| /* |
| * Copyright 2015 Intel Corporation |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
| * IN THE SOFTWARE. |
| */ |
| |
| /** |
| * @file |
| * @brief Intel Surface Layout |
| * |
| * Header Layout |
| * ------------- |
| * The header is ordered as: |
| * - forward declarations |
| * - macros that may be overridden at compile-time for specific gens |
| * - enums and constants |
| * - structs and unions |
| * - functions |
| */ |
| |
| #ifndef ISL_H |
| #define ISL_H |
| |
| #include <assert.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| |
| #include "c99_compat.h" |
| #include "util/macros.h" |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| struct gen_device_info; |
| struct brw_image_param; |
| |
| #ifndef ISL_DEV_GEN |
| /** |
| * @brief Get the hardware generation of isl_device. |
| * |
| * You can define this as a compile-time constant in the CFLAGS. For example, |
| * `gcc -DISL_DEV_GEN(dev)=9 ...`. |
| */ |
| #define ISL_DEV_GEN(__dev) ((__dev)->info->gen) |
| #define ISL_DEV_GEN_SANITIZE(__dev) |
| #else |
| #define ISL_DEV_GEN_SANITIZE(__dev) \ |
| (assert(ISL_DEV_GEN(__dev) == (__dev)->info->gen)) |
| #endif |
| |
| #ifndef ISL_DEV_IS_G4X |
| #define ISL_DEV_IS_G4X(__dev) ((__dev)->info->is_g4x) |
| #endif |
| |
| #ifndef ISL_DEV_IS_HASWELL |
| /** |
| * @brief Get the hardware generation of isl_device. |
| * |
| * You can define this as a compile-time constant in the CFLAGS. For example, |
| * `gcc -DISL_DEV_GEN(dev)=9 ...`. |
| */ |
| #define ISL_DEV_IS_HASWELL(__dev) ((__dev)->info->is_haswell) |
| #endif |
| |
| #ifndef ISL_DEV_IS_BAYTRAIL |
| #define ISL_DEV_IS_BAYTRAIL(__dev) ((__dev)->info->is_baytrail) |
| #endif |
| |
| #ifndef ISL_DEV_USE_SEPARATE_STENCIL |
| /** |
| * You can define this as a compile-time constant in the CFLAGS. For example, |
| * `gcc -DISL_DEV_USE_SEPARATE_STENCIL(dev)=1 ...`. |
| */ |
| #define ISL_DEV_USE_SEPARATE_STENCIL(__dev) ((__dev)->use_separate_stencil) |
| #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) |
| #else |
| #define ISL_DEV_USE_SEPARATE_STENCIL_SANITIZE(__dev) \ |
| (assert(ISL_DEV_USE_SEPARATE_STENCIL(__dev) == (__dev)->use_separate_stencil)) |
| #endif |
| |
| /** |
| * Hardware enumeration SURFACE_FORMAT. |
| * |
| * For the official list, see Broadwell PRM: Volume 2b: Command Reference: |
| * Enumerations: SURFACE_FORMAT. |
| */ |
| enum isl_format { |
| ISL_FORMAT_R32G32B32A32_FLOAT = 0, |
