| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| /** |
| * \file linker.cpp |
| * GLSL linker implementation |
| * |
| * Given a set of shaders that are to be linked to generate a final program, |
| * there are three distinct stages. |
| * |
| * In the first stage shaders are partitioned into groups based on the shader |
| * type. All shaders of a particular type (e.g., vertex shaders) are linked |
| * together. |
| * |
| * - Undefined references in each shader are resolve to definitions in |
| * another shader. |
| * - Types and qualifiers of uniforms, outputs, and global variables defined |
| * in multiple shaders with the same name are verified to be the same. |
| * - Initializers for uniforms and global variables defined |
| * in multiple shaders with the same name are verified to be the same. |
| * |
| * The result, in the terminology of the GLSL spec, is a set of shader |
| * executables for each processing unit. |
| * |
| * After the first stage is complete, a series of semantic checks are performed |
| * on each of the shader executables. |
| * |
| * - Each shader executable must define a \c main function. |
| * - Each vertex shader executable must write to \c gl_Position. |
| * - Each fragment shader executable must write to either \c gl_FragData or |
| * \c gl_FragColor. |
| * |
| * In the final stage individual shader executables are linked to create a |
| * complete exectuable. |
| * |
| * - Types of uniforms defined in multiple shader stages with the same name |
| * are verified to be the same. |
| * - Initializers for uniforms defined in multiple shader stages with the |
| * same name are verified to be the same. |
| * - Types and qualifiers of outputs defined in one stage are verified to |
| * be the same as the types and qualifiers of inputs defined with the same |
| * name in a later stage. |
| * |
| * \author Ian Romanick <ian.d.romanick@intel.com> |
| */ |
| |
| #include "main/core.h" |
| #include "glsl_symbol_table.h" |
| #include "ir.h" |
| #include "program.h" |
| #include "program/hash_table.h" |
| #include "linker.h" |
| #include "link_varyings.h" |
| #include "ir_optimization.h" |
| |
| extern "C" { |
| #include "main/shaderobj.h" |
| } |
| |
| /** |
| * Visitor that determines whether or not a variable is ever written. |
| */ |
| class find_assignment_visitor : public ir_hierarchical_visitor { |
| public: |
| find_assignment_visitor(const char *name) |
| : name(name), found(false) |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit_enter(ir_assignment *ir) |
| { |
| ir_variable *const var = ir->lhs->variable_referenced(); |
| |
| if (strcmp(name, var->name) == 0) { |
| found = true; |
| return visit_stop; |
| } |
| |
| return visit_continue_with_parent; |
| } |
| |
| virtual ir_visitor_status visit_enter(ir_call *ir) |
| { |
| exec_list_iterator sig_iter = ir->callee->parameters.iterator(); |
| foreach_iter(exec_list_iterator, iter, *ir) { |
| ir_rvalue *param_rval = (ir_rvalue *)iter.get(); |
| ir_variable *sig_param = (ir_variable *)sig_iter.get(); |
| |
| if (sig_param->mode == ir_var_function_out || |
| sig_param->mode == ir_var_function_inout) { |
| ir_variable *var = param_rval->variable_referenced(); |
| if (var && strcmp(name, var->name) == 0) { |
| found = true; |
| return visit_stop; |
| } |
| } |
| sig_iter.next(); |
| } |
| |
| if (ir->return_deref != NULL) { |
| ir_variable *const var = ir->return_deref->variable_referenced(); |
| |
| if (strcmp(name, var->name) == 0) { |
| found = true; |
| return visit_stop; |
| } |
| } |
| |
| return visit_continue_with_parent; |
| } |
| |
| bool variable_found() |
| { |
| return found; |
| } |
| |
| private: |
| const char *name; /**< Find writes to a variable with this name. */ |
| bool found; /**< Was a write to the variable found? */ |
| }; |
| |
| |
| /** |
| * Visitor that determines whether or not a variable is ever read. |
| */ |
| class find_deref_visitor : public ir_hierarchical_visitor { |
| public: |
| find_deref_visitor(const char *name) |
| : name(name), found(false) |
| { |
| /* empty */ |
| } |
| |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| if (strcmp(this->name, ir->var->name) == 0) { |
| this->found = true; |
| return visit_stop; |
| } |
| |
| return visit_continue; |
| } |
| |
| bool variable_found() const |
| { |
| return this->found; |
| } |
| |
| private: |
| const char *name; /**< Find writes to a variable with this name. */ |
| bool found; /**< Was a write to the variable found? */ |
| }; |
| |
| |
| void |
| linker_error(gl_shader_program *prog, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| ralloc_strcat(&prog->InfoLog, "error: "); |
| va_start(ap, fmt); |
| ralloc_vasprintf_append(&prog->InfoLog, fmt, ap); |
| va_end(ap); |
| |
| prog->LinkStatus = false; |
| } |
| |
| |
| void |
| linker_warning(gl_shader_program *prog, const char *fmt, ...) |
| { |
| va_list ap; |
| |
| ralloc_strcat(&prog->InfoLog, "error: "); |
| va_start(ap, fmt); |
| ralloc_vasprintf_append(&prog->InfoLog, fmt, ap); |
| va_end(ap); |
| |
| } |
| |
| |
| /** |
| * Given a string identifying a program resource, break it into a base name |
| * and an optional array index in square brackets. |
| * |
| * If an array index is present, \c out_base_name_end is set to point to the |
| * "[" that precedes the array index, and the array index itself is returned |
| * as a long. |
| * |
| * If no array index is present (or if the array index is negative or |
| * mal-formed), \c out_base_name_end, is set to point to the null terminator |
| * at the end of the input string, and -1 is returned. |
| * |
| * Only the final array index is parsed; if the string contains other array |
| * indices (or structure field accesses), they are left in the base name. |
| * |
| * No attempt is made to check that the base name is properly formed; |
| * typically the caller will look up the base name in a hash table, so |
| * ill-formed base names simply turn into hash table lookup failures. |
| */ |
| long |
| parse_program_resource_name(const GLchar *name, |
| const GLchar **out_base_name_end) |
| { |
| /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says: |
| * |
| * "When an integer array element or block instance number is part of |
| * the name string, it will be specified in decimal form without a "+" |
| * or "-" sign or any extra leading zeroes. Additionally, the name |
| * string will not include white space anywhere in the string." |
| */ |
| |
| const size_t len = strlen(name); |
| *out_base_name_end = name + len; |
| |
| if (len == 0 || name[len-1] != ']') |
| return -1; |
| |
| /* Walk backwards over the string looking for a non-digit character. This |
| * had better be the opening bracket for an array index. |
| * |
| * Initially, i specifies the location of the ']'. Since the string may |
| * contain only the ']' charcater, walk backwards very carefully. |
| */ |
| unsigned i; |
| for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i) |
| /* empty */ ; |
| |
| if ((i == 0) || name[i-1] != '[') |
| return -1; |
| |
| long array_index = strtol(&name[i], NULL, 10); |
| if (array_index < 0) |
| return -1; |
| |
| *out_base_name_end = name + (i - 1); |
| return array_index; |
| } |
| |
| |
| void |
| link_invalidate_variable_locations(gl_shader *sh, int input_base, |
| int output_base) |
| { |
| foreach_list(node, sh->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if (var == NULL) |
| continue; |
| |
| int base; |
