| /* -*- c++ -*- */ |
| /* |
| * Copyright © 2010 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #pragma once |
| #ifndef IR_H |
| #define IR_H |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "util/ralloc.h" |
| #include "glsl_types.h" |
| #include "list.h" |
| #include "ir_visitor.h" |
| #include "ir_hierarchical_visitor.h" |
| #include "main/mtypes.h" |
| |
| #ifdef __cplusplus |
| |
| /** |
| * \defgroup IR Intermediate representation nodes |
| * |
| * @{ |
| */ |
| |
| /** |
| * Class tags |
| * |
| * Each concrete class derived from \c ir_instruction has a value in this |
| * enumerant. The value for the type is stored in \c ir_instruction::ir_type |
| * by the constructor. While using type tags is not very C++, it is extremely |
| * convenient. For example, during debugging you can simply inspect |
| * \c ir_instruction::ir_type to find out the actual type of the object. |
| * |
| * In addition, it is possible to use a switch-statement based on \c |
| * \c ir_instruction::ir_type to select different behavior for different object |
| * types. For functions that have only slight differences for several object |
| * types, this allows writing very straightforward, readable code. |
| */ |
| enum ir_node_type { |
| ir_type_dereference_array, |
| ir_type_dereference_record, |
| ir_type_dereference_variable, |
| ir_type_constant, |
| ir_type_expression, |
| ir_type_swizzle, |
| ir_type_texture, |
| ir_type_variable, |
| ir_type_assignment, |
| ir_type_call, |
| ir_type_function, |
| ir_type_function_signature, |
| ir_type_if, |
| ir_type_loop, |
| ir_type_loop_jump, |
| ir_type_return, |
| ir_type_discard, |
| ir_type_emit_vertex, |
| ir_type_end_primitive, |
| ir_type_barrier, |
| ir_type_max, /**< maximum ir_type enum number, for validation */ |
| ir_type_unset = ir_type_max |
| }; |
| |
| |
| /** |
| * Base class of all IR instructions |
| */ |
| class ir_instruction : public exec_node { |
| public: |
| enum ir_node_type ir_type; |
| |
| /** |
| * GCC 4.7+ and clang warn when deleting an ir_instruction unless |
| * there's a virtual destructor present. Because we almost |
| * universally use ralloc for our memory management of |
| * ir_instructions, the destructor doesn't need to do any work. |
| */ |
| virtual ~ir_instruction() |
| { |
| } |
| |
| /** ir_print_visitor helper for debugging. */ |
| void print(void) const; |
| void fprint(FILE *f) const; |
| |
| virtual void accept(ir_visitor *) = 0; |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0; |
| virtual ir_instruction *clone(void *mem_ctx, |
| struct hash_table *ht) const = 0; |
| |
| bool is_rvalue() const |
| { |
| return ir_type == ir_type_dereference_array || |
| ir_type == ir_type_dereference_record || |
| ir_type == ir_type_dereference_variable || |
| ir_type == ir_type_constant || |
| ir_type == ir_type_expression || |
| ir_type == ir_type_swizzle || |
| ir_type == ir_type_texture; |
| } |
| |
| bool is_dereference() const |
| { |
| return ir_type == ir_type_dereference_array || |
| ir_type == ir_type_dereference_record || |
| ir_type == ir_type_dereference_variable; |
| } |
| |
| bool is_jump() const |
| { |
| return ir_type == ir_type_loop_jump || |
| ir_type == ir_type_return || |
| ir_type == ir_type_discard; |
| } |
| |
| /** |
| * \name IR instruction downcast functions |
| * |
| * These functions either cast the object to a derived class or return |
| * \c NULL if the object's type does not match the specified derived class. |
| * Additional downcast functions will be added as needed. |
| */ |
| /*@{*/ |
| #define AS_BASE(TYPE) \ |
| class ir_##TYPE *as_##TYPE() \ |
| { \ |
| assume(this != NULL); \ |
| return is_##TYPE() ? (ir_##TYPE *) this : NULL; \ |
| } \ |
| const class ir_##TYPE *as_##TYPE() const \ |
| { \ |
| assume(this != NULL); \ |
| return is_##TYPE() ? (ir_##TYPE *) this : NULL; \ |
| } |
| |
| AS_BASE(rvalue) |
| AS_BASE(dereference) |
| AS_BASE(jump) |
| #undef AS_BASE |
| |
| #define AS_CHILD(TYPE) \ |
| class ir_##TYPE * as_##TYPE() \ |
| { \ |
| assume(this != NULL); \ |
| return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \ |
| } \ |
| const class ir_##TYPE * as_##TYPE() const \ |
| { \ |
| assume(this != NULL); \ |
| return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \ |
| } |
| AS_CHILD(variable) |
| AS_CHILD(function) |
| AS_CHILD(dereference_array) |
| AS_CHILD(dereference_variable) |
| AS_CHILD(dereference_record) |
| AS_CHILD(expression) |
| AS_CHILD(loop) |
| AS_CHILD(assignment) |
| AS_CHILD(call) |
| AS_CHILD(return) |
| AS_CHILD(if) |
| AS_CHILD(swizzle) |
| AS_CHILD(texture) |
| AS_CHILD(constant) |
| AS_CHILD(discard) |
| #undef AS_CHILD |
| /*@}*/ |
| |
| /** |
| * IR equality method: Return true if the referenced instruction would |
| * return the same value as this one. |
| * |
| * This intended to be used for CSE and algebraic optimizations, on rvalues |
| * in particular. No support for other instruction types (assignments, |
| * jumps, calls, etc.) is planned. |
| */ |
| virtual bool equals(const ir_instruction *ir, |
| enum ir_node_type ignore = ir_type_unset) const; |
| |
| protected: |
| ir_instruction(enum ir_node_type t) |
| : ir_type(t) |
| { |
| } |
| |
| private: |
| ir_instruction() |
| { |
| assert(!"Should not get here."); |
| } |
| }; |
| |
| |
| /** |
| * The base class for all "values"/expression trees. |
| */ |
| class ir_rvalue : public ir_instruction { |
| public: |
| const struct glsl_type *type; |
| |
| virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const; |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| ir_rvalue *as_rvalue_to_saturate(); |
| |
| virtual bool is_lvalue() const |
| { |
| return false; |
| } |
| |
| /** |
| * Get the variable that is ultimately referenced by an r-value |
| */ |
| virtual ir_variable *variable_referenced() const |
| { |
| return NULL; |
| } |
| |
| |
| /** |
| * If an r-value is a reference to a whole variable, get that variable |
| * |
| * \return |
| * Pointer to a variable that is completely dereferenced by the r-value. If |
| * the r-value is not a dereference or the dereference does not access the |
| * entire variable (i.e., it's just one array element, struct field), \c NULL |
| * is returned. |
| */ |
| virtual ir_variable *whole_variable_referenced() |
| { |
| return NULL; |
| } |
| |
| /** |
| * Determine if an r-value has the value zero |
| * |
| * The base implementation of this function always returns \c false. The |
| * \c ir_constant class over-rides this function to return \c true \b only |
| * for vector and scalar types that have all elements set to the value |
| * zero (or \c false for booleans). |
| * |
| * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one |
| */ |
| virtual bool is_zero() const; |
| |
| /** |
| * Determine if an r-value has the value one |
| * |
| * The base implementation of this function always returns \c false. The |
| * \c ir_constant class over-rides this function to return \c true \b only |
| * for vector and scalar types that have all elements set to the value |
| * one (or \c true for booleans). |
| * |
| * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one |
| */ |
| virtual bool is_one() const; |
| |
| /** |
| * Determine if an r-value has the value negative one |
| * |
| * The base implementation of this function always returns \c false. The |
| * \c ir_constant class over-rides this function to return \c true \b only |
| * for vector and scalar types that have all elements set to the value |
| * negative one. For boolean types, the result is always \c false. |
| * |
| * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one |
| */ |
| virtual bool is_negative_one() const; |
| |
| /** |
| * Determine if an r-value is an unsigned integer constant which can be |
| * stored in 16 bits. |
| * |
| * \sa ir_constant::is_uint16_constant. |
| */ |
| virtual bool is_uint16_constant() const { return false; } |
| |
| /** |
| * Return a generic value of error_type. |
| * |
| * Allocation will be performed with 'mem_ctx' as ralloc owner. |
| */ |
| static ir_rvalue *error_value(void *mem_ctx); |
| |
| protected: |
| ir_rvalue(enum ir_node_type t); |
| }; |
| |
| |
| /** |
| * Variable storage classes |
| */ |
| enum ir_variable_mode { |
| ir_var_auto = 0, /**< Function local variables and globals. */ |
| ir_var_uniform, /**< Variable declared as a uniform. */ |
| ir_var_shader_storage, /**< Variable declared as an ssbo. */ |
| ir_var_shader_shared, /**< Variable declared as shared. */ |
| ir_var_shader_in, |
| ir_var_shader_out, |
| ir_var_function_in, |
| ir_var_function_out, |
| ir_var_function_inout, |