| ISL_FORMAT_R32G32B32A32_SINT = 1, |
| ISL_FORMAT_R32G32B32A32_UINT = 2, |
| ISL_FORMAT_R32G32B32A32_UNORM = 3, |
| ISL_FORMAT_R32G32B32A32_SNORM = 4, |
| ISL_FORMAT_R64G64_FLOAT = 5, |
| ISL_FORMAT_R32G32B32X32_FLOAT = 6, |
| ISL_FORMAT_R32G32B32A32_SSCALED = 7, |
| ISL_FORMAT_R32G32B32A32_USCALED = 8, |
| ISL_FORMAT_R32G32B32A32_SFIXED = 32, |
| ISL_FORMAT_R64G64_PASSTHRU = 33, |
| ISL_FORMAT_R32G32B32_FLOAT = 64, |
| ISL_FORMAT_R32G32B32_SINT = 65, |
| ISL_FORMAT_R32G32B32_UINT = 66, |
| ISL_FORMAT_R32G32B32_UNORM = 67, |
| ISL_FORMAT_R32G32B32_SNORM = 68, |
| ISL_FORMAT_R32G32B32_SSCALED = 69, |
| ISL_FORMAT_R32G32B32_USCALED = 70, |
| ISL_FORMAT_R32G32B32_SFIXED = 80, |
| ISL_FORMAT_R16G16B16A16_UNORM = 128, |
| ISL_FORMAT_R16G16B16A16_SNORM = 129, |
| ISL_FORMAT_R16G16B16A16_SINT = 130, |
| ISL_FORMAT_R16G16B16A16_UINT = 131, |
| ISL_FORMAT_R16G16B16A16_FLOAT = 132, |
| ISL_FORMAT_R32G32_FLOAT = 133, |
| ISL_FORMAT_R32G32_SINT = 134, |
| ISL_FORMAT_R32G32_UINT = 135, |
| ISL_FORMAT_R32_FLOAT_X8X24_TYPELESS = 136, |
| ISL_FORMAT_X32_TYPELESS_G8X24_UINT = 137, |
| ISL_FORMAT_L32A32_FLOAT = 138, |
| ISL_FORMAT_R32G32_UNORM = 139, |
| ISL_FORMAT_R32G32_SNORM = 140, |
| ISL_FORMAT_R64_FLOAT = 141, |
| ISL_FORMAT_R16G16B16X16_UNORM = 142, |
| ISL_FORMAT_R16G16B16X16_FLOAT = 143, |
| ISL_FORMAT_A32X32_FLOAT = 144, |
| ISL_FORMAT_L32X32_FLOAT = 145, |
| ISL_FORMAT_I32X32_FLOAT = 146, |
| ISL_FORMAT_R16G16B16A16_SSCALED = 147, |
| ISL_FORMAT_R16G16B16A16_USCALED = 148, |
| ISL_FORMAT_R32G32_SSCALED = 149, |
| ISL_FORMAT_R32G32_USCALED = 150, |
| ISL_FORMAT_R32G32_FLOAT_LD = 151, |
| ISL_FORMAT_R32G32_SFIXED = 160, |
| ISL_FORMAT_R64_PASSTHRU = 161, |
| ISL_FORMAT_B8G8R8A8_UNORM = 192, |
| ISL_FORMAT_B8G8R8A8_UNORM_SRGB = 193, |
| ISL_FORMAT_R10G10B10A2_UNORM = 194, |
| ISL_FORMAT_R10G10B10A2_UNORM_SRGB = 195, |
| ISL_FORMAT_R10G10B10A2_UINT = 196, |
| ISL_FORMAT_R10G10B10_SNORM_A2_UNORM = 197, |
| ISL_FORMAT_R8G8B8A8_UNORM = 199, |
| ISL_FORMAT_R8G8B8A8_UNORM_SRGB = 200, |
| ISL_FORMAT_R8G8B8A8_SNORM = 201, |
| ISL_FORMAT_R8G8B8A8_SINT = 202, |
| ISL_FORMAT_R8G8B8A8_UINT = 203, |
| ISL_FORMAT_R16G16_UNORM = 204, |
| ISL_FORMAT_R16G16_SNORM = 205, |
| ISL_FORMAT_R16G16_SINT = 206, |
| ISL_FORMAT_R16G16_UINT = 207, |
| ISL_FORMAT_R16G16_FLOAT = 208, |
| ISL_FORMAT_B10G10R10A2_UNORM = 209, |
| ISL_FORMAT_B10G10R10A2_UNORM_SRGB = 210, |
| ISL_FORMAT_R11G11B10_FLOAT = 211, |
| ISL_FORMAT_R32_SINT = 214, |