| switch (var->mode) { |
| case ir_var_shader_in: |
| base = input_base; |
| break; |
| case ir_var_shader_out: |
| base = output_base; |
| break; |
| default: |
| continue; |
| } |
| |
| /* Only assign locations for generic attributes / varyings / etc. |
| */ |
| if ((var->location >= base) && !var->explicit_location) |
| var->location = -1; |
| |
| if ((var->location == -1) && !var->explicit_location) { |
| var->is_unmatched_generic_inout = 1; |
| var->location_frac = 0; |
| } else { |
| var->is_unmatched_generic_inout = 0; |
| } |
| } |
| } |
| |
| |
| /** |
| * Determine the number of attribute slots required for a particular type |
| * |
| * This code is here because it implements the language rules of a specific |
| * GLSL version. Since it's a property of the language and not a property of |
| * types in general, it doesn't really belong in glsl_type. |
| */ |
| unsigned |
| count_attribute_slots(const glsl_type *t) |
| { |
| /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec: |
| * |
| * "A scalar input counts the same amount against this limit as a vec4, |
| * so applications may want to consider packing groups of four |
| * unrelated float inputs together into a vector to better utilize the |
| * capabilities of the underlying hardware. A matrix input will use up |
| * multiple locations. The number of locations used will equal the |
| * number of columns in the matrix." |
| * |
| * The spec does not explicitly say how arrays are counted. However, it |
| * should be safe to assume the total number of slots consumed by an array |
| * is the number of entries in the array multiplied by the number of slots |
| * consumed by a single element of the array. |
| */ |
| |
| if (t->is_array()) |
| return t->array_size() * count_attribute_slots(t->element_type()); |
| |
| if (t->is_matrix()) |
| return t->matrix_columns; |
| |
| return 1; |
| } |
| |
| |
| /** |
| * Verify that a vertex shader executable meets all semantic requirements. |
| * |
| * Also sets prog->Vert.UsesClipDistance and prog->Vert.ClipDistanceArraySize |
| * as a side effect. |
| * |
| * \param shader Vertex shader executable to be verified |
| */ |
| bool |
| validate_vertex_shader_executable(struct gl_shader_program *prog, |
| struct gl_shader *shader) |
| { |
| if (shader == NULL) |
| return true; |
| |
| /* From the GLSL 1.10 spec, page 48: |
| * |
| * "The variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. All executions of a well-formed vertex shader |
| * executable must write a value into this variable. [...] The |
| * variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. All executions of a well-formed vertex shader |
| * executable must write a value into this variable." |
| * |
| * while in GLSL 1.40 this text is changed to: |
| * |
| * "The variable gl_Position is available only in the vertex |
| * language and is intended for writing the homogeneous vertex |
| * position. It can be written at any time during shader |
| * execution. It may also be read back by a vertex shader |
| * after being written. This value will be used by primitive |
| * assembly, clipping, culling, and other fixed functionality |
| * operations, if present, that operate on primitives after |
| * vertex processing has occurred. Its value is undefined if |
| * the vertex shader executable does not write gl_Position." |
| * |
| * GLSL ES 3.00 is similar to GLSL 1.40--failing to write to gl_Position is |
| * not an error. |
| */ |
| if (prog->Version < (prog->IsES ? 300 : 140)) { |
| find_assignment_visitor find("gl_Position"); |
| find.run(shader->ir); |
| if (!find.variable_found()) { |
| linker_error(prog, "vertex shader does not write to `gl_Position'\n"); |
| return false; |
| } |
| } |
| |
| prog->Vert.ClipDistanceArraySize = 0; |
| |
| if (!prog->IsES && prog->Version >= 130) { |
| /* From section 7.1 (Vertex Shader Special Variables) of the |
| * GLSL 1.30 spec: |
| * |
| * "It is an error for a shader to statically write both |
| * gl_ClipVertex and gl_ClipDistance." |
| * |
| * This does not apply to GLSL ES shaders, since GLSL ES defines neither |
| * gl_ClipVertex nor gl_ClipDistance. |
| */ |
| find_assignment_visitor clip_vertex("gl_ClipVertex"); |
| find_assignment_visitor clip_distance("gl_ClipDistance"); |
| |
| clip_vertex.run(shader->ir); |
| clip_distance.run(shader->ir); |
| if (clip_vertex.variable_found() && clip_distance.variable_found()) { |
| linker_error(prog, "vertex shader writes to both `gl_ClipVertex' " |
| "and `gl_ClipDistance'\n"); |
| return false; |
| } |
| prog->Vert.UsesClipDistance = clip_distance.variable_found(); |
| ir_variable *clip_distance_var = |
| shader->symbols->get_variable("gl_ClipDistance"); |
| if (clip_distance_var) |
| prog->Vert.ClipDistanceArraySize = clip_distance_var->type->length; |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Verify that a fragment shader executable meets all semantic requirements |
| * |
| * \param shader Fragment shader executable to be verified |
| */ |
| bool |
| validate_fragment_shader_executable(struct gl_shader_program *prog, |
| struct gl_shader *shader) |
| { |
| if (shader == NULL) |
| return true; |
| |
| find_assignment_visitor frag_color("gl_FragColor"); |
| find_assignment_visitor frag_data("gl_FragData"); |
| |
| frag_color.run(shader->ir); |
| frag_data.run(shader->ir); |
| |
| if (frag_color.variable_found() && frag_data.variable_found()) { |
| linker_error(prog, "fragment shader writes to both " |
| "`gl_FragColor' and `gl_FragData'\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Generate a string describing the mode of a variable |
| */ |
| static const char * |
| mode_string(const ir_variable *var) |
| { |
| switch (var->mode) { |
| case ir_var_auto: |
| return (var->read_only) ? "global constant" : "global variable"; |
| |
| case ir_var_uniform: return "uniform"; |
| case ir_var_shader_in: return "shader input"; |
| case ir_var_shader_out: return "shader output"; |
| |
| case ir_var_const_in: |
| case ir_var_temporary: |
| default: |
| assert(!"Should not get here."); |
| return "invalid variable"; |
| } |
| } |
| |
| |
| /** |
| * Perform validation of global variables used across multiple shaders |
| */ |
| bool |
| cross_validate_globals(struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders, |
| bool uniforms_only) |
| { |
| /* Examine all of the uniforms in all of the shaders and cross validate |
| * them. |
| */ |
| glsl_symbol_table variables; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i] == NULL) |
| continue; |
| |
| foreach_list(node, shader_list[i]->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if (var == NULL) |
| continue; |
| |
| if (uniforms_only && (var->mode != ir_var_uniform)) |
| continue; |
| |
| /* Don't cross validate temporaries that are at global scope. These |
| * will eventually get pulled into the shaders 'main'. |
| */ |
| if (var->mode == ir_var_temporary) |
| continue; |
| |
| /* If a global with this name has already been seen, verify that the |
| * new instance has the same type. In addition, if the globals have |
| * initializers, the values of the initializers must be the same. |
| */ |
| ir_variable *const existing = variables.get_variable(var->name); |
| if (existing != NULL) { |
| if (var->type != existing->type) { |
| /* Consider the types to be "the same" if both types are arrays |
| * of the same type and one of the arrays is implicitly sized. |