| ir_var_const_in, /**< "in" param that must be a constant expression */ |
| ir_var_system_value, /**< Ex: front-face, instance-id, etc. */ |
| ir_var_temporary, /**< Temporary variable generated during compilation. */ |
| ir_var_mode_count /**< Number of variable modes */ |
| }; |
| |
| /** |
| * Enum keeping track of how a variable was declared. For error checking of |
| * the gl_PerVertex redeclaration rules. |
| */ |
| enum ir_var_declaration_type { |
| /** |
| * Normal declaration (for most variables, this means an explicit |
| * declaration. Exception: temporaries are always implicitly declared, but |
| * they still use ir_var_declared_normally). |
| * |
| * Note: an ir_variable that represents a named interface block uses |
| * ir_var_declared_normally. |
| */ |
| ir_var_declared_normally = 0, |
| |
| /** |
| * Variable was explicitly declared (or re-declared) in an unnamed |
| * interface block. |
| */ |
| ir_var_declared_in_block, |
| |
| /** |
| * Variable is an implicitly declared built-in that has not been explicitly |
| * re-declared by the shader. |
| */ |
| ir_var_declared_implicitly, |
| |
| /** |
| * Variable is implicitly generated by the compiler and should not be |
| * visible via the API. |
| */ |
| ir_var_hidden, |
| }; |
| |
| /** |
| * \brief Layout qualifiers for gl_FragDepth. |
| * |
| * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared |
| * with a layout qualifier. |
| */ |
| enum ir_depth_layout { |
| ir_depth_layout_none, /**< No depth layout is specified. */ |
| ir_depth_layout_any, |
| ir_depth_layout_greater, |
| ir_depth_layout_less, |
| ir_depth_layout_unchanged |
| }; |
| |
| /** |
| * \brief Convert depth layout qualifier to string. |
| */ |
| const char* |
| depth_layout_string(ir_depth_layout layout); |
| |
| /** |
| * Description of built-in state associated with a uniform |
| * |
| * \sa ir_variable::state_slots |
| */ |
| struct ir_state_slot { |
| int tokens[5]; |
| int swizzle; |
| }; |
| |
| |
| /** |
| * Get the string value for an interpolation qualifier |
| * |
| * \return The string that would be used in a shader to specify \c |
| * mode will be returned. |
| * |
| * This function is used to generate error messages of the form "shader |
| * uses %s interpolation qualifier", so in the case where there is no |
| * interpolation qualifier, it returns "no". |
| * |
| * This function should only be used on a shader input or output variable. |
| */ |
| const char *interpolation_string(unsigned interpolation); |
| |
| |
| class ir_variable : public ir_instruction { |
| public: |
| ir_variable(const struct glsl_type *, const char *, ir_variable_mode); |
| |
| virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const; |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| |
| /** |
| * Determine how this variable should be interpolated based on its |
| * interpolation qualifier (if present), whether it is gl_Color or |
| * gl_SecondaryColor, and whether flatshading is enabled in the current GL |
| * state. |
| * |
| * The return value will always be either INTERP_QUALIFIER_SMOOTH, |
| * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT. |
| */ |
| glsl_interp_qualifier determine_interpolation_mode(bool flat_shade); |
| |
| /** |
| * Determine whether or not a variable is part of a uniform or |
| * shader storage block. |
| */ |
| inline bool is_in_buffer_block() const |
| { |
| return (this->data.mode == ir_var_uniform || |
| this->data.mode == ir_var_shader_storage) && |
| this->interface_type != NULL; |
| } |
| |
| /** |
| * Determine whether or not a variable is part of a shader storage block. |
| */ |
| inline bool is_in_shader_storage_block() const |
| { |
| return this->data.mode == ir_var_shader_storage && |
| this->interface_type != NULL; |
| } |
| |
| /** |
| * Determine whether or not a variable is the declaration of an interface |
| * block |
| * |
| * For the first declaration below, there will be an \c ir_variable named |
| * "instance" whose type and whose instance_type will be the same |
| * \cglsl_type. For the second declaration, there will be an \c ir_variable |
| * named "f" whose type is float and whose instance_type is B2. |
| * |
| * "instance" is an interface instance variable, but "f" is not. |
| * |
| * uniform B1 { |
| * float f; |
| * } instance; |
| * |
| * uniform B2 { |
| * float f; |
| * }; |
| */ |
| inline bool is_interface_instance() const |
| { |
| return this->type->without_array() == this->interface_type; |
| } |
| |
| /** |
| * Set this->interface_type on a newly created variable. |
| */ |
| void init_interface_type(const struct glsl_type *type) |
| { |
| assert(this->interface_type == NULL); |
| this->interface_type = type; |
| if (this->is_interface_instance()) { |
| this->u.max_ifc_array_access = |
| rzalloc_array(this, unsigned, type->length); |
| } |
| } |
| |
| /** |
| * Change this->interface_type on a variable that previously had a |
| * different, but compatible, interface_type. This is used during linking |
| * to set the size of arrays in interface blocks. |
| */ |
| void change_interface_type(const struct glsl_type *type) |
| { |
| if (this->u.max_ifc_array_access != NULL) { |
| /* max_ifc_array_access has already been allocated, so make sure the |
| * new interface has the same number of fields as the old one. |
| */ |
| assert(this->interface_type->length == type->length); |
| } |
| this->interface_type = type; |
| } |
| |
| /** |
| * Change this->interface_type on a variable that previously had a |
| * different, and incompatible, interface_type. This is used during |
| * compilation to handle redeclaration of the built-in gl_PerVertex |
| * interface block. |
| */ |
| void reinit_interface_type(const struct glsl_type *type) |
| { |
| if (this->u.max_ifc_array_access != NULL) { |
| #ifndef NDEBUG |
| /* Redeclaring gl_PerVertex is only allowed if none of the built-ins |
| * it defines have been accessed yet; so it's safe to throw away the |
| * old max_ifc_array_access pointer, since all of its values are |
| * zero. |
| */ |
| for (unsigned i = 0; i < this->interface_type->length; i++) |
| assert(this->u.max_ifc_array_access[i] == 0); |
| #endif |
| ralloc_free(this->u.max_ifc_array_access); |
| this->u.max_ifc_array_access = NULL; |
| } |
| this->interface_type = NULL; |
| init_interface_type(type); |
| } |
| |
| const glsl_type *get_interface_type() const |
| { |
| return this->interface_type; |
| } |
| |
| /** |
| * Get the max_ifc_array_access pointer |
| * |
| * A "set" function is not needed because the array is dynmically allocated |
| * as necessary. |
| */ |
| inline unsigned *get_max_ifc_array_access() |
| { |
| assert(this->data._num_state_slots == 0); |
| return this->u.max_ifc_array_access; |
| } |
| |
| inline unsigned get_num_state_slots() const |
| { |
| assert(!this->is_interface_instance() |
| || this->data._num_state_slots == 0); |
| return this->data._num_state_slots; |
| } |
| |
| inline void set_num_state_slots(unsigned n) |
| { |
| assert(!this->is_interface_instance() |
| || n == 0); |
| this->data._num_state_slots = n; |
| } |
| |
| inline ir_state_slot *get_state_slots() |
| { |
| return this->is_interface_instance() ? NULL : this->u.state_slots; |
| } |
| |
| inline const ir_state_slot *get_state_slots() const |
| { |
| return this->is_interface_instance() ? NULL : this->u.state_slots; |
| } |
| |
| inline ir_state_slot *allocate_state_slots(unsigned n) |
| { |
| assert(!this->is_interface_instance()); |
| |
| this->u.state_slots = ralloc_array(this, ir_state_slot, n); |
| this->data._num_state_slots = 0; |
| |
| if (this->u.state_slots != NULL) |
| this->data._num_state_slots = n; |
| |
| return this->u.state_slots; |
| } |
| |
| inline bool is_name_ralloced() const |
| { |
| return this->name != ir_variable::tmp_name; |
| } |
| |
| /** |
| * Enable emitting extension warnings for this variable |
| */ |
| void enable_extension_warning(const char *extension); |
| |
| /** |
| * Get the extension warning string for this variable |
| * |
| * If warnings are not enabled, \c NULL is returned. |
| */ |
| const char *get_extension_warning() const; |
| |
| /** |
| * Declared type of the variable |
| */ |
| const struct glsl_type *type; |
| |
| /** |
| * Declared name of the variable |
| */ |
| const char *name; |
| |
| struct ir_variable_data { |
| |
| /** |
| * Is the variable read-only? |
| * |
| * This is set for variables declared as \c const, shader inputs, |
| * and uniforms. |
| */ |
| unsigned read_only:1; |
| unsigned centroid:1; |
| unsigned sample:1; |
| unsigned patch:1; |
| unsigned invariant:1; |
| unsigned precise:1; |
| |
| /** |
| * Has this variable been used for reading or writing? |