| ISL_FORMAT_R32_UINT = 215, |
| ISL_FORMAT_R32_FLOAT = 216, |
| ISL_FORMAT_R24_UNORM_X8_TYPELESS = 217, |
| ISL_FORMAT_X24_TYPELESS_G8_UINT = 218, |
| ISL_FORMAT_L32_UNORM = 221, |
| ISL_FORMAT_A32_UNORM = 222, |
| ISL_FORMAT_L16A16_UNORM = 223, |
| ISL_FORMAT_I24X8_UNORM = 224, |
| ISL_FORMAT_L24X8_UNORM = 225, |
| ISL_FORMAT_A24X8_UNORM = 226, |
| ISL_FORMAT_I32_FLOAT = 227, |
| ISL_FORMAT_L32_FLOAT = 228, |
| ISL_FORMAT_A32_FLOAT = 229, |
| ISL_FORMAT_X8B8_UNORM_G8R8_SNORM = 230, |
| ISL_FORMAT_A8X8_UNORM_G8R8_SNORM = 231, |
| ISL_FORMAT_B8X8_UNORM_G8R8_SNORM = 232, |
| ISL_FORMAT_B8G8R8X8_UNORM = 233, |
| ISL_FORMAT_B8G8R8X8_UNORM_SRGB = 234, |
| ISL_FORMAT_R8G8B8X8_UNORM = 235, |
| ISL_FORMAT_R8G8B8X8_UNORM_SRGB = 236, |
| ISL_FORMAT_R9G9B9E5_SHAREDEXP = 237, |
| ISL_FORMAT_B10G10R10X2_UNORM = 238, |
| ISL_FORMAT_L16A16_FLOAT = 240, |
| ISL_FORMAT_R32_UNORM = 241, |
| ISL_FORMAT_R32_SNORM = 242, |
| ISL_FORMAT_R10G10B10X2_USCALED = 243, |
| ISL_FORMAT_R8G8B8A8_SSCALED = 244, |
| ISL_FORMAT_R8G8B8A8_USCALED = 245, |
| ISL_FORMAT_R16G16_SSCALED = 246, |
| ISL_FORMAT_R16G16_USCALED = 247, |
| ISL_FORMAT_R32_SSCALED = 248, |
| ISL_FORMAT_R32_USCALED = 249, |
| ISL_FORMAT_B5G6R5_UNORM = 256, |
| ISL_FORMAT_B5G6R5_UNORM_SRGB = 257, |
| ISL_FORMAT_B5G5R5A1_UNORM = 258, |
| ISL_FORMAT_B5G5R5A1_UNORM_SRGB = 259, |
| ISL_FORMAT_B4G4R4A4_UNORM = 260, |
| ISL_FORMAT_B4G4R4A4_UNORM_SRGB = 261, |
| ISL_FORMAT_R8G8_UNORM = 262, |
| ISL_FORMAT_R8G8_SNORM = 263, |
| ISL_FORMAT_R8G8_SINT = 264, |
| ISL_FORMAT_R8G8_UINT = 265, |
| ISL_FORMAT_R16_UNORM = 266, |
| ISL_FORMAT_R16_SNORM = 267, |
| ISL_FORMAT_R16_SINT = 268, |
| ISL_FORMAT_R16_UINT = 269, |
| ISL_FORMAT_R16_FLOAT = 270, |
| ISL_FORMAT_A8P8_UNORM_PALETTE0 = 271, |
| ISL_FORMAT_A8P8_UNORM_PALETTE1 = 272, |
| ISL_FORMAT_I16_UNORM = 273, |
| ISL_FORMAT_L16_UNORM = 274, |
| ISL_FORMAT_A16_UNORM = 275, |
| ISL_FORMAT_L8A8_UNORM = 276, |
| ISL_FORMAT_I16_FLOAT = 277, |
| ISL_FORMAT_L16_FLOAT = 278, |
| ISL_FORMAT_A16_FLOAT = 279, |
| ISL_FORMAT_L8A8_UNORM_SRGB = 280, |
| ISL_FORMAT_R5G5_SNORM_B6_UNORM = 281, |
| ISL_FORMAT_B5G5R5X1_UNORM = 282, |
| ISL_FORMAT_B5G5R5X1_UNORM_SRGB = 283, |
| ISL_FORMAT_R8G8_SSCALED = 284, |
| ISL_FORMAT_R8G8_USCALED = 285, |
| ISL_FORMAT_R16_SSCALED = 286, |
| ISL_FORMAT_R16_USCALED = 287, |
| ISL_FORMAT_P8A8_UNORM_PALETTE0 = 290, |
| ISL_FORMAT_P8A8_UNORM_PALETTE1 = 291, |
| ISL_FORMAT_A1B5G5R5_UNORM = 292, |