| * In addition, set the type of the linked variable to the |
| * explicitly sized array. |
| */ |
| if (var->type->is_array() |
| && existing->type->is_array() |
| && (var->type->fields.array == existing->type->fields.array) |
| && ((var->type->length == 0) |
| || (existing->type->length == 0))) { |
| if (var->type->length != 0) { |
| existing->type = var->type; |
| } |
| } else { |
| linker_error(prog, "%s `%s' declared as type " |
| "`%s' and type `%s'\n", |
| mode_string(var), |
| var->name, var->type->name, |
| existing->type->name); |
| return false; |
| } |
| } |
| |
| if (var->explicit_location) { |
| if (existing->explicit_location |
| && (var->location != existing->location)) { |
| linker_error(prog, "explicit locations for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return false; |
| } |
| |
| existing->location = var->location; |
| existing->explicit_location = true; |
| } |
| |
| /* Validate layout qualifiers for gl_FragDepth. |
| * |
| * From the AMD/ARB_conservative_depth specs: |
| * |
| * "If gl_FragDepth is redeclared in any fragment shader in a |
| * program, it must be redeclared in all fragment shaders in |
| * that program that have static assignments to |
| * gl_FragDepth. All redeclarations of gl_FragDepth in all |
| * fragment shaders in a single program must have the same set |
| * of qualifiers." |
| */ |
| if (strcmp(var->name, "gl_FragDepth") == 0) { |
| bool layout_declared = var->depth_layout != ir_depth_layout_none; |
| bool layout_differs = |
| var->depth_layout != existing->depth_layout; |
| |
| if (layout_declared && layout_differs) { |
| linker_error(prog, |
| "All redeclarations of gl_FragDepth in all " |
| "fragment shaders in a single program must have " |
| "the same set of qualifiers."); |
| } |
| |
| if (var->used && layout_differs) { |
| linker_error(prog, |
| "If gl_FragDepth is redeclared with a layout " |
| "qualifier in any fragment shader, it must be " |
| "redeclared with the same layout qualifier in " |
| "all fragment shaders that have assignments to " |
| "gl_FragDepth"); |
| } |
| } |
| |
| /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says: |
| * |
| * "If a shared global has multiple initializers, the |
| * initializers must all be constant expressions, and they |
| * must all have the same value. Otherwise, a link error will |
| * result. (A shared global having only one initializer does |
| * not require that initializer to be a constant expression.)" |
| * |
| * Previous to 4.20 the GLSL spec simply said that initializers |
| * must have the same value. In this case of non-constant |
| * initializers, this was impossible to determine. As a result, |
| * no vendor actually implemented that behavior. The 4.20 |
| * behavior matches the implemented behavior of at least one other |
| * vendor, so we'll implement that for all GLSL versions. |
| */ |
| if (var->constant_initializer != NULL) { |
| if (existing->constant_initializer != NULL) { |
| if (!var->constant_initializer->has_value(existing->constant_initializer)) { |
| linker_error(prog, "initializers for %s " |
| "`%s' have differing values\n", |
| mode_string(var), var->name); |
| return false; |
| } |
| } else { |
| /* If the first-seen instance of a particular uniform did not |
| * have an initializer but a later instance does, copy the |
| * initializer to the version stored in the symbol table. |
| */ |
| /* FINISHME: This is wrong. The constant_value field should |
| * FINISHME: not be modified! Imagine a case where a shader |
| * FINISHME: without an initializer is linked in two different |
| * FINISHME: programs with shaders that have differing |
| * FINISHME: initializers. Linking with the first will |
| * FINISHME: modify the shader, and linking with the second |
| * FINISHME: will fail. |
| */ |
| existing->constant_initializer = |
| var->constant_initializer->clone(ralloc_parent(existing), |
| NULL); |
| } |
| } |
| |
| if (var->has_initializer) { |
| if (existing->has_initializer |
| && (var->constant_initializer == NULL |
| || existing->constant_initializer == NULL)) { |
| linker_error(prog, |
| "shared global variable `%s' has multiple " |
| "non-constant initializers.\n", |
| var->name); |
| return false; |
| } |
| |
| /* Some instance had an initializer, so keep track of that. In |
| * this location, all sorts of initializers (constant or |
| * otherwise) will propagate the existence to the variable |
| * stored in the symbol table. |
| */ |
| existing->has_initializer = true; |
| } |
| |
| if (existing->invariant != var->invariant) { |
| linker_error(prog, "declarations for %s `%s' have " |
| "mismatching invariant qualifiers\n", |
| mode_string(var), var->name); |
| return false; |
| } |
| if (existing->centroid != var->centroid) { |
| linker_error(prog, "declarations for %s `%s' have " |
| "mismatching centroid qualifiers\n", |
| mode_string(var), var->name); |
| return false; |
| } |
| } else |
| variables.add_variable(var); |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Perform validation of uniforms used across multiple shader stages |
| */ |
| bool |
| cross_validate_uniforms(struct gl_shader_program *prog) |
| { |
| return cross_validate_globals(prog, prog->_LinkedShaders, |
| MESA_SHADER_TYPES, true); |
| } |
| |
| /** |
| * Accumulates the array of prog->UniformBlocks and checks that all |
| * definitons of blocks agree on their contents. |
| */ |
| static bool |
| interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog) |
| { |
| unsigned max_num_uniform_blocks = 0; |
| for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { |
| if (prog->_LinkedShaders[i]) |
| max_num_uniform_blocks += prog->_LinkedShaders[i]->NumUniformBlocks; |
| } |
| |
| for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { |
| struct gl_shader *sh = prog->_LinkedShaders[i]; |
| |
| prog->UniformBlockStageIndex[i] = ralloc_array(prog, int, |
| max_num_uniform_blocks); |
| for (unsigned int j = 0; j < max_num_uniform_blocks; j++) |
| prog->UniformBlockStageIndex[i][j] = -1; |
| |
| if (sh == NULL) |
| continue; |
| |
| for (unsigned int j = 0; j < sh->NumUniformBlocks; j++) { |
| int index = link_cross_validate_uniform_block(prog, |
| &prog->UniformBlocks, |
| &prog->NumUniformBlocks, |
| &sh->UniformBlocks[j]); |
| |
| if (index == -1) { |
| linker_error(prog, "uniform block `%s' has mismatching definitions", |
| sh->UniformBlocks[j].Name); |
| return false; |
| } |
| |
| prog->UniformBlockStageIndex[i][index] = j; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Populates a shaders symbol table with all global declarations |
| */ |
| static void |
| populate_symbol_table(gl_shader *sh) |
| { |
| sh->symbols = new(sh) glsl_symbol_table; |
| |
| foreach_list(node, sh->ir) { |
| ir_instruction *const inst = (ir_instruction *) node; |
| ir_variable *var; |
| ir_function *func; |
| |
| if ((func = inst->as_function()) != NULL) { |
| sh->symbols->add_function(func); |
| } else if ((var = inst->as_variable()) != NULL) { |
| sh->symbols->add_variable(var); |
| } |
| } |
| } |
| |
| |
| /** |
| * Remap variables referenced in an instruction tree |
| * |
| * This is used when instruction trees are cloned from one shader and placed in |
| * another. These trees will contain references to \c ir_variable nodes that |
| * do not exist in the target shader. This function finds these \c ir_variable |
| * references and replaces the references with matching variables in the target |
| * shader. |
| * |
