlaneR);
break;
case GL_REFLECTION_MAP:
texcoord[2] = rz;
break;
case GL_NORMAL_MAP:
texcoord[2] = normal[2];
break;
default:
_mesa_problem(ctx, "Bad R texgen in compute_texgen()");
return;
}
}
if (texUnit->TexGenEnabled & Q_BIT) {
switch (texUnit->GenModeQ) {
case GL_OBJECT_LINEAR:
texcoord[3] = DOT4(vObj, texUnit->ObjectPlaneQ);
break;
case GL_EYE_LINEAR:
texcoord[3] = DOT4(vEye, texUnit->EyePlaneQ);
break;
default:
_mesa_problem(ctx, "Bad Q texgen in compute_texgen()");
return;
}
}
}
/**
* Set the raster position for pixel operations.
*
* All glRasterPos command call this function to update the current
* raster position.
*
* \param ctx GL context.
* \param x x coordinate for the raster position.
* \param y y coordinate for the raster position.
* \param z z coordinate for the raster position.
* \param w w coordinate for the raster position.
*
* \sa Called by _mesa_RasterPos4f().
*
* Flushes the vertices, transforms and clips the vertex coordinates, and
* finally sets the current raster position and associated data in
* __GLcontextRec::Current. When in selection mode calls
* _mesa_update_hitflag() with the current raster position.
*/
static void
raster_pos4f(GLcontext *ctx, GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
FLUSH_CURRENT(ctx, 0);
if (ctx->NewState)
_mesa_update_state( ctx );
if (ctx->VertexProgram._Enabled) {
/* XXX implement this */
_mesa_problem(ctx, "Vertex programs not implemented for glRasterPos");
return;
}
else {
GLfloat obj[4], eye[4], clip[4], ndc[3], d;
GLfloat *norm, eyenorm[3];
GLfloat *objnorm = ctx->Current.Attrib[VERT_ATTRIB_NORMAL];
ASSIGN_4V( obj, x, y, z, w );
/* apply modelview matrix: eye = MV * obj */
TRANSFORM_POINT( eye, ctx->ModelviewMatrixStack.Top->m, obj );
/* apply projection matrix: clip = Proj * eye */
TRANSFORM_POINT( clip, ctx->ProjectionMatrixStack.Top->m, eye );
/* clip to view volume */
if (ctx->Transform.RasterPositionUnclipped) {
/* GL_IBM_rasterpos_clip: only clip against Z */
if (viewclip_point_z(clip) == 0) {
ctx->Current.RasterPosValid = GL_FALSE;
return;
}
}
else if (viewclip_point(clip) == 0) {
/* Normal OpenGL behaviour */
ctx->Current.RasterPosValid = GL_FALSE;
return;
}
/* clip to user clipping planes */
if (ctx->Transform.ClipPlanesEnabled && !userclip_point(ctx, clip)) {
ctx->Current.RasterPosValid = GL_FALSE;
return;
}
/* ndc = clip / W */
d = (clip[3] == 0.0F) ? 1.0F : 1.0F / clip[3];
ndc[0] = clip[0] * d;
ndc[1] = clip[1] * d;
ndc[2] = clip[2] * d;
/* wincoord = viewport_mapping(ndc) */
ctx->Current.RasterPos[0] = (ndc[0] * ctx->Viewport._WindowMap.m[MAT_SX]
+ ctx->Viewport._WindowMap.m[MAT_TX]);
ctx->Current.RasterPos[1] = (ndc[1] * ctx->Viewport._WindowMap.m[MAT_SY]
+ ctx->Viewport._WindowMap.m[MAT_TY]);
ctx->Current.RasterPos[2] = (ndc[2] * ctx->Viewport._WindowMap.m[MAT_SZ]
+ ctx->Viewport._WindowMap.m[MAT_TZ])
/ ctx->DepthMaxF;
ctx->Current.RasterPos[3] = clip[3];
/* compute raster distance */
if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
else
ctx->Current.RasterDistance =
SQRTF( eye[0]*eye[0] + eye[1]*eye[1] + eye[2]*eye[2] );
/* compute transformed normal vector (for lighting or texgen) */
if (ctx->_NeedEyeCoords) {
const GLfloat *inv = ctx->ModelviewMatrixStack.Top->inv;
TRANSFORM_NORMAL( eyenorm, objnorm, inv );
norm = eyenorm;
}
else {
norm = objnorm;
}
/* update raster color */
if (ctx->Light.Enabled) {
/* lighting */
shade_rastpos( ctx, obj, norm,
ctx->Current.RasterColor,
ctx->Current.RasterSecondaryColor,
&ctx->Current.RasterIndex );
}
else {
/* use current color or index */
if (ctx->Visual.rgbMode) {
COPY_4FV(ctx->Current.RasterColor,