| * |
| * Several GLSL semantic checks require knowledge of whether or not a |
| * variable has been used. For example, it is an error to redeclare a |
| * variable as invariant after it has been used. |
| * |
| * This is only maintained in the ast_to_hir.cpp path, not in |
| * Mesa's fixed function or ARB program paths. |
| */ |
| unsigned used:1; |
| |
| /** |
| * Has this variable been statically assigned? |
| * |
| * This answers whether the variable was assigned in any path of |
| * the shader during ast_to_hir. This doesn't answer whether it is |
| * still written after dead code removal, nor is it maintained in |
| * non-ast_to_hir.cpp (GLSL parsing) paths. |
| */ |
| unsigned assigned:1; |
| |
| /** |
| * When separate shader programs are enabled, only input/outputs between |
| * the stages of a multi-stage separate program can be safely removed |
| * from the shader interface. Other input/outputs must remains active. |
| */ |
| unsigned always_active_io:1; |
| |
| /** |
| * Enum indicating how the variable was declared. See |
| * ir_var_declaration_type. |
| * |
| * This is used to detect certain kinds of illegal variable redeclarations. |
| */ |
| unsigned how_declared:2; |
| |
| /** |
| * Storage class of the variable. |
| * |
| * \sa ir_variable_mode |
| */ |
| unsigned mode:4; |
| |
| /** |
| * Interpolation mode for shader inputs / outputs |
| * |
| * \sa ir_variable_interpolation |
| */ |
| unsigned interpolation:2; |
| |
| /** |
| * \name ARB_fragment_coord_conventions |
| * @{ |
| */ |
| unsigned origin_upper_left:1; |
| unsigned pixel_center_integer:1; |
| /*@}*/ |
| |
| /** |
| * Was the location explicitly set in the shader? |
| * |
| * If the location is explicitly set in the shader, it \b cannot be changed |
| * by the linker or by the API (e.g., calls to \c glBindAttribLocation have |
| * no effect). |
| */ |
| unsigned explicit_location:1; |
| unsigned explicit_index:1; |
| |
| /** |
| * Was an initial binding explicitly set in the shader? |
| * |
| * If so, constant_value contains an integer ir_constant representing the |
| * initial binding point. |
| */ |
| unsigned explicit_binding:1; |
| |
| /** |
| * Does this variable have an initializer? |
| * |
| * This is used by the linker to cross-validiate initializers of global |
| * variables. |
| */ |
| unsigned has_initializer:1; |
| |
| /** |
| * Is this variable a generic output or input that has not yet been matched |
| * up to a variable in another stage of the pipeline? |
| * |
| * This is used by the linker as scratch storage while assigning locations |
| * to generic inputs and outputs. |
| */ |
| unsigned is_unmatched_generic_inout:1; |
| |
| /** |
| * If non-zero, then this variable may be packed along with other variables |
| * into a single varying slot, so this offset should be applied when |
| * accessing components. For example, an offset of 1 means that the x |
| * component of this variable is actually stored in component y of the |
| * location specified by \c location. |
| */ |
| unsigned location_frac:2; |
| |
| /** |
| * Layout of the matrix. Uses glsl_matrix_layout values. |
| */ |
| unsigned matrix_layout:2; |
| |
| /** |
| * Non-zero if this variable was created by lowering a named interface |
| * block which was not an array. |
| * |
| * Note that this variable and \c from_named_ifc_block_array will never |
| * both be non-zero. |
| */ |
| unsigned from_named_ifc_block_nonarray:1; |
| |
| /** |
| * Non-zero if this variable was created by lowering a named interface |
| * block which was an array. |
| * |
| * Note that this variable and \c from_named_ifc_block_nonarray will never |
| * both be non-zero. |
| */ |
| unsigned from_named_ifc_block_array:1; |
| |
| /** |
| * Non-zero if the variable must be a shader input. This is useful for |
| * constraints on function parameters. |
| */ |
| unsigned must_be_shader_input:1; |
| |
| /** |
| * Output index for dual source blending. |
| * |
| * \note |
| * The GLSL spec only allows the values 0 or 1 for the index in \b dual |
| * source blending. |
| */ |
| unsigned index:1; |
| |
| /** |
| * Precision qualifier. |
| * |
| * In desktop GLSL we do not care about precision qualifiers at all, in |
| * fact, the spec says that precision qualifiers are ignored. |
| * |
| * To make things easy, we make it so that this field is always |
| * GLSL_PRECISION_NONE on desktop shaders. This way all the variables |
| * have the same precision value and the checks we add in the compiler |
| * for this field will never break a desktop shader compile. |
| */ |
| unsigned precision:2; |
| |
| /** |
| * \brief Layout qualifier for gl_FragDepth. |
| * |
| * This is not equal to \c ir_depth_layout_none if and only if this |
| * variable is \c gl_FragDepth and a layout qualifier is specified. |
| */ |
| ir_depth_layout depth_layout:3; |
| |
| /** |
| * ARB_shader_image_load_store qualifiers. |
| */ |
| unsigned image_read_only:1; /**< "readonly" qualifier. */ |
| unsigned image_write_only:1; /**< "writeonly" qualifier. */ |
| unsigned image_coherent:1; |
| unsigned image_volatile:1; |
| unsigned image_restrict:1; |
| |
| /** |
| * ARB_shader_storage_buffer_object |
| */ |
| unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */ |
| |
| /** |
| * Emit a warning if this variable is accessed. |
| */ |
| private: |
| uint8_t warn_extension_index; |
| |
| public: |
| /** Image internal format if specified explicitly, otherwise GL_NONE. */ |
| uint16_t image_format; |
| |
| private: |
| /** |
| * Number of state slots used |
| * |
| * \note |
| * This could be stored in as few as 7-bits, if necessary. If it is made |
| * smaller, add an assertion to \c ir_variable::allocate_state_slots to |
| * be safe. |
| */ |
| uint16_t _num_state_slots; |
| |
| public: |
| /** |
| * Initial binding point for a sampler, atomic, or UBO. |
| * |
| * For array types, this represents the binding point for the first element. |
| */ |
| int16_t binding; |
| |
| /** |
| * Storage location of the base of this variable |
| * |
| * The precise meaning of this field depends on the nature of the variable. |
| * |
| * - Vertex shader input: one of the values from \c gl_vert_attrib. |
| * - Vertex shader output: one of the values from \c gl_varying_slot. |
| * - Geometry shader input: one of the values from \c gl_varying_slot. |
| * - Geometry shader output: one of the values from \c gl_varying_slot. |
| * - Fragment shader input: one of the values from \c gl_varying_slot. |
| * - Fragment shader output: one of the values from \c gl_frag_result. |
| * - Uniforms: Per-stage uniform slot number for default uniform block. |
| * - Uniforms: Index within the uniform block definition for UBO members. |
| * - Non-UBO Uniforms: explicit location until linking then reused to |
| * store uniform slot number. |
| * - Other: This field is not currently used. |
| * |
| * If the variable is a uniform, shader input, or shader output, and the |
| * slot has not been assigned, the value will be -1. |
| */ |
| int location; |
| |
| /** |
| * Vertex stream output identifier. |
| */ |
| unsigned stream; |
| |
| /** |
| * Location an atomic counter is stored at. |
| */ |
| unsigned offset; |
| |
| /** |
| * Highest element accessed with a constant expression array index |
| * |
| * Not used for non-array variables. |
| */ |
| unsigned max_array_access; |
| |
| /** |
| * Allow (only) ir_variable direct access private members. |
| */ |
| friend class ir_variable; |
| } data; |
| |
| /** |
| * Value assigned in the initializer of a variable declared "const" |
| */ |
| ir_constant *constant_value; |
| |
| /** |
| * Constant expression assigned in the initializer of the variable |
| * |
| * \warning |
| * This field and \c ::constant_value are distinct. Even if the two fields |
| * refer to constants with the same value, they must point to separate |
| * objects. |
| */ |
| ir_constant *constant_initializer; |
| |
| private: |
| static const char *const warn_extension_table[]; |
| |
| union { |
| /** |
| * For variables which satisfy the is_interface_instance() predicate, |
| * this points to an array of integers such that if the ith member of |
| * the interface block is an array, max_ifc_array_access[i] is the |
| * maximum array element of that member that has been accessed. If the |
| * ith member of the interface block is not an array, |
| * max_ifc_array_access[i] is unused. |
| * |
| * For variables whose type is not an interface block, this pointer is |
| * NULL. |
| */ |
| unsigned *max_ifc_array_access; |
| |
| /** |
| * Built-in state that backs this uniform |
| * |