| * If there is no matching variable in the target shader, a clone of the |
| * \c ir_variable is made and added to the target shader. The new variable is |
| * added to \b both the instruction stream and the symbol table. |
| * |
| * \param inst IR tree that is to be processed. |
| * \param symbols Symbol table containing global scope symbols in the |
| * linked shader. |
| * \param instructions Instruction stream where new variable declarations |
| * should be added. |
| */ |
| void |
| remap_variables(ir_instruction *inst, struct gl_shader *target, |
| hash_table *temps) |
| { |
| class remap_visitor : public ir_hierarchical_visitor { |
| public: |
| remap_visitor(struct gl_shader *target, |
| hash_table *temps) |
| { |
| this->target = target; |
| this->symbols = target->symbols; |
| this->instructions = target->ir; |
| this->temps = temps; |
| } |
| |
| virtual ir_visitor_status visit(ir_dereference_variable *ir) |
| { |
| if (ir->var->mode == ir_var_temporary) { |
| ir_variable *var = (ir_variable *) hash_table_find(temps, ir->var); |
| |
| assert(var != NULL); |
| ir->var = var; |
| return visit_continue; |
| } |
| |
| ir_variable *const existing = |
| this->symbols->get_variable(ir->var->name); |
| if (existing != NULL) |
| ir->var = existing; |
| else { |
| ir_variable *copy = ir->var->clone(this->target, NULL); |
| |
| this->symbols->add_variable(copy); |
| this->instructions->push_head(copy); |
| ir->var = copy; |
| } |
| |
| return visit_continue; |
| } |
| |
| private: |
| struct gl_shader *target; |
| glsl_symbol_table *symbols; |
| exec_list *instructions; |
| hash_table *temps; |
| }; |
| |
| remap_visitor v(target, temps); |
| |
| inst->accept(&v); |
| } |
| |
| |
| /** |
| * Move non-declarations from one instruction stream to another |
| * |
| * The intended usage pattern of this function is to pass the pointer to the |
| * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node |
| * pointer) for \c last and \c false for \c make_copies on the first |
| * call. Successive calls pass the return value of the previous call for |
| * \c last and \c true for \c make_copies. |
| * |
| * \param instructions Source instruction stream |
| * \param last Instruction after which new instructions should be |
| * inserted in the target instruction stream |
| * \param make_copies Flag selecting whether instructions in \c instructions |
| * should be copied (via \c ir_instruction::clone) into the |
| * target list or moved. |
| * |
| * \return |
| * The new "last" instruction in the target instruction stream. This pointer |
| * is suitable for use as the \c last parameter of a later call to this |
| * function. |
| */ |
| exec_node * |
| move_non_declarations(exec_list *instructions, exec_node *last, |
| bool make_copies, gl_shader *target) |
| { |
| hash_table *temps = NULL; |
| |
| if (make_copies) |
| temps = hash_table_ctor(0, hash_table_pointer_hash, |
| hash_table_pointer_compare); |
| |
| foreach_list_safe(node, instructions) { |
| ir_instruction *inst = (ir_instruction *) node; |
| |
| if (inst->as_function()) |
| continue; |
| |
| ir_variable *var = inst->as_variable(); |
| if ((var != NULL) && (var->mode != ir_var_temporary)) |
| continue; |
| |
| assert(inst->as_assignment() |
| || inst->as_call() |
| || inst->as_if() /* for initializers with the ?: operator */ |
| || ((var != NULL) && (var->mode == ir_var_temporary))); |
| |
| if (make_copies) { |
| inst = inst->clone(target, NULL); |
| |
| if (var != NULL) |
| hash_table_insert(temps, inst, var); |
| else |
| remap_variables(inst, target, temps); |
| } else { |
| inst->remove(); |
| } |
| |
| last->insert_after(inst); |
| last = inst; |
| } |
| |
| if (make_copies) |
| hash_table_dtor(temps); |
| |
| return last; |
| } |
| |
| /** |
| * Get the function signature for main from a shader |
| */ |
| static ir_function_signature * |
| get_main_function_signature(gl_shader *sh) |
| { |
| ir_function *const f = sh->symbols->get_function("main"); |
| if (f != NULL) { |
| exec_list void_parameters; |
| |
| /* Look for the 'void main()' signature and ensure that it's defined. |
| * This keeps the linker from accidentally pick a shader that just |
| * contains a prototype for main. |
| * |
| * We don't have to check for multiple definitions of main (in multiple |
| * shaders) because that would have already been caught above. |
| */ |
| ir_function_signature *sig = f->matching_signature(&void_parameters); |
| if ((sig != NULL) && sig->is_defined) { |
| return sig; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| /** |
| * This class is only used in link_intrastage_shaders() below but declaring |
| * it inside that function leads to compiler warnings with some versions of |
| * gcc. |
| */ |
| class array_sizing_visitor : public ir_hierarchical_visitor { |
| public: |
| virtual ir_visitor_status visit(ir_variable *var) |
| { |
| if (var->type->is_array() && (var->type->length == 0)) { |
| const glsl_type *type = |
| glsl_type::get_array_instance(var->type->fields.array, |
| var->max_array_access + 1); |
| assert(type != NULL); |
| var->type = type; |
| } |
| return visit_continue; |
| } |
| }; |
| |
| /** |
| * Combine a group of shaders for a single stage to generate a linked shader |
| * |
| * \note |
| * If this function is supplied a single shader, it is cloned, and the new |
| * shader is returned. |
| */ |
| static struct gl_shader * |
| link_intrastage_shaders(void *mem_ctx, |
| struct gl_context *ctx, |
| struct gl_shader_program *prog, |
| struct gl_shader **shader_list, |
| unsigned num_shaders) |
| { |
| struct gl_uniform_block *uniform_blocks = NULL; |
| |
| /* Check that global variables defined in multiple shaders are consistent. |
| */ |
| if (!cross_validate_globals(prog, shader_list, num_shaders, false)) |
| return NULL; |
| |
| /* Check that uniform blocks between shaders for a stage agree. */ |
| const int num_uniform_blocks = |
| link_uniform_blocks(mem_ctx, prog, shader_list, num_shaders, |
| &uniform_blocks); |
| if (num_uniform_blocks < 0) |
| return NULL; |
| |
| /* Check that there is only a single definition of each function signature |
| * across all shaders. |
| */ |
| for (unsigned i = 0; i < (num_shaders - 1); i++) { |
| foreach_list(node, shader_list[i]->ir) { |
| ir_function *const f = ((ir_instruction *) node)->as_function(); |
| |
| if (f == NULL) |
| continue; |
| |
| for (unsigned j = i + 1; j < num_shaders; j++) { |
| ir_function *const other = |
| shader_list[j]->symbols->get_function(f->name); |
| |
| /* If the other shader has no function (and therefore no function |
| * signatures) with the same name, skip to the next shader. |
| */ |
| if (other == NULL) |
| continue; |
| |
| foreach_iter (exec_list_iterator, iter, *f) { |
| ir_function_signature *sig = |
| (ir_function_signature *) iter.get(); |
| |
| if (!sig->is_defined || sig->is_builtin) |
| continue; |
| |
| ir_function_signature *other_sig = |
| other->exact_matching_signature(& sig->parameters); |
| |
| if ((other_sig != NULL) && other_sig->is_defined |
| && !other_sig->is_builtin) { |
| linker_error(prog, "function `%s' is multiply defined", |
| f->name); |
| return NULL; |
| } |
| } |
| } |
| } |
| } |
| |
| /* Find the shader that defines main, and make a clone of it. |
| * |
| * Starting with the clone, search for undefined references. If one is |
| * found, find the shader that defines it. Clone the reference and add |
| * it to the shader. Repeat until there are no undefined references or |