ctx->Current.Attrib[VERT_ATTRIB_COLOR0]);
COPY_4FV(ctx->Current.RasterSecondaryColor,
ctx->Current.Attrib[VERT_ATTRIB_COLOR1]);
}
else {
ctx->Current.RasterIndex = ctx->Current.Index;
}
}
/* texture coords */
{
GLuint u;
for (u = 0; u < ctx->Const.MaxTextureCoordUnits; u++) {
GLfloat tc[4];
COPY_4V(tc, ctx->Current.Attrib[VERT_ATTRIB_TEX0 + u]);
if (ctx->Texture.Unit[u].TexGenEnabled) {
compute_texgen(ctx, obj, eye, norm, u, tc);
}
TRANSFORM_POINT(ctx->Current.RasterTexCoords[u],
ctx->TextureMatrixStack[u].Top->m, tc);
}
}
ctx->Current.RasterPosValid = GL_TRUE;
}
if (ctx->RenderMode == GL_SELECT) {
_mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
}
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos2d(GLdouble x, GLdouble y)
{
_mesa_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos2f(GLfloat x, GLfloat y)
{
_mesa_RasterPos4f(x, y, 0.0F, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos2i(GLint x, GLint y)
{
_mesa_RasterPos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos2s(GLshort x, GLshort y)
{
_mesa_RasterPos4f(x, y, 0.0F, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos3d(GLdouble x, GLdouble y, GLdouble z)
{
_mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos3f(GLfloat x, GLfloat y, GLfloat z)
{
_mesa_RasterPos4f(x, y, z, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos3i(GLint x, GLint y, GLint z)
{
_mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos3s(GLshort x, GLshort y, GLshort z)
{
_mesa_RasterPos4f(x, y, z, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos4d(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
_mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
/** Calls raster_pos4f() */
void GLAPIENTRY
_mesa_RasterPos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
raster_pos4f(ctx, x, y, z, w);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos4i(GLint x, GLint y, GLint z, GLint w)
{
_mesa_RasterPos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos4s(GLshort x, GLshort y, GLshort z, GLshort w)
{
_mesa_RasterPos4f(x, y, z, w);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos2dv(const GLdouble *v)
{
_mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos2fv(const GLfloat *v)
{
_mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos2iv(const GLint *v)
{
_mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos2sv(const GLshort *v)
{
_mesa_RasterPos4f(v[0], v[1], 0.0F, 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos3dv(const GLdouble *v)
{
_mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos3fv(const GLfloat *v)
{
_mesa_RasterPos4f(v[0], v[1], v[2], 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos3iv(const GLint *v)
{
_mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos3sv(const GLshort *v)
{
_mesa_RasterPos4f(v[0], v[1], v[2], 1.0F);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos4dv(const GLdouble *v)
{
_mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos4fv(const GLfloat *v)
{
_mesa_RasterPos4f(v[0], v[1], v[2], v[3]);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos4iv(const GLint *v)
{
_mesa_RasterPos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
/** Calls _mesa_RasterPos4f() */
void GLAPIENTRY
_mesa_RasterPos4sv(const GLshort *v)
{
_mesa_RasterPos4f(v[0], v[1], v[2], v[3]);
}
/**********************************************************************/
/*** GL_ARB_window_pos / GL_MESA_window_pos ***/
/**********************************************************************/
#if FEATURE_windowpos
/**
* All glWindowPosMESA and glWindowPosARB commands call this function to
* update the current raster position.