| * Once set at variable creation, \c state_slots must remain invariant. |
| * |
| * If the variable is not a uniform, \c _num_state_slots will be zero |
| * and \c state_slots will be \c NULL. |
| */ |
| ir_state_slot *state_slots; |
| } u; |
| |
| /** |
| * For variables that are in an interface block or are an instance of an |
| * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block. |
| * |
| * \sa ir_variable::location |
| */ |
| const glsl_type *interface_type; |
| |
| /** |
| * Name used for anonymous compiler temporaries |
| */ |
| static const char tmp_name[]; |
| |
| public: |
| /** |
| * Should the construct keep names for ir_var_temporary variables? |
| * |
| * When this global is false, names passed to the constructor for |
| * \c ir_var_temporary variables will be dropped. Instead, the variable will |
| * be named "compiler_temp". This name will be in static storage. |
| * |
| * \warning |
| * \b NEVER change the mode of an \c ir_var_temporary. |
| * |
| * \warning |
| * This variable is \b not thread-safe. It is global, \b not |
| * per-context. It begins life false. A context can, at some point, make |
| * it true. From that point on, it will be true forever. This should be |
| * okay since it will only be set true while debugging. |
| */ |
| static bool temporaries_allocate_names; |
| }; |
| |
| /** |
| * A function that returns whether a built-in function is available in the |
| * current shading language (based on version, ES or desktop, and extensions). |
| */ |
| typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *); |
| |
| /*@{*/ |
| /** |
| * The representation of a function instance; may be the full definition or |
| * simply a prototype. |
| */ |
| class ir_function_signature : public ir_instruction { |
| /* An ir_function_signature will be part of the list of signatures in |
| * an ir_function. |
| */ |
| public: |
| ir_function_signature(const glsl_type *return_type, |
| builtin_available_predicate builtin_avail = NULL); |
| |
| virtual ir_function_signature *clone(void *mem_ctx, |
| struct hash_table *ht) const; |
| ir_function_signature *clone_prototype(void *mem_ctx, |
| struct hash_table *ht) const; |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| /** |
| * Attempt to evaluate this function as a constant expression, |
| * given a list of the actual parameters and the variable context. |
| * Returns NULL for non-built-ins. |
| */ |
| ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context); |
| |
| /** |
| * Get the name of the function for which this is a signature |
| */ |
| const char *function_name() const; |
| |
| /** |
| * Get a handle to the function for which this is a signature |
| * |
| * There is no setter function, this function returns a \c const pointer, |
| * and \c ir_function_signature::_function is private for a reason. The |
| * only way to make a connection between a function and function signature |
| * is via \c ir_function::add_signature. This helps ensure that certain |
| * invariants (i.e., a function signature is in the list of signatures for |
| * its \c _function) are met. |
| * |
| * \sa ir_function::add_signature |
| */ |
| inline const class ir_function *function() const |
| { |
| return this->_function; |
| } |
| |
| /** |
| * Check whether the qualifiers match between this signature's parameters |
| * and the supplied parameter list. If not, returns the name of the first |
| * parameter with mismatched qualifiers (for use in error messages). |
| */ |
| const char *qualifiers_match(exec_list *params); |
| |
| /** |
| * Replace the current parameter list with the given one. This is useful |
| * if the current information came from a prototype, and either has invalid |
| * or missing parameter names. |
| */ |
| void replace_parameters(exec_list *new_params); |
| |
| /** |
| * Function return type. |
| * |
| * \note This discards the optional precision qualifier. |
| */ |
| const struct glsl_type *return_type; |
| |
| /** |
| * List of ir_variable of function parameters. |
| * |
| * This represents the storage. The paramaters passed in a particular |
| * call will be in ir_call::actual_paramaters. |
| */ |
| struct exec_list parameters; |
| |
| /** Whether or not this function has a body (which may be empty). */ |
| unsigned is_defined:1; |
| |
| /** Whether or not this function signature is a built-in. */ |
| bool is_builtin() const; |
| |
| /** |
| * Whether or not this function is an intrinsic to be implemented |
| * by the driver. |
| */ |
| bool is_intrinsic; |
| |
| /** Whether or not a built-in is available for this shader. */ |
| bool is_builtin_available(const _mesa_glsl_parse_state *state) const; |
| |
| /** Body of instructions in the function. */ |
| struct exec_list body; |
| |
| private: |
| /** |
| * A function pointer to a predicate that answers whether a built-in |
| * function is available in the current shader. NULL if not a built-in. |
| */ |
| builtin_available_predicate builtin_avail; |
| |
| /** Function of which this signature is one overload. */ |
| class ir_function *_function; |
| |
| /** Function signature of which this one is a prototype clone */ |
| const ir_function_signature *origin; |
| |
| friend class ir_function; |
| |
| /** |
| * Helper function to run a list of instructions for constant |
| * expression evaluation. |
| * |
| * The hash table represents the values of the visible variables. |
| * There are no scoping issues because the table is indexed on |
| * ir_variable pointers, not variable names. |
| * |
| * Returns false if the expression is not constant, true otherwise, |
| * and the value in *result if result is non-NULL. |
| */ |
| bool constant_expression_evaluate_expression_list(const struct exec_list &body, |
| struct hash_table *variable_context, |
| ir_constant **result); |
| }; |
| |
| |
| /** |
| * Header for tracking multiple overloaded functions with the same name. |
| * Contains a list of ir_function_signatures representing each of the |
| * actual functions. |
| */ |
| class ir_function : public ir_instruction { |
| public: |
| ir_function(const char *name); |
| |
| virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const; |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| void add_signature(ir_function_signature *sig) |
| { |
| sig->_function = this; |
| this->signatures.push_tail(sig); |
| } |
| |
| /** |
| * Find a signature that matches a set of actual parameters, taking implicit |
| * conversions into account. Also flags whether the match was exact. |
| */ |
| ir_function_signature *matching_signature(_mesa_glsl_parse_state *state, |
| const exec_list *actual_param, |
| bool allow_builtins, |
| bool *match_is_exact); |
| |
| /** |
| * Find a signature that matches a set of actual parameters, taking implicit |
| * conversions into account. |
| */ |
| ir_function_signature *matching_signature(_mesa_glsl_parse_state *state, |
| const exec_list *actual_param, |
| bool allow_builtins); |
| |
| /** |
| * Find a signature that exactly matches a set of actual parameters without |
| * any implicit type conversions. |
| */ |
| ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state, |
| const exec_list *actual_ps); |
| |
| /** |
| * Name of the function. |
| */ |
| const char *name; |
| |
| /** Whether or not this function has a signature that isn't a built-in. */ |
| bool has_user_signature(); |
| |
| /** |
| * List of ir_function_signature for each overloaded function with this name. |
| */ |
| struct exec_list signatures; |
| |
| /** |
| * is this function a subroutine type declaration |
| * e.g. subroutine void type1(float arg1); |
| */ |
| bool is_subroutine; |
| |
| /** |
| * is this function associated to a subroutine type |
| * e.g. subroutine (type1, type2) function_name { function_body }; |
| * would have num_subroutine_types 2, |
| * and pointers to the type1 and type2 types. |
| */ |
| int num_subroutine_types; |
| const struct glsl_type **subroutine_types; |
| |
| int subroutine_index; |
| }; |
| |
| inline const char *ir_function_signature::function_name() const |
| { |
| return this->_function->name; |
| } |
| /*@}*/ |
| |
| |
| /** |
| * IR instruction representing high-level if-statements |
| */ |
| class ir_if : public ir_instruction { |
| public: |
| ir_if(ir_rvalue *condition) |
| : ir_instruction(ir_type_if), condition(condition) |
| { |
| } |
| |
| virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const; |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| ir_rvalue *condition; |
| /** List of ir_instruction for the body of the then branch */ |
| exec_list then_instructions; |
| /** List of ir_instruction for the body of the else branch */ |