| ISL_FORMAT_A4B4G4R4_UNORM = 293, |
| ISL_FORMAT_L8A8_UINT = 294, |
| ISL_FORMAT_L8A8_SINT = 295, |
| ISL_FORMAT_R8_UNORM = 320, |
| ISL_FORMAT_R8_SNORM = 321, |
| ISL_FORMAT_R8_SINT = 322, |
| ISL_FORMAT_R8_UINT = 323, |
| ISL_FORMAT_A8_UNORM = 324, |
| ISL_FORMAT_I8_UNORM = 325, |
| ISL_FORMAT_L8_UNORM = 326, |
| ISL_FORMAT_P4A4_UNORM_PALETTE0 = 327, |
| ISL_FORMAT_A4P4_UNORM_PALETTE0 = 328, |
| ISL_FORMAT_R8_SSCALED = 329, |
| ISL_FORMAT_R8_USCALED = 330, |
| ISL_FORMAT_P8_UNORM_PALETTE0 = 331, |
| ISL_FORMAT_L8_UNORM_SRGB = 332, |
| ISL_FORMAT_P8_UNORM_PALETTE1 = 333, |
| ISL_FORMAT_P4A4_UNORM_PALETTE1 = 334, |
| ISL_FORMAT_A4P4_UNORM_PALETTE1 = 335, |
| ISL_FORMAT_Y8_UNORM = 336, |
| ISL_FORMAT_L8_UINT = 338, |
| ISL_FORMAT_L8_SINT = 339, |
| ISL_FORMAT_I8_UINT = 340, |
| ISL_FORMAT_I8_SINT = 341, |
| ISL_FORMAT_DXT1_RGB_SRGB = 384, |
| ISL_FORMAT_R1_UNORM = 385, |
| ISL_FORMAT_YCRCB_NORMAL = 386, |
| ISL_FORMAT_YCRCB_SWAPUVY = 387, |
| ISL_FORMAT_P2_UNORM_PALETTE0 = 388, |
| ISL_FORMAT_P2_UNORM_PALETTE1 = 389, |
| ISL_FORMAT_BC1_UNORM = 390, |
| ISL_FORMAT_BC2_UNORM = 391, |
| ISL_FORMAT_BC3_UNORM = 392, |
| ISL_FORMAT_BC4_UNORM = 393, |
| ISL_FORMAT_BC5_UNORM = 394, |
| ISL_FORMAT_BC1_UNORM_SRGB = 395, |
| ISL_FORMAT_BC2_UNORM_SRGB = 396, |
| ISL_FORMAT_BC3_UNORM_SRGB = 397, |
| ISL_FORMAT_MONO8 = 398, |
| ISL_FORMAT_YCRCB_SWAPUV = 399, |
| ISL_FORMAT_YCRCB_SWAPY = 400, |
| ISL_FORMAT_DXT1_RGB = 401, |
| ISL_FORMAT_FXT1 = 402, |
| ISL_FORMAT_R8G8B8_UNORM = 403, |
| ISL_FORMAT_R8G8B8_SNORM = 404, |
| ISL_FORMAT_R8G8B8_SSCALED = 405, |
| ISL_FORMAT_R8G8B8_USCALED = 406, |
| ISL_FORMAT_R64G64B64A64_FLOAT = 407, |
| ISL_FORMAT_R64G64B64_FLOAT = 408, |
| ISL_FORMAT_BC4_SNORM = 409, |
| ISL_FORMAT_BC5_SNORM = 410, |
| ISL_FORMAT_R16G16B16_FLOAT = 411, |
| ISL_FORMAT_R16G16B16_UNORM = 412, |
| ISL_FORMAT_R16G16B16_SNORM = 413, |
| ISL_FORMAT_R16G16B16_SSCALED = 414, |
| ISL_FORMAT_R16G16B16_USCALED = 415, |
| ISL_FORMAT_BC6H_SF16 = 417, |
| ISL_FORMAT_BC7_UNORM = 418, |
| ISL_FORMAT_BC7_UNORM_SRGB = 419, |
| ISL_FORMAT_BC6H_UF16 = 420, |
| ISL_FORMAT_PLANAR_420_8 = 421, |
| ISL_FORMAT_R8G8B8_UNORM_SRGB = 424, |
| ISL_FORMAT_ETC1_RGB8 = 425, |
| ISL_FORMAT_ETC2_RGB8 = 426, |
| ISL_FORMAT_EAC_R11 = 427, |
| ISL_FORMAT_EAC_RG11 = 428, |
| ISL_FORMAT_EAC_SIGNED_R11 = 429, |
| ISL_FORMAT_EAC_SIGNED_RG11 = 430, |
| ISL_FORMAT_ETC2_SRGB8 = 431, |
| ISL_FORMAT_R16G16B16_UINT = 432, |