*/
static void
window_pos3f(GLfloat x, GLfloat y, GLfloat z)
{
GET_CURRENT_CONTEXT(ctx);
GLfloat z2;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
FLUSH_CURRENT(ctx, 0);
z2 = CLAMP(z, 0.0F, 1.0F) * (ctx->Viewport.Far - ctx->Viewport.Near)
+ ctx->Viewport.Near;
/* set raster position */
ctx->Current.RasterPos[0] = x;
ctx->Current.RasterPos[1] = y;
ctx->Current.RasterPos[2] = z2;
ctx->Current.RasterPos[3] = 1.0F;
ctx->Current.RasterPosValid = GL_TRUE;
if (ctx->Fog.FogCoordinateSource == GL_FOG_COORDINATE_EXT)
ctx->Current.RasterDistance = ctx->Current.Attrib[VERT_ATTRIB_FOG][0];
else
ctx->Current.RasterDistance = 0.0;
/* raster color = current color or index */
if (ctx->Visual.rgbMode) {
ctx->Current.RasterColor[0]
= CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][0], 0.0F, 1.0F);
ctx->Current.RasterColor[1]
= CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][1], 0.0F, 1.0F);
ctx->Current.RasterColor[2]
= CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][2], 0.0F, 1.0F);
ctx->Current.RasterColor[3]
= CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR0][3], 0.0F, 1.0F);
ctx->Current.RasterSecondaryColor[0]
= CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][0], 0.0F, 1.0F);
ctx->Current.RasterSecondaryColor[1]
= CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][1], 0.0F, 1.0F);
ctx->Current.RasterSecondaryColor[2]
= CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][2], 0.0F, 1.0F);
ctx->Current.RasterSecondaryColor[3]
= CLAMP(ctx->Current.Attrib[VERT_ATTRIB_COLOR1][3], 0.0F, 1.0F);
}
else {
ctx->Current.RasterIndex = ctx->Current.Index;
}
/* raster texcoord = current texcoord */
{
GLuint texSet;
for (texSet = 0; texSet < ctx->Const.MaxTextureCoordUnits; texSet++) {
COPY_4FV( ctx->Current.RasterTexCoords[texSet],
ctx->Current.Attrib[VERT_ATTRIB_TEX0 + texSet] );
}
}
if (ctx->RenderMode==GL_SELECT) {
_mesa_update_hitflag( ctx, ctx->Current.RasterPos[2] );
}
}
/* This is just to support the GL_MESA_window_pos version */
static void
window_pos4f(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
GET_CURRENT_CONTEXT(ctx);
window_pos3f(x, y, z);
ctx->Current.RasterPos[3] = w;
}
void GLAPIENTRY
_mesa_WindowPos2dMESA(GLdouble x, GLdouble y)
{
window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos2fMESA(GLfloat x, GLfloat y)
{
window_pos4f(x, y, 0.0F, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos2iMESA(GLint x, GLint y)
{
window_pos4f((GLfloat) x, (GLfloat) y, 0.0F, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos2sMESA(GLshort x, GLshort y)
{
window_pos4f(x, y, 0.0F, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos3dMESA(GLdouble x, GLdouble y, GLdouble z)
{
window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos3fMESA(GLfloat x, GLfloat y, GLfloat z)
{
window_pos4f(x, y, z, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos3iMESA(GLint x, GLint y, GLint z)
{
window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos3sMESA(GLshort x, GLshort y, GLshort z)
{
window_pos4f(x, y, z, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos4dMESA(GLdouble x, GLdouble y, GLdouble z, GLdouble w)
{
window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void GLAPIENTRY
_mesa_WindowPos4fMESA(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
{
window_pos4f(x, y, z, w);
}
void GLAPIENTRY
_mesa_WindowPos4iMESA(GLint x, GLint y, GLint z, GLint w)
{
window_pos4f((GLfloat) x, (GLfloat) y, (GLfloat) z, (GLfloat) w);
}
void GLAPIENTRY
_mesa_WindowPos4sMESA(GLshort x, GLshort y, GLshort z, GLshort w)
{
window_pos4f(x, y, z, w);
}
void GLAPIENTRY
_mesa_WindowPos2dvMESA(const GLdouble *v)
{
window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos2fvMESA(const GLfloat *v)
{