| exec_list else_instructions; |
| }; |
| |
| |
| /** |
| * IR instruction representing a high-level loop structure. |
| */ |
| class ir_loop : public ir_instruction { |
| public: |
| ir_loop(); |
| |
| virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const; |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| /** List of ir_instruction that make up the body of the loop. */ |
| exec_list body_instructions; |
| }; |
| |
| |
| class ir_assignment : public ir_instruction { |
| public: |
| ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL); |
| |
| /** |
| * Construct an assignment with an explicit write mask |
| * |
| * \note |
| * Since a write mask is supplied, the LHS must already be a bare |
| * \c ir_dereference. The cannot be any swizzles in the LHS. |
| */ |
| ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition, |
| unsigned write_mask); |
| |
| virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const; |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| /** |
| * Get a whole variable written by an assignment |
| * |
| * If the LHS of the assignment writes a whole variable, the variable is |
| * returned. Otherwise \c NULL is returned. Examples of whole-variable |
| * assignment are: |
| * |
| * - Assigning to a scalar |
| * - Assigning to all components of a vector |
| * - Whole array (or matrix) assignment |
| * - Whole structure assignment |
| */ |
| ir_variable *whole_variable_written(); |
| |
| /** |
| * Set the LHS of an assignment |
| */ |
| void set_lhs(ir_rvalue *lhs); |
| |
| /** |
| * Left-hand side of the assignment. |
| * |
| * This should be treated as read only. If you need to set the LHS of an |
| * assignment, use \c ir_assignment::set_lhs. |
| */ |
| ir_dereference *lhs; |
| |
| /** |
| * Value being assigned |
| */ |
| ir_rvalue *rhs; |
| |
| /** |
| * Optional condition for the assignment. |
| */ |
| ir_rvalue *condition; |
| |
| |
| /** |
| * Component mask written |
| * |
| * For non-vector types in the LHS, this field will be zero. For vector |
| * types, a bit will be set for each component that is written. Note that |
| * for \c vec2 and \c vec3 types only the lower bits will ever be set. |
| * |
| * A partially-set write mask means that each enabled channel gets |
| * the value from a consecutive channel of the rhs. For example, |
| * to write just .xyw of gl_FrontColor with color: |
| * |
| * (assign (constant bool (1)) (xyw) |
| * (var_ref gl_FragColor) |
| * (swiz xyw (var_ref color))) |
| */ |
| unsigned write_mask:4; |
| }; |
| |
| /* Update ir_expression::get_num_operands() and operator_strs when |
| * updating this list. |
| */ |
| enum ir_expression_operation { |
| ir_unop_bit_not, |
| ir_unop_logic_not, |
| ir_unop_neg, |
| ir_unop_abs, |
| ir_unop_sign, |
| ir_unop_rcp, |
| ir_unop_rsq, |
| ir_unop_sqrt, |
| ir_unop_exp, /**< Log base e on gentype */ |
| ir_unop_log, /**< Natural log on gentype */ |
| ir_unop_exp2, |
| ir_unop_log2, |
| ir_unop_f2i, /**< Float-to-integer conversion. */ |
| ir_unop_f2u, /**< Float-to-unsigned conversion. */ |
| ir_unop_i2f, /**< Integer-to-float conversion. */ |
| ir_unop_f2b, /**< Float-to-boolean conversion */ |
| ir_unop_b2f, /**< Boolean-to-float conversion */ |
| ir_unop_i2b, /**< int-to-boolean conversion */ |
| ir_unop_b2i, /**< Boolean-to-int conversion */ |
| ir_unop_u2f, /**< Unsigned-to-float conversion. */ |
| ir_unop_i2u, /**< Integer-to-unsigned conversion. */ |
| ir_unop_u2i, /**< Unsigned-to-integer conversion. */ |
| ir_unop_d2f, /**< Double-to-float conversion. */ |
| ir_unop_f2d, /**< Float-to-double conversion. */ |
| ir_unop_d2i, /**< Double-to-integer conversion. */ |
| ir_unop_i2d, /**< Integer-to-double conversion. */ |
| ir_unop_d2u, /**< Double-to-unsigned conversion. */ |
| ir_unop_u2d, /**< Unsigned-to-double conversion. */ |
| ir_unop_d2b, /**< Double-to-boolean conversion. */ |
| ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */ |
| ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */ |
| ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */ |
| ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */ |
| |
| /** |
| * \name Unary floating-point rounding operations. |
| */ |
| /*@{*/ |
| ir_unop_trunc, |
| ir_unop_ceil, |
| ir_unop_floor, |
| ir_unop_fract, |
| ir_unop_round_even, |
| /*@}*/ |
| |
| /** |
| * \name Trigonometric operations. |
| */ |
| /*@{*/ |
| ir_unop_sin, |
| ir_unop_cos, |
| /*@}*/ |
| |
| /** |
| * \name Partial derivatives. |
| */ |
| /*@{*/ |
| ir_unop_dFdx, |
| ir_unop_dFdx_coarse, |
| ir_unop_dFdx_fine, |
| ir_unop_dFdy, |
| ir_unop_dFdy_coarse, |
| ir_unop_dFdy_fine, |
| /*@}*/ |
| |
| /** |
| * \name Floating point pack and unpack operations. |
| */ |
| /*@{*/ |
| ir_unop_pack_snorm_2x16, |
| ir_unop_pack_snorm_4x8, |
| ir_unop_pack_unorm_2x16, |
| ir_unop_pack_unorm_4x8, |
| ir_unop_pack_half_2x16, |
| ir_unop_unpack_snorm_2x16, |
| ir_unop_unpack_snorm_4x8, |
| ir_unop_unpack_unorm_2x16, |
| ir_unop_unpack_unorm_4x8, |
| ir_unop_unpack_half_2x16, |
| /*@}*/ |
| |
| /** |
| * \name Bit operations, part of ARB_gpu_shader5. |
| */ |
| /*@{*/ |
| ir_unop_bitfield_reverse, |
| ir_unop_bit_count, |
| ir_unop_find_msb, |
| ir_unop_find_lsb, |
| /*@}*/ |
| |
| ir_unop_saturate, |
| |
| /** |
| * \name Double packing, part of ARB_gpu_shader_fp64. |
| */ |
| /*@{*/ |
| ir_unop_pack_double_2x32, |
| ir_unop_unpack_double_2x32, |
| /*@}*/ |
| |
| ir_unop_frexp_sig, |
| ir_unop_frexp_exp, |
| |
| ir_unop_noise, |
| |
| ir_unop_subroutine_to_int, |
| /** |
| * Interpolate fs input at centroid |
| * |
| * operand0 is the fs input. |
| */ |
| ir_unop_interpolate_at_centroid, |
| |
| /** |
| * Ask the driver for the total size of a buffer block. |
| * |
| * operand0 is the ir_constant buffer block index in the linked shader. |
| */ |
| ir_unop_get_buffer_size, |
| |
| /** |
| * Calculate length of an unsized array inside a buffer block. |
| * This opcode is going to be replaced in a lowering pass inside |
| * the linker. |
| * |
| * operand0 is the unsized array's ir_value for the calculation |
| * of its length. |
| */ |
| ir_unop_ssbo_unsized_array_length, |
| |
| /** |
| * A sentinel marking the last of the unary operations. |
| */ |
| ir_last_unop = ir_unop_ssbo_unsized_array_length, |
| |
| ir_binop_add, |
| ir_binop_sub, |
| ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */ |
| ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */ |
| ir_binop_div, |
| |
| /** |
| * Returns the carry resulting from the addition of the two arguments. |
| */ |
| /*@{*/ |
| ir_binop_carry, |
| /*@}*/ |
| |
| /** |
| * Returns the borrow resulting from the subtraction of the second argument |
| * from the first argument. |
| */ |
| /*@{*/ |
| ir_binop_borrow, |
| /*@}*/ |
| |
| /** |
| * Takes one of two combinations of arguments: |
| * |
| * - mod(vecN, vecN) |
| * - mod(vecN, float) |
| * |
| * Does not take integer types. |
| */ |
| ir_binop_mod, |
| |
| /** |
| * \name Binary comparison operators which return a boolean vector. |
| * The type of both operands must be equal. |
| */ |
| /*@{*/ |
| ir_binop_less, |
| ir_binop_greater, |
| ir_binop_lequal, |
| ir_binop_gequal, |
| ir_binop_equal, |
| ir_binop_nequal, |
| /** |
| * Returns single boolean for whether all components of operands[0] |
| * equal the components of operands[1]. |
| */ |
| ir_binop_all_equal, |
| /** |
| * Returns single boolean for whether any component of operands[0] |
| * is not equal to the corresponding component of operands[1]. |
| */ |
| ir_binop_any_nequal, |
| /*@}*/ |
| |
| /** |
| * \name Bit-wise binary operations. |
| */ |
| /*@{*/ |
| ir_binop_lshift, |
| ir_binop_rshift, |
| ir_binop_bit_and, |
| ir_binop_bit_xor, |
| ir_binop_bit_or, |
| /*@}*/ |
| |
| ir_binop_logic_and, |
| ir_binop_logic_xor, |
| ir_binop_logic_or, |
| |
| ir_binop_dot, |
| ir_binop_min, |
| ir_binop_max, |
| |
| ir_binop_pow, |
| |
| /** |
| * Load a value the size of a given GLSL type from a uniform block. |
| * |
| * operand0 is the ir_constant uniform block index in the linked shader. |
| * operand1 is a byte offset within the uniform block. |
| */ |
| ir_binop_ubo_load, |
| |
| /** |
| * \name Multiplies a number by two to a power, part of ARB_gpu_shader5. |
| */ |
| /*@{*/ |
| ir_binop_ldexp, |
| /*@}*/ |
| |
| /** |
| * Extract a scalar from a vector |
| * |
| * operand0 is the vector |
| * operand1 is the index of the field to read from operand0 |
| */ |
| ir_binop_vector_extract, |
| |
| /** |
| * Interpolate fs input at offset |
| * |
| * operand0 is the fs input |
| * operand1 is the offset from the pixel center |
| */ |
| ir_binop_interpolate_at_offset, |
| |
| /** |