| * until a reference cannot be resolved. |
| */ |
| gl_shader *main = NULL; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (get_main_function_signature(shader_list[i]) != NULL) { |
| main = shader_list[i]; |
| break; |
| } |
| } |
| |
| if (main == NULL) { |
| linker_error(prog, "%s shader lacks `main'\n", |
| (shader_list[0]->Type == GL_VERTEX_SHADER) |
| ? "vertex" : "fragment"); |
| return NULL; |
| } |
| |
| gl_shader *linked = ctx->Driver.NewShader(NULL, 0, main->Type); |
| linked->ir = new(linked) exec_list; |
| clone_ir_list(mem_ctx, linked->ir, main->ir); |
| |
| linked->UniformBlocks = uniform_blocks; |
| linked->NumUniformBlocks = num_uniform_blocks; |
| ralloc_steal(linked, linked->UniformBlocks); |
| |
| populate_symbol_table(linked); |
| |
| /* The a pointer to the main function in the final linked shader (i.e., the |
| * copy of the original shader that contained the main function). |
| */ |
| ir_function_signature *const main_sig = get_main_function_signature(linked); |
| |
| /* Move any instructions other than variable declarations or function |
| * declarations into main. |
| */ |
| exec_node *insertion_point = |
| move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, |
| linked); |
| |
| for (unsigned i = 0; i < num_shaders; i++) { |
| if (shader_list[i] == main) |
| continue; |
| |
| insertion_point = move_non_declarations(shader_list[i]->ir, |
| insertion_point, true, linked); |
| } |
| |
| /* Resolve initializers for global variables in the linked shader. |
| */ |
| unsigned num_linking_shaders = num_shaders; |
| for (unsigned i = 0; i < num_shaders; i++) |
| num_linking_shaders += shader_list[i]->num_builtins_to_link; |
| |
| gl_shader **linking_shaders = |
| (gl_shader **) calloc(num_linking_shaders, sizeof(gl_shader *)); |
| |
| memcpy(linking_shaders, shader_list, |
| sizeof(linking_shaders[0]) * num_shaders); |
| |
| unsigned idx = num_shaders; |
| for (unsigned i = 0; i < num_shaders; i++) { |
| memcpy(&linking_shaders[idx], shader_list[i]->builtins_to_link, |
| sizeof(linking_shaders[0]) * shader_list[i]->num_builtins_to_link); |
| idx += shader_list[i]->num_builtins_to_link; |
| } |
| |
| assert(idx == num_linking_shaders); |
| |
| if (!link_function_calls(prog, linked, linking_shaders, |
| num_linking_shaders)) { |
| ctx->Driver.DeleteShader(ctx, linked); |
| linked = NULL; |
| } |
| |
| free(linking_shaders); |
| |
| #ifdef DEBUG |
| /* At this point linked should contain all of the linked IR, so |
| * validate it to make sure nothing went wrong. |
| */ |
| if (linked) |
| validate_ir_tree(linked->ir); |
| #endif |
| |
| /* Make a pass over all variable declarations to ensure that arrays with |
| * unspecified sizes have a size specified. The size is inferred from the |
| * max_array_access field. |
| */ |
| if (linked != NULL) { |
| array_sizing_visitor v; |
| |
| v.run(linked->ir); |
| } |
| |
| return linked; |
| } |
| |
| /** |
| * Update the sizes of linked shader uniform arrays to the maximum |
| * array index used. |
| * |
| * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec: |
| * |
| * If one or more elements of an array are active, |
| * GetActiveUniform will return the name of the array in name, |
| * subject to the restrictions listed above. The type of the array |
| * is returned in type. The size parameter contains the highest |
| * array element index used, plus one. The compiler or linker |
| * determines the highest index used. There will be only one |
| * active uniform reported by the GL per uniform array. |
| |
| */ |
| static void |
| update_array_sizes(struct gl_shader_program *prog) |
| { |
| for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| foreach_list(node, prog->_LinkedShaders[i]->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((var == NULL) || (var->mode != ir_var_uniform && |
| var->mode != ir_var_shader_in && |
| var->mode != ir_var_shader_out) || |
| !var->type->is_array()) |
| continue; |
| |
| /* GL_ARB_uniform_buffer_object says that std140 uniforms |
| * will not be eliminated. Since we always do std140, just |
| * don't resize arrays in UBOs. |
| */ |
| if (var->is_in_uniform_block()) |
| continue; |
| |
| unsigned int size = var->max_array_access; |
| for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) { |
| if (prog->_LinkedShaders[j] == NULL) |
| continue; |
| |
| foreach_list(node2, prog->_LinkedShaders[j]->ir) { |
| ir_variable *other_var = ((ir_instruction *) node2)->as_variable(); |
| if (!other_var) |
| continue; |
| |
| if (strcmp(var->name, other_var->name) == 0 && |
| other_var->max_array_access > size) { |
| size = other_var->max_array_access; |
| } |
| } |
| } |
| |
| if (size + 1 != var->type->fields.array->length) { |
| /* If this is a built-in uniform (i.e., it's backed by some |
| * fixed-function state), adjust the number of state slots to |
| * match the new array size. The number of slots per array entry |
| * is not known. It seems safe to assume that the total number of |
| * slots is an integer multiple of the number of array elements. |
| * Determine the number of slots per array element by dividing by |
| * the old (total) size. |
| */ |
| if (var->num_state_slots > 0) { |
| var->num_state_slots = (size + 1) |
| * (var->num_state_slots / var->type->length); |
| } |
| |
| var->type = glsl_type::get_array_instance(var->type->fields.array, |
| size + 1); |
| /* FINISHME: We should update the types of array |
| * dereferences of this variable now. |
| */ |
| } |
| } |
| } |
| } |
| |
| /** |
| * Find a contiguous set of available bits in a bitmask. |
| * |
| * \param used_mask Bits representing used (1) and unused (0) locations |
| * \param needed_count Number of contiguous bits needed. |
| * |
| * \return |
| * Base location of the available bits on success or -1 on failure. |
| */ |
| int |
| find_available_slots(unsigned used_mask, unsigned needed_count) |
| { |
| unsigned needed_mask = (1 << needed_count) - 1; |
| const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; |
| |
| /* The comparison to 32 is redundant, but without it GCC emits "warning: |
| * cannot optimize possibly infinite loops" for the loop below. |
| */ |
| if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) |
| return -1; |
| |
| for (int i = 0; i <= max_bit_to_test; i++) { |
| if ((needed_mask & ~used_mask) == needed_mask) |
| return i; |
| |
| needed_mask <<= 1; |
| } |
| |
| return -1; |
| } |
| |
| |
| /** |
| * Assign locations for either VS inputs for FS outputs |
| * |
| * \param prog Shader program whose variables need locations assigned |
| * \param target_index Selector for the program target to receive location |
| * assignmnets. Must be either \c MESA_SHADER_VERTEX or |
| * \c MESA_SHADER_FRAGMENT. |
| * \param max_index Maximum number of generic locations. This corresponds |
| * to either the maximum number of draw buffers or the |
| * maximum number of generic attributes. |
| * |
| * \return |
| * If locations are successfully assigned, true is returned. Otherwise an |
| * error is emitted to the shader link log and false is returned. |
| */ |
| bool |
| assign_attribute_or_color_locations(gl_shader_program *prog, |
| unsigned target_index, |
| unsigned max_index) |
| { |
| /* Mark invalid locations as being used. |
| */ |
| unsigned used_locations = (max_index >= 32) |
| ? ~0 : ~((1 << max_index) - 1); |
| |
| assert((target_index == MESA_SHADER_VERTEX) |