window_pos4f(v[0], v[1], 0.0F, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos2ivMESA(const GLint *v)
{
window_pos4f((GLfloat) v[0], (GLfloat) v[1], 0.0F, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos2svMESA(const GLshort *v)
{
window_pos4f(v[0], v[1], 0.0F, 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos3dvMESA(const GLdouble *v)
{
window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos3fvMESA(const GLfloat *v)
{
window_pos4f(v[0], v[1], v[2], 1.0);
}
void GLAPIENTRY
_mesa_WindowPos3ivMESA(const GLint *v)
{
window_pos4f((GLfloat) v[0], (GLfloat) v[1], (GLfloat) v[2], 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos3svMESA(const GLshort *v)
{
window_pos4f(v[0], v[1], v[2], 1.0F);
}
void GLAPIENTRY
_mesa_WindowPos4dvMESA(const GLdouble *v)
{
window_pos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
void GLAPIENTRY
_mesa_WindowPos4fvMESA(const GLfloat *v)
{
window_pos4f(v[0], v[1], v[2], v[3]);
}
void GLAPIENTRY
_mesa_WindowPos4ivMESA(const GLint *v)
{
window_pos4f((GLfloat) v[0], (GLfloat) v[1],
(GLfloat) v[2], (GLfloat) v[3]);
}
void GLAPIENTRY
_mesa_WindowPos4svMESA(const GLshort *v)
{
window_pos4f(v[0], v[1], v[2], v[3]);
}
#endif
#if 0
/*
* OpenGL implementation of glWindowPos*MESA()
*/
void glWindowPos4fMESA( GLfloat x, GLfloat y, GLfloat z, GLfloat w )
{
GLfloat fx, fy;
/* Push current matrix mode and viewport attributes */
glPushAttrib( GL_TRANSFORM_BIT | GL_VIEWPORT_BIT );
/* Setup projection parameters */
glMatrixMode( GL_PROJECTION );
glPushMatrix();
glLoadIdentity();
glMatrixMode( GL_MODELVIEW );
glPushMatrix();
glLoadIdentity();
glDepthRange( z, z );
glViewport( (int) x - 1, (int) y - 1, 2, 2 );
/* set the raster (window) position */
fx = x - (int) x;
fy = y - (int) y;
glRasterPos4f( fx, fy, 0.0, w );
/* restore matrices, viewport and matrix mode */
glPopMatrix();
glMatrixMode( GL_PROJECTION );
glPopMatrix();
glPopAttrib();
}
#endif
/**********************************************************************/
/** \name Initialization */
/**********************************************************************/
/*@{*/
/**
* Initialize the context current raster position information.
*
* \param ctx GL context.
*
* Initialize the current raster position information in
* __GLcontextRec::Current, and adds the extension entry points to the
* dispatcher.
*/
void _mesa_init_rastpos( GLcontext * ctx )
{
int i;
ASSIGN_4V( ctx->Current.RasterPos, 0.0, 0.0, 0.0, 1.0 );
ctx->Current.RasterDistance = 0.0;
ASSIGN_4V( ctx->Current.RasterColor, 1.0, 1.0, 1.0, 1.0 );
ctx->Current.RasterIndex = 1.0;
for (i=0; i<MAX_TEXTURE_UNITS; i++)
ASSIGN_4V( ctx->Current.RasterTexCoords[i], 0.0, 0.0, 0.0, 1.0 );
ctx->Current.RasterPosValid = GL_TRUE;
/*
* For XFree86/DRI: tell libGL to add these functions to the dispatcher.
* Basically, we should add all extension functions above offset 577.
* This enables older libGL libraries to work with newer drivers that
* have newer extensions.
*/
/* GL_ARB_window_pos aliases with GL_MESA_window_pos */
_glapi_add_entrypoint("glWindowPos2dARB", 513);
_glapi_add_entrypoint("glWindowPos2dvARB", 514);
_glapi_add_entrypoint("glWindowPos2fARB", 515);
_glapi_add_entrypoint("glWindowPos2fvARB", 516);
_glapi_add_entrypoint("glWindowPos2iARB", 517);
_glapi_add_entrypoint("glWindowPos2ivARB", 518);
_glapi_add_entrypoint("glWindowPos2sARB", 519);
_glapi_add_entrypoint("glWindowPos2svARB", 520);
_glapi_add_entrypoint("glWindowPos3dARB", 521);
_glapi_add_entrypoint("glWindowPos3dvARB", 522);
_glapi_add_entrypoint("glWindowPos3fARB", 523);
_glapi_add_entrypoint("glWindowPos3fvARB", 524);
_glapi_add_entrypoint("glWindowPos3iARB", 525);
_glapi_add_entrypoint("glWindowPos3ivARB", 526);
_glapi_add_entrypoint("glWindowPos3sARB", 527);
_glapi_add_entrypoint("glWindowPos3svARB", 528);
}
/*@}*/