| * Interpolate fs input at sample position |
| * |
| * operand0 is the fs input |
| * operand1 is the sample ID |
| */ |
| ir_binop_interpolate_at_sample, |
| |
| /** |
| * A sentinel marking the last of the binary operations. |
| */ |
| ir_last_binop = ir_binop_interpolate_at_sample, |
| |
| /** |
| * \name Fused floating-point multiply-add, part of ARB_gpu_shader5. |
| */ |
| /*@{*/ |
| ir_triop_fma, |
| /*@}*/ |
| |
| ir_triop_lrp, |
| |
| /** |
| * \name Conditional Select |
| * |
| * A vector conditional select instruction (like ?:, but operating per- |
| * component on vectors). |
| * |
| * \see lower_instructions_visitor::ldexp_to_arith |
| */ |
| /*@{*/ |
| ir_triop_csel, |
| /*@}*/ |
| |
| ir_triop_bitfield_extract, |
| |
| /** |
| * Generate a value with one field of a vector changed |
| * |
| * operand0 is the vector |
| * operand1 is the value to write into the vector result |
| * operand2 is the index in operand0 to be modified |
| */ |
| ir_triop_vector_insert, |
| |
| /** |
| * A sentinel marking the last of the ternary operations. |
| */ |
| ir_last_triop = ir_triop_vector_insert, |
| |
| ir_quadop_bitfield_insert, |
| |
| ir_quadop_vector, |
| |
| /** |
| * A sentinel marking the last of the ternary operations. |
| */ |
| ir_last_quadop = ir_quadop_vector, |
| |
| /** |
| * A sentinel marking the last of all operations. |
| */ |
| ir_last_opcode = ir_quadop_vector |
| }; |
| |
| class ir_expression : public ir_rvalue { |
| public: |
| ir_expression(int op, const struct glsl_type *type, |
| ir_rvalue *op0, ir_rvalue *op1 = NULL, |
| ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL); |
| |
| /** |
| * Constructor for unary operation expressions |
| */ |
| ir_expression(int op, ir_rvalue *); |
| |
| /** |
| * Constructor for binary operation expressions |
| */ |
| ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1); |
| |
| /** |
| * Constructor for ternary operation expressions |
| */ |
| ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2); |
| |
| virtual bool equals(const ir_instruction *ir, |
| enum ir_node_type ignore = ir_type_unset) const; |
| |
| virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const; |
| |
| /** |
| * Attempt to constant-fold the expression |
| * |
| * The "variable_context" hash table links ir_variable * to ir_constant * |
| * that represent the variables' values. \c NULL represents an empty |
| * context. |
| * |
| * If the expression cannot be constant folded, this method will return |
| * \c NULL. |
| */ |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| /** |
| * Determine the number of operands used by an expression |
| */ |
| static unsigned int get_num_operands(ir_expression_operation); |
| |
| /** |
| * Determine the number of operands used by an expression |
| */ |
| unsigned int get_num_operands() const |
| { |
| return (this->operation == ir_quadop_vector) |
| ? this->type->vector_elements : get_num_operands(operation); |
| } |
| |
| /** |
| * Return whether the expression operates on vectors horizontally. |
| */ |
| bool is_horizontal() const |
| { |
| return operation == ir_binop_all_equal || |
| operation == ir_binop_any_nequal || |
| operation == ir_binop_dot || |
| operation == ir_binop_vector_extract || |
| operation == ir_triop_vector_insert || |
| operation == ir_quadop_vector; |
| } |
| |
| /** |
| * Return a string representing this expression's operator. |
| */ |
| const char *operator_string(); |
| |
| /** |
| * Return a string representing this expression's operator. |
| */ |
| static const char *operator_string(ir_expression_operation); |
| |
| |
| /** |
| * Do a reverse-lookup to translate the given string into an operator. |
| */ |
| static ir_expression_operation get_operator(const char *); |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| virtual ir_variable *variable_referenced() const; |
| |
| ir_expression_operation operation; |
| ir_rvalue *operands[4]; |
| }; |
| |
| |
| /** |
| * HIR instruction representing a high-level function call, containing a list |
| * of parameters and returning a value in the supplied temporary. |
| */ |
| class ir_call : public ir_instruction { |
| public: |
| ir_call(ir_function_signature *callee, |
| ir_dereference_variable *return_deref, |
| exec_list *actual_parameters) |
| : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL) |
| { |
| assert(callee->return_type != NULL); |
| actual_parameters->move_nodes_to(& this->actual_parameters); |
| this->use_builtin = callee->is_builtin(); |
| } |
| |
| ir_call(ir_function_signature *callee, |
| ir_dereference_variable *return_deref, |
| exec_list *actual_parameters, |
| ir_variable *var, ir_rvalue *array_idx) |
| : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx) |
| { |
| assert(callee->return_type != NULL); |
| actual_parameters->move_nodes_to(& this->actual_parameters); |
| this->use_builtin = callee->is_builtin(); |
| } |
| |
| virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const; |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| /** |
| * Get the name of the function being called. |
| */ |
| const char *callee_name() const |
| { |
| return callee->function_name(); |
| } |
| |
| /** |
| * Generates an inline version of the function before @ir, |
| * storing the return value in return_deref. |
| */ |
| void generate_inline(ir_instruction *ir); |
| |
| /** |
| * Storage for the function's return value. |
| * This must be NULL if the return type is void. |
| */ |
| ir_dereference_variable *return_deref; |
| |
| /** |
| * The specific function signature being called. |
| */ |
| ir_function_signature *callee; |
| |
| /* List of ir_rvalue of paramaters passed in this call. */ |
| exec_list actual_parameters; |
| |
| /** Should this call only bind to a built-in function? */ |
| bool use_builtin; |
| |
| /* |
| * ARB_shader_subroutine support - |
| * the subroutine uniform variable and array index |
| * rvalue to be used in the lowering pass later. |
| */ |
| ir_variable *sub_var; |
| ir_rvalue *array_idx; |
| }; |
| |
| |
| /** |
| * \name Jump-like IR instructions. |
| * |
| * These include \c break, \c continue, \c return, and \c discard. |
| */ |
| /*@{*/ |
| class ir_jump : public ir_instruction { |
| protected: |
| ir_jump(enum ir_node_type t) |
| : ir_instruction(t) |
| { |
| } |
| }; |
| |
| class ir_return : public ir_jump { |
| public: |
| ir_return() |
| : ir_jump(ir_type_return), value(NULL) |
| { |
| } |
| |
| ir_return(ir_rvalue *value) |
| : ir_jump(ir_type_return), value(value) |
| { |
| } |
| |
| virtual ir_return *clone(void *mem_ctx, struct hash_table *) const; |
| |
| ir_rvalue *get_value() const |
| { |
| return value; |
| } |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| ir_rvalue *value; |
| }; |
| |
| |
| /** |
| * Jump instructions used inside loops |
| * |
| * These include \c break and \c continue. The \c break within a loop is |
| * different from the \c break within a switch-statement. |
| * |
| * \sa ir_switch_jump |
| */ |
| class ir_loop_jump : public ir_jump { |
| public: |
| enum jump_mode { |
| jump_break, |
| jump_continue |
| }; |
| |
| ir_loop_jump(jump_mode mode) |
| : ir_jump(ir_type_loop_jump) |
| { |
| this->mode = mode; |
| } |
| |
| virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const; |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| bool is_break() const |
| { |
| return mode == jump_break; |
| } |
| |
| bool is_continue() const |
| { |
| return mode == jump_continue; |
| } |
| |
| /** Mode selector for the jump instruction. */ |
| enum jump_mode mode; |
| }; |
| |
| /** |
| * IR instruction representing discard statements. |
| */ |
| class ir_discard : public ir_jump { |
| public: |
| ir_discard() |
| : ir_jump(ir_type_discard) |
| { |
| this->condition = NULL; |
| } |
| |
| ir_discard(ir_rvalue *cond) |
| : ir_jump(ir_type_discard) |
| { |
| this->condition = cond; |
| } |
| |
| virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const; |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| ir_rvalue *condition; |
| }; |
| /*@}*/ |
| |
| |
| /** |
| * Texture sampling opcodes used in ir_texture |
| */ |
| enum ir_texture_opcode { |
| ir_tex, /**< Regular texture look-up */ |
| ir_txb, /**< Texture look-up with LOD bias */ |
| ir_txl, /**< Texture look-up with explicit LOD */ |
| ir_txd, /**< Texture look-up with partial derivatvies */ |
| ir_txf, /**< Texel fetch with explicit LOD */ |
| ir_txf_ms, /**< Multisample texture fetch */ |
| ir_txs, /**< Texture size */ |
| ir_lod, /**< Texture lod query */ |
| ir_tg4, /**< Texture gather */ |
| ir_query_levels, /**< Texture levels query */ |
| ir_texture_samples, /**< Texture samples query */ |