| || (target_index == MESA_SHADER_FRAGMENT)); |
| |
| gl_shader *const sh = prog->_LinkedShaders[target_index]; |
| if (sh == NULL) |
| return true; |
| |
| /* Operate in a total of four passes. |
| * |
| * 1. Invalidate the location assignments for all vertex shader inputs. |
| * |
| * 2. Assign locations for inputs that have user-defined (via |
| * glBindVertexAttribLocation) locations and outputs that have |
| * user-defined locations (via glBindFragDataLocation). |
| * |
| * 3. Sort the attributes without assigned locations by number of slots |
| * required in decreasing order. Fragmentation caused by attribute |
| * locations assigned by the application may prevent large attributes |
| * from having enough contiguous space. |
| * |
| * 4. Assign locations to any inputs without assigned locations. |
| */ |
| |
| const int generic_base = (target_index == MESA_SHADER_VERTEX) |
| ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0; |
| |
| const enum ir_variable_mode direction = |
| (target_index == MESA_SHADER_VERTEX) |
| ? ir_var_shader_in : ir_var_shader_out; |
| |
| |
| /* Temporary storage for the set of attributes that need locations assigned. |
| */ |
| struct temp_attr { |
| unsigned slots; |
| ir_variable *var; |
| |
| /* Used below in the call to qsort. */ |
| static int compare(const void *a, const void *b) |
| { |
| const temp_attr *const l = (const temp_attr *) a; |
| const temp_attr *const r = (const temp_attr *) b; |
| |
| /* Reversed because we want a descending order sort below. */ |
| return r->slots - l->slots; |
| } |
| } to_assign[16]; |
| |
| unsigned num_attr = 0; |
| |
| foreach_list(node, sh->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((var == NULL) || (var->mode != (unsigned) direction)) |
| continue; |
| |
| if (var->explicit_location) { |
| if ((var->location >= (int)(max_index + generic_base)) |
| || (var->location < 0)) { |
| linker_error(prog, |
| "invalid explicit location %d specified for `%s'\n", |
| (var->location < 0) |
| ? var->location : var->location - generic_base, |
| var->name); |
| return false; |
| } |
| } else if (target_index == MESA_SHADER_VERTEX) { |
| unsigned binding; |
| |
| if (prog->AttributeBindings->get(binding, var->name)) { |
| assert(binding >= VERT_ATTRIB_GENERIC0); |
| var->location = binding; |
| var->is_unmatched_generic_inout = 0; |
| } |
| } else if (target_index == MESA_SHADER_FRAGMENT) { |
| unsigned binding; |
| unsigned index; |
| |
| if (prog->FragDataBindings->get(binding, var->name)) { |
| assert(binding >= FRAG_RESULT_DATA0); |
| var->location = binding; |
| var->is_unmatched_generic_inout = 0; |
| |
| if (prog->FragDataIndexBindings->get(index, var->name)) { |
| var->index = index; |
| } |
| } |
| } |
| |
| /* If the variable is not a built-in and has a location statically |
| * assigned in the shader (presumably via a layout qualifier), make sure |
| * that it doesn't collide with other assigned locations. Otherwise, |
| * add it to the list of variables that need linker-assigned locations. |
| */ |
| const unsigned slots = count_attribute_slots(var->type); |
| if (var->location != -1) { |
| if (var->location >= generic_base && var->index < 1) { |
| /* From page 61 of the OpenGL 4.0 spec: |
| * |
| * "LinkProgram will fail if the attribute bindings assigned |
| * by BindAttribLocation do not leave not enough space to |
| * assign a location for an active matrix attribute or an |
| * active attribute array, both of which require multiple |
| * contiguous generic attributes." |
| * |
| * Previous versions of the spec contain similar language but omit |
| * the bit about attribute arrays. |
| * |
| * Page 61 of the OpenGL 4.0 spec also says: |
| * |
| * "It is possible for an application to bind more than one |
| * attribute name to the same location. This is referred to as |
| * aliasing. This will only work if only one of the aliased |
| * attributes is active in the executable program, or if no |
| * path through the shader consumes more than one attribute of |
| * a set of attributes aliased to the same location. A link |
| * error can occur if the linker determines that every path |
| * through the shader consumes multiple aliased attributes, |
| * but implementations are not required to generate an error |
| * in this case." |
| * |
| * These two paragraphs are either somewhat contradictory, or I |
| * don't fully understand one or both of them. |
| */ |
| /* FINISHME: The code as currently written does not support |
| * FINISHME: attribute location aliasing (see comment above). |
| */ |
| /* Mask representing the contiguous slots that will be used by |
| * this attribute. |
| */ |
| const unsigned attr = var->location - generic_base; |
| const unsigned use_mask = (1 << slots) - 1; |
| |
| /* Generate a link error if the set of bits requested for this |
| * attribute overlaps any previously allocated bits. |
| */ |
| if ((~(use_mask << attr) & used_locations) != used_locations) { |
| const char *const string = (target_index == MESA_SHADER_VERTEX) |
| ? "vertex shader input" : "fragment shader output"; |
| linker_error(prog, |
| "insufficient contiguous locations " |
| "available for %s `%s' %d %d %d", string, |
| var->name, used_locations, use_mask, attr); |
| return false; |
| } |
| |
| used_locations |= (use_mask << attr); |
| } |
| |
| continue; |
| } |
| |
| to_assign[num_attr].slots = slots; |
| to_assign[num_attr].var = var; |
| num_attr++; |
| } |
| |
| /* If all of the attributes were assigned locations by the application (or |
| * are built-in attributes with fixed locations), return early. This should |
| * be the common case. |
| */ |
| if (num_attr == 0) |
| return true; |
| |
| qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); |
| |
| if (target_index == MESA_SHADER_VERTEX) { |
| /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can |
| * only be explicitly assigned by via glBindAttribLocation. Mark it as |
| * reserved to prevent it from being automatically allocated below. |
| */ |
| find_deref_visitor find("gl_Vertex"); |
| find.run(sh->ir); |
| if (find.variable_found()) |
| used_locations |= (1 << 0); |
| } |
| |
| for (unsigned i = 0; i < num_attr; i++) { |
| /* Mask representing the contiguous slots that will be used by this |
| * attribute. |
| */ |
| const unsigned use_mask = (1 << to_assign[i].slots) - 1; |
| |
| int location = find_available_slots(used_locations, to_assign[i].slots); |
| |
| if (location < 0) { |
| const char *const string = (target_index == MESA_SHADER_VERTEX) |
| ? "vertex shader input" : "fragment shader output"; |
| |
| linker_error(prog, |
| "insufficient contiguous locations " |
| "available for %s `%s'", |
| string, to_assign[i].var->name); |
| return false; |
| } |
| |
| to_assign[i].var->location = generic_base + location; |
| to_assign[i].var->is_unmatched_generic_inout = 0; |
| used_locations |= (use_mask << location); |
| } |
| |
| return true; |
| } |
| |
| |
| /** |
| * Demote shader inputs and outputs that are not used in other stages |
| */ |
| void |
| demote_shader_inputs_and_outputs(gl_shader *sh, enum ir_variable_mode mode) |
| { |
| foreach_list(node, sh->ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if ((var == NULL) || (var->mode != int(mode))) |
| continue; |
| |
| /* A shader 'in' or 'out' variable is only really an input or output if |
| * its value is used by other shader stages. This will cause the variable |
| * to have a location assigned. |
| */ |