| ir_samples_identical, /**< Query whether all samples are definitely identical. */ |
| }; |
| |
| |
| /** |
| * IR instruction to sample a texture |
| * |
| * The specific form of the IR instruction depends on the \c mode value |
| * selected from \c ir_texture_opcodes. In the printed IR, these will |
| * appear as: |
| * |
| * Texel offset (0 or an expression) |
| * | Projection divisor |
| * | | Shadow comparitor |
| * | | | |
| * v v v |
| * (tex <type> <sampler> <coordinate> 0 1 ( )) |
| * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>) |
| * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>) |
| * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy)) |
| * (txf <type> <sampler> <coordinate> 0 <lod>) |
| * (txf_ms |
| * <type> <sampler> <coordinate> <sample_index>) |
| * (txs <type> <sampler> <lod>) |
| * (lod <type> <sampler> <coordinate>) |
| * (tg4 <type> <sampler> <coordinate> <offset> <component>) |
| * (query_levels <type> <sampler>) |
| * (samples_identical <sampler> <coordinate>) |
| */ |
| class ir_texture : public ir_rvalue { |
| public: |
| ir_texture(enum ir_texture_opcode op) |
| : ir_rvalue(ir_type_texture), |
| op(op), sampler(NULL), coordinate(NULL), projector(NULL), |
| shadow_comparitor(NULL), offset(NULL) |
| { |
| memset(&lod_info, 0, sizeof(lod_info)); |
| } |
| |
| virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const; |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| virtual bool equals(const ir_instruction *ir, |
| enum ir_node_type ignore = ir_type_unset) const; |
| |
| /** |
| * Return a string representing the ir_texture_opcode. |
| */ |
| const char *opcode_string(); |
| |
| /** Set the sampler and type. */ |
| void set_sampler(ir_dereference *sampler, const glsl_type *type); |
| |
| /** |
| * Do a reverse-lookup to translate a string into an ir_texture_opcode. |
| */ |
| static ir_texture_opcode get_opcode(const char *); |
| |
| enum ir_texture_opcode op; |
| |
| /** Sampler to use for the texture access. */ |
| ir_dereference *sampler; |
| |
| /** Texture coordinate to sample */ |
| ir_rvalue *coordinate; |
| |
| /** |
| * Value used for projective divide. |
| * |
| * If there is no projective divide (the common case), this will be |
| * \c NULL. Optimization passes should check for this to point to a constant |
| * of 1.0 and replace that with \c NULL. |
| */ |
| ir_rvalue *projector; |
| |
| /** |
| * Coordinate used for comparison on shadow look-ups. |
| * |
| * If there is no shadow comparison, this will be \c NULL. For the |
| * \c ir_txf opcode, this *must* be \c NULL. |
| */ |
| ir_rvalue *shadow_comparitor; |
| |
| /** Texel offset. */ |
| ir_rvalue *offset; |
| |
| union { |
| ir_rvalue *lod; /**< Floating point LOD */ |
| ir_rvalue *bias; /**< Floating point LOD bias */ |
| ir_rvalue *sample_index; /**< MSAA sample index */ |
| ir_rvalue *component; /**< Gather component selector */ |
| struct { |
| ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */ |
| ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */ |
| } grad; |
| } lod_info; |
| }; |
| |
| |
| struct ir_swizzle_mask { |
| unsigned x:2; |
| unsigned y:2; |
| unsigned z:2; |
| unsigned w:2; |
| |
| /** |
| * Number of components in the swizzle. |
| */ |
| unsigned num_components:3; |
| |
| /** |
| * Does the swizzle contain duplicate components? |
| * |
| * L-value swizzles cannot contain duplicate components. |
| */ |
| unsigned has_duplicates:1; |
| }; |
| |
| |
| class ir_swizzle : public ir_rvalue { |
| public: |
| ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w, |
| unsigned count); |
| |
| ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count); |
| |
| ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask); |
| |
| virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const; |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| /** |
| * Construct an ir_swizzle from the textual representation. Can fail. |
| */ |
| static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length); |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| virtual bool equals(const ir_instruction *ir, |
| enum ir_node_type ignore = ir_type_unset) const; |
| |
| bool is_lvalue() const |
| { |
| return val->is_lvalue() && !mask.has_duplicates; |
| } |
| |
| /** |
| * Get the variable that is ultimately referenced by an r-value |
| */ |
| virtual ir_variable *variable_referenced() const; |
| |
| ir_rvalue *val; |
| ir_swizzle_mask mask; |
| |
| private: |
| /** |
| * Initialize the mask component of a swizzle |
| * |
| * This is used by the \c ir_swizzle constructors. |
| */ |
| void init_mask(const unsigned *components, unsigned count); |
| }; |
| |
| |
| class ir_dereference : public ir_rvalue { |
| public: |
| virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0; |
| |
| bool is_lvalue() const; |
| |
| /** |
| * Get the variable that is ultimately referenced by an r-value |
| */ |
| virtual ir_variable *variable_referenced() const = 0; |
| |
| protected: |
| ir_dereference(enum ir_node_type t) |
| : ir_rvalue(t) |
| { |
| } |
| }; |
| |
| |
| class ir_dereference_variable : public ir_dereference { |
| public: |
| ir_dereference_variable(ir_variable *var); |
| |
| virtual ir_dereference_variable *clone(void *mem_ctx, |
| struct hash_table *) const; |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| virtual bool equals(const ir_instruction *ir, |
| enum ir_node_type ignore = ir_type_unset) const; |
| |
| /** |
| * Get the variable that is ultimately referenced by an r-value |
| */ |
| virtual ir_variable *variable_referenced() const |
| { |
| return this->var; |
| } |
| |
| virtual ir_variable *whole_variable_referenced() |
| { |
| /* ir_dereference_variable objects always dereference the entire |
| * variable. However, if this dereference is dereferenced by anything |
| * else, the complete deferefernce chain is not a whole-variable |
| * dereference. This method should only be called on the top most |
| * ir_rvalue in a dereference chain. |
| */ |
| return this->var; |
| } |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| /** |
| * Object being dereferenced. |
| */ |
| ir_variable *var; |
| }; |
| |
| |
| class ir_dereference_array : public ir_dereference { |
| public: |
| ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index); |
| |
| ir_dereference_array(ir_variable *var, ir_rvalue *array_index); |
| |
| virtual ir_dereference_array *clone(void *mem_ctx, |
| struct hash_table *) const; |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| virtual bool equals(const ir_instruction *ir, |
| enum ir_node_type ignore = ir_type_unset) const; |
| |
| /** |
| * Get the variable that is ultimately referenced by an r-value |
| */ |
| virtual ir_variable *variable_referenced() const |
| { |
| return this->array->variable_referenced(); |
| } |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| ir_rvalue *array; |
| ir_rvalue *array_index; |
| |
| private: |
| void set_array(ir_rvalue *value); |
| }; |
| |
| |
| class ir_dereference_record : public ir_dereference { |
| public: |
| ir_dereference_record(ir_rvalue *value, const char *field); |
| |
| ir_dereference_record(ir_variable *var, const char *field); |
| |
| virtual ir_dereference_record *clone(void *mem_ctx, |
| struct hash_table *) const; |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| /** |
| * Get the variable that is ultimately referenced by an r-value |
| */ |
| virtual ir_variable *variable_referenced() const |
| { |
| return this->record->variable_referenced(); |
| } |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| ir_rvalue *record; |
| const char *field; |
| }; |
| |
| |
| /** |
| * Data stored in an ir_constant |
| */ |
| union ir_constant_data { |
| unsigned u[16]; |
| int i[16]; |
| float f[16]; |
| bool b[16]; |
| double d[16]; |
| }; |
| |
| |
| class ir_constant : public ir_rvalue { |
| public: |
| ir_constant(const struct glsl_type *type, const ir_constant_data *data); |
| ir_constant(bool b, unsigned vector_elements=1); |
| ir_constant(unsigned int u, unsigned vector_elements=1); |
| ir_constant(int i, unsigned vector_elements=1); |
| ir_constant(float f, unsigned vector_elements=1); |
| ir_constant(double d, unsigned vector_elements=1); |
| |
| /** |
| * Construct an ir_constant from a list of ir_constant values |
| */ |
| ir_constant(const struct glsl_type *type, exec_list *values); |
| |
| /** |
| * Construct an ir_constant from a scalar component of another ir_constant |
| * |
| * The new \c ir_constant inherits the type of the component from the |
| * source constant. |
| * |
| * \note |
| * In the case of a matrix constant, the new constant is a scalar, \b not |
| * a vector. |
| */ |
| ir_constant(const ir_constant *c, unsigned i); |
| |
| /** |
| * Return a new ir_constant of the specified type containing all zeros. |
| */ |
| static ir_constant *zero(void *mem_ctx, const glsl_type *type); |
| |
| virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const; |
| |
| virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL); |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| virtual bool equals(const ir_instruction *ir, |
| enum ir_node_type ignore = ir_type_unset) const; |
| |
| /** |
| * Get a particular component of a constant as a specific type |
| * |
| * This is useful, for example, to get a value from an integer constant |
| * as a float or bool. This appears frequently when constructors are |
| * called with all constant parameters. |
| */ |
| /*@{*/ |
| bool get_bool_component(unsigned i) const; |
| float get_float_component(unsigned i) const; |
| double get_double_component(unsigned i) const; |
| int get_int_component(unsigned i) const; |
| unsigned get_uint_component(unsigned i) const; |
| /*@}*/ |
| |
| ir_constant *get_array_element(unsigned i) const; |
| |
| ir_constant *get_record_field(const char *name); |
| |
| /** |
| * Copy the values on another constant at a given offset. |
| * |
| * The offset is ignored for array or struct copies, it's only for |
| * scalars or vectors into vectors or matrices. |
| * |
| * With identical types on both sides and zero offset it's clone() |
| * without creating a new object. |
| */ |
| |
| void copy_offset(ir_constant *src, int offset); |
| |
| /** |
| * Copy the values on another constant at a given offset and |
| * following an assign-like mask. |
| * |
| * The mask is ignored for scalars. |
| * |
| * Note that this function only handles what assign can handle, |
| * i.e. at most a vector as source and a column of a matrix as |
| * destination. |
| */ |
| |
| void copy_masked_offset(ir_constant *src, int offset, unsigned int mask); |
| |
| /** |
| * Determine whether a constant has the same value as another constant |
| * |
| * \sa ir_constant::is_zero, ir_constant::is_one, |
| * ir_constant::is_negative_one |
| */ |
| bool has_value(const ir_constant *) const; |
| |
| /** |
| * Return true if this ir_constant represents the given value. |
| * |
| * For vectors, this checks that each component is the given value. |
| */ |
| virtual bool is_value(float f, int i) const; |
| virtual bool is_zero() const; |
| virtual bool is_one() const; |
| virtual bool is_negative_one() const; |
| |
| /** |
| * Return true for constants that could be stored as 16-bit unsigned values. |
| * |
| * Note that this will return true even for signed integer ir_constants, as |
| * long as the value is non-negative and fits in 16-bits. |
| */ |
| virtual bool is_uint16_constant() const; |
| |
| /** |
| * Value of the constant. |
| * |
| * The field used to back the values supplied by the constant is determined |
| * by the type associated with the \c ir_instruction. Constants may be |
| * scalars, vectors, or matrices. |
| */ |
| union ir_constant_data value; |
| |
| /* Array elements */ |
| ir_constant **array_elements; |
| |
| /* Structure fields */ |
| exec_list components; |
| |
| private: |
| /** |
| * Parameterless constructor only used by the clone method |
| */ |
| ir_constant(void); |
| }; |
| |
| /** |
| * IR instruction to emit a vertex in a geometry shader. |
| */ |
| class ir_emit_vertex : public ir_instruction { |
| public: |
| ir_emit_vertex(ir_rvalue *stream) |
| : ir_instruction(ir_type_emit_vertex), |
| stream(stream) |
| { |
| assert(stream); |
| } |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const |
| { |
| return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht)); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| int stream_id() const |
| { |
| return stream->as_constant()->value.i[0]; |
| } |
| |
| ir_rvalue *stream; |
| }; |
| |
| /** |
| * IR instruction to complete the current primitive and start a new one in a |
| * geometry shader. |
| */ |
| class ir_end_primitive : public ir_instruction { |
| public: |
| ir_end_primitive(ir_rvalue *stream) |
| : ir_instruction(ir_type_end_primitive), |
| stream(stream) |
| { |
| assert(stream); |
| } |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const |
| { |
| return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht)); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| |
| int stream_id() const |
| { |
| return stream->as_constant()->value.i[0]; |
| } |
| |
| ir_rvalue *stream; |
| }; |
| |
| /** |
| * IR instruction for tessellation control and compute shader barrier. |
| */ |
| class ir_barrier : public ir_instruction { |
| public: |
| ir_barrier() |
| : ir_instruction(ir_type_barrier) |
| { |
| } |
| |
| virtual void accept(ir_visitor *v) |
| { |
| v->visit(this); |
| } |
| |
| virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const |
| { |
| return new(mem_ctx) ir_barrier(); |
| } |
| |
| virtual ir_visitor_status accept(ir_hierarchical_visitor *); |
| }; |
| |
| /*@}*/ |
| |
| /** |
| * Apply a visitor to each IR node in a list |
| */ |
| void |
| visit_exec_list(exec_list *list, ir_visitor *visitor); |
| |
| /** |
| * Validate invariants on each IR node in a list |
| */ |
| void validate_ir_tree(exec_list *instructions); |
| |
| struct _mesa_glsl_parse_state; |
| struct gl_shader_program; |
| |
| /** |
| * Detect whether an unlinked shader contains static recursion |
| * |
| * If the list of instructions is determined to contain static recursion, |
| * \c _mesa_glsl_error will be called to emit error messages for each function |
| * that is in the recursion cycle. |
| */ |
| void |
| detect_recursion_unlinked(struct _mesa_glsl_parse_state *state, |
| exec_list *instructions); |
| |
| /** |
| * Detect whether a linked shader contains static recursion |
| * |
| * If the list of instructions is determined to contain static recursion, |
| * \c link_error_printf will be called to emit error messages for each function |
| * that is in the recursion cycle. In addition, |
| * \c gl_shader_program::LinkStatus will be set to false. |
| */ |
| void |
| detect_recursion_linked(struct gl_shader_program *prog, |
| exec_list *instructions); |
| |
| /** |
| * Make a clone of each IR instruction in a list |
| * |
| * \param in List of IR instructions that are to be cloned |
| * \param out List to hold the cloned instructions |
| */ |
| void |
| clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in); |
| |
| extern void |
| _mesa_glsl_initialize_variables(exec_list *instructions, |
| struct _mesa_glsl_parse_state *state); |
| |
| extern void |
| _mesa_glsl_initialize_derived_variables(gl_shader *shader); |
| |
| extern void |
| _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state); |
| |
| extern void |
| _mesa_glsl_initialize_builtin_functions(); |
| |
| extern ir_function_signature * |
| _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state, |
| const char *name, exec_list *actual_parameters); |
| |
| extern ir_function * |
| _mesa_glsl_find_builtin_function_by_name(const char *name); |
| |
| extern gl_shader * |
| _mesa_glsl_get_builtin_function_shader(void); |
| |
| extern ir_function_signature * |
| _mesa_get_main_function_signature(gl_shader *sh); |
| |
| extern void |
| _mesa_glsl_release_functions(void); |
| |
| extern void |
| _mesa_glsl_release_builtin_functions(void); |
| |
| extern void |
| reparent_ir(exec_list *list, void *mem_ctx); |
| |
| struct glsl_symbol_table; |
| |
| extern void |
| import_prototypes(const exec_list *source, exec_list *dest, |
| struct glsl_symbol_table *symbols, void *mem_ctx); |
| |
| extern bool |
| ir_has_call(ir_instruction *ir); |
| |
| extern void |
| do_set_program_inouts(exec_list *instructions, struct gl_program *prog, |
| gl_shader_stage shader_stage); |
| |
| extern char * |
| prototype_string(const glsl_type *return_type, const char *name, |
| exec_list *parameters); |
| |
| const char * |
| mode_string(const ir_variable *var); |
| |
| /** |
| * Built-in / reserved GL variables names start with "gl_" |
| */ |
| static inline bool |
| is_gl_identifier(const char *s) |
| { |
| return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_'; |
| } |
| |
| extern "C" { |
| #endif /* __cplusplus */ |
| |
| extern void _mesa_print_ir(FILE *f, struct exec_list *instructions, |
| struct _mesa_glsl_parse_state *state); |
| |
| extern void |
| fprint_ir(FILE *f, const void *instruction); |
| |
| #ifdef __cplusplus |
| } /* extern "C" */ |
| #endif |
| |
| unsigned |
| vertices_per_prim(GLenum prim); |
| |
| #endif /* IR_H */ |