| if (var->is_unmatched_generic_inout) { |
| var->mode = ir_var_auto; |
| } |
| } |
| } |
| |
| |
| /** |
| * Store the gl_FragDepth layout in the gl_shader_program struct. |
| */ |
| static void |
| store_fragdepth_layout(struct gl_shader_program *prog) |
| { |
| if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { |
| return; |
| } |
| |
| struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir; |
| |
| /* We don't look up the gl_FragDepth symbol directly because if |
| * gl_FragDepth is not used in the shader, it's removed from the IR. |
| * However, the symbol won't be removed from the symbol table. |
| * |
| * We're only interested in the cases where the variable is NOT removed |
| * from the IR. |
| */ |
| foreach_list(node, ir) { |
| ir_variable *const var = ((ir_instruction *) node)->as_variable(); |
| |
| if (var == NULL || var->mode != ir_var_shader_out) { |
| continue; |
| } |
| |
| if (strcmp(var->name, "gl_FragDepth") == 0) { |
| switch (var->depth_layout) { |
| case ir_depth_layout_none: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; |
| return; |
| case ir_depth_layout_any: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; |
| return; |
| case ir_depth_layout_greater: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; |
| return; |
| case ir_depth_layout_less: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; |
| return; |
| case ir_depth_layout_unchanged: |
| prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; |
| return; |
| default: |
| assert(0); |
| return; |
| } |
| } |
| } |
| } |
| |
| /** |
| * Validate the resources used by a program versus the implementation limits |
| */ |
| static bool |
| check_resources(struct gl_context *ctx, struct gl_shader_program *prog) |
| { |
| static const char *const shader_names[MESA_SHADER_TYPES] = { |
| "vertex", "fragment", "geometry" |
| }; |
| |
| const unsigned max_samplers[MESA_SHADER_TYPES] = { |
| ctx->Const.MaxVertexTextureImageUnits, |
| ctx->Const.MaxTextureImageUnits, |
| ctx->Const.MaxGeometryTextureImageUnits |
| }; |
| |
| const unsigned max_uniform_components[MESA_SHADER_TYPES] = { |
| ctx->Const.VertexProgram.MaxUniformComponents, |
| ctx->Const.FragmentProgram.MaxUniformComponents, |
| 0 /* FINISHME: Geometry shaders. */ |
| }; |
| |
| const unsigned max_uniform_blocks[MESA_SHADER_TYPES] = { |
| ctx->Const.VertexProgram.MaxUniformBlocks, |
| ctx->Const.FragmentProgram.MaxUniformBlocks, |
| ctx->Const.GeometryProgram.MaxUniformBlocks, |
| }; |
| |
| for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { |
| struct gl_shader *sh = prog->_LinkedShaders[i]; |
| |
| if (sh == NULL) |
| continue; |
| |
| if (sh->num_samplers > max_samplers[i]) { |
| linker_error(prog, "Too many %s shader texture samplers", |
| shader_names[i]); |
| } |
| |
| if (sh->num_uniform_components > max_uniform_components[i]) { |
| if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { |
| linker_warning(prog, "Too many %s shader uniform components, " |
| "but the driver will try to optimize them out; " |
| "this is non-portable out-of-spec behavior\n", |
| shader_names[i]); |
| } else { |
| linker_error(prog, "Too many %s shader uniform components", |
| shader_names[i]); |
| } |
| } |
| } |
| |
| unsigned blocks[MESA_SHADER_TYPES] = {0}; |
| unsigned total_uniform_blocks = 0; |
| |
| for (unsigned i = 0; i < prog->NumUniformBlocks; i++) { |
| for (unsigned j = 0; j < MESA_SHADER_TYPES; j++) { |
| if (prog->UniformBlockStageIndex[j][i] != -1) { |
| blocks[j]++; |
| total_uniform_blocks++; |
| } |
| } |
| |
| if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) { |
| linker_error(prog, "Too many combined uniform blocks (%d/%d)", |
| prog->NumUniformBlocks, |
| ctx->Const.MaxCombinedUniformBlocks); |
| } else { |
| for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { |
| if (blocks[i] > max_uniform_blocks[i]) { |
| linker_error(prog, "Too many %s uniform blocks (%d/%d)", |
| shader_names[i], |
| blocks[i], |
| max_uniform_blocks[i]); |
| break; |
| } |
| } |
| } |
| } |
| |
| return prog->LinkStatus; |
| } |
| |
| void |
| link_shaders(struct gl_context *ctx, struct gl_shader_program *prog) |
| { |
| tfeedback_decl *tfeedback_decls = NULL; |
| unsigned num_tfeedback_decls = prog->TransformFeedback.NumVarying; |
| |
| void *mem_ctx = ralloc_context(NULL); // temporary linker context |
| |
| prog->LinkStatus = false; |
| prog->Validated = false; |
| prog->_Used = false; |
| |
| ralloc_free(prog->InfoLog); |
| prog->InfoLog = ralloc_strdup(NULL, ""); |
| |
| ralloc_free(prog->UniformBlocks); |
| prog->UniformBlocks = NULL; |
| prog->NumUniformBlocks = 0; |
| for (int i = 0; i < MESA_SHADER_TYPES; i++) { |
| ralloc_free(prog->UniformBlockStageIndex[i]); |
| prog->UniformBlockStageIndex[i] = NULL; |
| } |
| |
| /* Separate the shaders into groups based on their type. |
| */ |
| struct gl_shader **vert_shader_list; |
| unsigned num_vert_shaders = 0; |
| struct gl_shader **frag_shader_list; |
| unsigned num_frag_shaders = 0; |
| |
| vert_shader_list = (struct gl_shader **) |
| calloc(2 * prog->NumShaders, sizeof(struct gl_shader *)); |
| frag_shader_list = &vert_shader_list[prog->NumShaders]; |
| |
| unsigned min_version = UINT_MAX; |
| unsigned max_version = 0; |
| const bool is_es_prog = |
| (prog->NumShaders > 0 && prog->Shaders[0]->IsES) ? true : false; |
| for (unsigned i = 0; i < prog->NumShaders; i++) { |
| min_version = MIN2(min_version, prog->Shaders[i]->Version); |
| max_version = MAX2(max_version, prog->Shaders[i]->Version); |
| |
| if (prog->Shaders[i]->IsES != is_es_prog) { |
| linker_error(prog, "all shaders must use same shading " |
| "language version\n"); |
| goto done; |
| } |
| |
| switch (prog->Shaders[i]->Type) { |
| case GL_VERTEX_SHADER: |
| vert_shader_list[num_vert_shaders] = prog->Shaders[i]; |
| num_vert_shaders++; |
| break; |
| case GL_FRAGMENT_SHADER: |
| frag_shader_list[num_frag_shaders] = prog->Shaders[i]; |
| num_frag_shaders++; |
| break; |
| case GL_GEOMETRY_SHADER: |
| /* FINISHME: Support geometry shaders. */ |
| assert(prog->Shaders[i]->Type != GL_GEOMETRY_SHADER); |
| break; |
| } |
| } |
| |
| /* Previous to GLSL version 1.30, different compilation units could mix and |
| * match shading language versions. With GLSL 1.30 and later, the versions |
| * of all shaders must match. |
| * |
| * GLSL ES has never allowed mixing of shading language versions. |
| */ |
| if ((is_es_prog || max_version >= 130) |
| && min_version != max_version) { |
| linker_error(prog, "all shaders must use same shading " |
| "language version\n"); |
| goto done; |
| } |
| |
| prog->Version = max_version; |
| prog->IsES = is_es_prog; |
| |
| for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) { |
| if (prog->_LinkedShaders[i] != NULL) |
| ctx->Driver.DeleteShader(ctx, prog->_LinkedShaders[i]); |
| |
| prog->_LinkedShaders[i] = NULL; |
| } |
| |
| /* Link all shaders for a particular stage and validate the result. |
| */ |
| if (num_vert_shaders > 0) { |
| gl_shader *const sh = |
| link_intrastage_shaders(mem_ctx, ctx, prog, vert_shader_list, |
| num_vert_shaders); |
| |
| if (sh == NULL) |
| goto done; |
| |
| if (!validate_vertex_shader_executable(prog, sh)) |
| goto done; |
| |
| _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_VERTEX], |
| sh); |
| } |
| |
| if (num_frag_shaders > 0) { |
| gl_shader *const sh = |
| link_intrastage_shaders(mem_ctx, ctx, prog, frag_shader_list, |
| num_frag_shaders); |
| |
| if (sh == NULL) |
| goto done; |
| |
| if (!validate_fragment_shader_executable(prog, sh)) |
| goto done; |
| |
| _mesa_reference_shader(ctx, &prog->_LinkedShaders[MESA_SHADER_FRAGMENT], |
| sh); |
| } |
| |
| /* Here begins the inter-stage linking phase. Some initial validation is |
| * performed, then locations are assigned for uniforms, attributes, and |
| * varyings. |
| */ |
| if (cross_validate_uniforms(prog)) { |
| unsigned prev; |
| |
| for (prev = 0; prev < MESA_SHADER_TYPES; prev++) { |
| if (prog->_LinkedShaders[prev] != NULL) |
| break; |
| } |
| |
| /* Validate the inputs of each stage with the output of the preceding |
| * stage. |
| */ |
| for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| if (!cross_validate_outputs_to_inputs(prog, |
| prog->_LinkedShaders[prev], |
| prog->_LinkedShaders[i])) |
| goto done; |
| |
| prev = i; |
| } |
| |
| prog->LinkStatus = true; |
| } |
| |
| /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do |
| * it before optimization because we want most of the checks to get |
| * dropped thanks to constant propagation. |
| * |
| * This rule also applies to GLSL ES 3.00. |
| */ |
| if (max_version >= (is_es_prog ? 300 : 130)) { |
| struct gl_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; |
| if (sh) { |
| lower_discard_flow(sh->ir); |
| } |
| } |
| |
| if (!interstage_cross_validate_uniform_blocks(prog)) |
| goto done; |
| |
| /* Do common optimization before assigning storage for attributes, |
| * uniforms, and varyings. Later optimization could possibly make |
| * some of that unused. |
| */ |
| for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir); |
| if (!prog->LinkStatus) |
| goto done; |
| |
| if (ctx->ShaderCompilerOptions[i].LowerClipDistance) { |
| lower_clip_distance(prog->_LinkedShaders[i]); |
| } |
| |
| unsigned max_unroll = ctx->ShaderCompilerOptions[i].MaxUnrollIterations; |
| |
| while (do_common_optimization(prog->_LinkedShaders[i]->ir, true, false, max_unroll)) |
| ; |
| } |
| |
| /* Mark all generic shader inputs and outputs as unpaired. */ |
| if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) { |
| link_invalidate_variable_locations( |
| prog->_LinkedShaders[MESA_SHADER_VERTEX], |
| VERT_ATTRIB_GENERIC0, VARYING_SLOT_VAR0); |
| } |
| /* FINISHME: Geometry shaders not implemented yet */ |
| if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) { |
| link_invalidate_variable_locations( |
| prog->_LinkedShaders[MESA_SHADER_FRAGMENT], |
| VARYING_SLOT_VAR0, FRAG_RESULT_DATA0); |
| } |
| |
| /* FINISHME: The value of the max_attribute_index parameter is |
| * FINISHME: implementation dependent based on the value of |
| * FINISHME: GL_MAX_VERTEX_ATTRIBS. GL_MAX_VERTEX_ATTRIBS must be |
| * FINISHME: at least 16, so hardcode 16 for now. |
| */ |
| if (!assign_attribute_or_color_locations(prog, MESA_SHADER_VERTEX, 16)) { |
| goto done; |
| } |
| |
| if (!assign_attribute_or_color_locations(prog, MESA_SHADER_FRAGMENT, MAX2(ctx->Const.MaxDrawBuffers, ctx->Const.MaxDualSourceDrawBuffers))) { |
| goto done; |
| } |
| |
| unsigned prev; |
| for (prev = 0; prev < MESA_SHADER_TYPES; prev++) { |
| if (prog->_LinkedShaders[prev] != NULL) |
| break; |
| } |
| |
| if (num_tfeedback_decls != 0) { |
| /* From GL_EXT_transform_feedback: |
| * A program will fail to link if: |
| * |
| * * the <count> specified by TransformFeedbackVaryingsEXT is |
| * non-zero, but the program object has no vertex or geometry |
| * shader; |
| */ |
| if (prev >= MESA_SHADER_FRAGMENT) { |
| linker_error(prog, "Transform feedback varyings specified, but " |
| "no vertex or geometry shader is present."); |
| goto done; |
| } |
| |
| tfeedback_decls = ralloc_array(mem_ctx, tfeedback_decl, |
| prog->TransformFeedback.NumVarying); |
| if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls, |
| prog->TransformFeedback.VaryingNames, |
| tfeedback_decls)) |
| goto done; |
| } |
| |
| for (unsigned i = prev + 1; i < MESA_SHADER_TYPES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| if (!assign_varying_locations( |
| ctx, mem_ctx, prog, prog->_LinkedShaders[prev], prog->_LinkedShaders[i], |
| i == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0, |
| tfeedback_decls)) |
| goto done; |
| |
| prev = i; |
| } |
| |
| if (prev != MESA_SHADER_FRAGMENT && num_tfeedback_decls != 0) { |
| /* There was no fragment shader, but we still have to assign varying |
| * locations for use by transform feedback. |
| */ |
| if (!assign_varying_locations( |
| ctx, mem_ctx, prog, prog->_LinkedShaders[prev], NULL, num_tfeedback_decls, |
| tfeedback_decls)) |
| goto done; |
| } |
| |
| if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls)) |
| goto done; |
| |
| if (prog->_LinkedShaders[MESA_SHADER_VERTEX] != NULL) { |
| demote_shader_inputs_and_outputs(prog->_LinkedShaders[MESA_SHADER_VERTEX], |
| ir_var_shader_out); |
| |
| /* Eliminate code that is now dead due to unused vertex outputs being |
| * demoted. |
| */ |
| while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_VERTEX]->ir, false)) |
| ; |
| } |
| |
| if (prog->_LinkedShaders[MESA_SHADER_GEOMETRY] != NULL) { |
| gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY]; |
| |
| demote_shader_inputs_and_outputs(sh, ir_var_shader_in); |
| demote_shader_inputs_and_outputs(sh, ir_var_shader_out); |
| |
| /* Eliminate code that is now dead due to unused geometry outputs being |
| * demoted. |
| */ |
| while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->ir, false)) |
| ; |
| } |
| |
| if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] != NULL) { |
| gl_shader *const sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; |
| |
| demote_shader_inputs_and_outputs(sh, ir_var_shader_in); |
| |
| /* Eliminate code that is now dead due to unused fragment inputs being |
| * demoted. This shouldn't actually do anything other than remove |
| * declarations of the (now unused) global variables. |
| */ |
| while (do_dead_code(prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir, false)) |
| ; |
| } |
| |
| update_array_sizes(prog); |
| link_assign_uniform_locations(prog); |
| store_fragdepth_layout(prog); |
| |
| if (!check_resources(ctx, prog)) |
| goto done; |
| |
| /* OpenGL ES requires that a vertex shader and a fragment shader both be |
| * present in a linked program. By checking prog->IsES, we also |
| * catch the GL_ARB_ES2_compatibility case. |
| */ |
| if (!prog->InternalSeparateShader && |
| (ctx->API == API_OPENGLES2 || prog->IsES)) { |
| if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) { |
| linker_error(prog, "program lacks a vertex shader\n"); |
| } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { |
| linker_error(prog, "program lacks a fragment shader\n"); |
| } |
| } |
| |
| /* FINISHME: Assign fragment shader output locations. */ |
| |
| done: |
| free(vert_shader_list); |
| |
| for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) { |
| if (prog->_LinkedShaders[i] == NULL) |
| continue; |
| |
| /* Retain any live IR, but trash the rest. */ |
| reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir); |
| |
| /* The symbol table in the linked shaders may contain references to |
| * variables that were removed (e.g., unused uniforms). Since it may |
| * contain junk, there is no possible valid use. Delete it and set the |
| * pointer to NULL. |
| */ |
| delete prog->_LinkedShaders[i]->symbols; |
| prog->_LinkedShaders[i]->symbols = NULL; |
| } |
| |
| ralloc_free(mem_ctx); |
| } |