| ISL_FORMAT_R16G16B16_SINT = 433, |
| ISL_FORMAT_R32_SFIXED = 434, |
| ISL_FORMAT_R10G10B10A2_SNORM = 435, |
| ISL_FORMAT_R10G10B10A2_USCALED = 436, |
| ISL_FORMAT_R10G10B10A2_SSCALED = 437, |
| ISL_FORMAT_R10G10B10A2_SINT = 438, |
| ISL_FORMAT_B10G10R10A2_SNORM = 439, |
| ISL_FORMAT_B10G10R10A2_USCALED = 440, |
| ISL_FORMAT_B10G10R10A2_SSCALED = 441, |
| ISL_FORMAT_B10G10R10A2_UINT = 442, |
| ISL_FORMAT_B10G10R10A2_SINT = 443, |
| ISL_FORMAT_R64G64B64A64_PASSTHRU = 444, |
| ISL_FORMAT_R64G64B64_PASSTHRU = 445, |
| ISL_FORMAT_ETC2_RGB8_PTA = 448, |
| ISL_FORMAT_ETC2_SRGB8_PTA = 449, |
| ISL_FORMAT_ETC2_EAC_RGBA8 = 450, |
| ISL_FORMAT_ETC2_EAC_SRGB8_A8 = 451, |
| ISL_FORMAT_R8G8B8_UINT = 456, |
| ISL_FORMAT_R8G8B8_SINT = 457, |
| ISL_FORMAT_RAW = 511, |
| ISL_FORMAT_ASTC_LDR_2D_4X4_U8SRGB = 512, |
| ISL_FORMAT_ASTC_LDR_2D_5X4_U8SRGB = 520, |
| ISL_FORMAT_ASTC_LDR_2D_5X5_U8SRGB = 521, |
| ISL_FORMAT_ASTC_LDR_2D_6X5_U8SRGB = 529, |
| ISL_FORMAT_ASTC_LDR_2D_6X6_U8SRGB = 530, |
| ISL_FORMAT_ASTC_LDR_2D_8X5_U8SRGB = 545, |
| ISL_FORMAT_ASTC_LDR_2D_8X6_U8SRGB = 546, |
| ISL_FORMAT_ASTC_LDR_2D_8X8_U8SRGB = 548, |
| ISL_FORMAT_ASTC_LDR_2D_10X5_U8SRGB = 561, |
| ISL_FORMAT_ASTC_LDR_2D_10X6_U8SRGB = 562, |
| ISL_FORMAT_ASTC_LDR_2D_10X8_U8SRGB = 564, |
| ISL_FORMAT_ASTC_LDR_2D_10X10_U8SRGB = 566, |
| ISL_FORMAT_ASTC_LDR_2D_12X10_U8SRGB = 574, |
| ISL_FORMAT_ASTC_LDR_2D_12X12_U8SRGB = 575, |
| ISL_FORMAT_ASTC_LDR_2D_4X4_FLT16 = 576, |
| ISL_FORMAT_ASTC_LDR_2D_5X4_FLT16 = 584, |
| ISL_FORMAT_ASTC_LDR_2D_5X5_FLT16 = 585, |
| ISL_FORMAT_ASTC_LDR_2D_6X5_FLT16 = 593, |
| ISL_FORMAT_ASTC_LDR_2D_6X6_FLT16 = 594, |
| ISL_FORMAT_ASTC_LDR_2D_8X5_FLT16 = 609, |
| ISL_FORMAT_ASTC_LDR_2D_8X6_FLT16 = 610, |
| ISL_FORMAT_ASTC_LDR_2D_8X8_FLT16 = 612, |
| ISL_FORMAT_ASTC_LDR_2D_10X5_FLT16 = 625, |
| ISL_FORMAT_ASTC_LDR_2D_10X6_FLT16 = 626, |
| ISL_FORMAT_ASTC_LDR_2D_10X8_FLT16 = 628, |
| ISL_FORMAT_ASTC_LDR_2D_10X10_FLT16 = 630, |
| ISL_FORMAT_ASTC_LDR_2D_12X10_FLT16 = 638, |
| ISL_FORMAT_ASTC_LDR_2D_12X12_FLT16 = 639, |
| ISL_FORMAT_ASTC_HDR_2D_4X4_FLT16 = 832, |
| ISL_FORMAT_ASTC_HDR_2D_5X4_FLT16 = 840, |
| ISL_FORMAT_ASTC_HDR_2D_5X5_FLT16 = 841, |
| ISL_FORMAT_ASTC_HDR_2D_6X5_FLT16 = 849, |
| ISL_FORMAT_ASTC_HDR_2D_6X6_FLT16 = 850, |
| ISL_FORMAT_ASTC_HDR_2D_8X5_FLT16 = 865, |
| ISL_FORMAT_ASTC_HDR_2D_8X6_FLT16 = 866, |
| ISL_FORMAT_ASTC_HDR_2D_8X8_FLT16 = 868, |
| ISL_FORMAT_ASTC_HDR_2D_10X5_FLT16 = 881, |
| ISL_FORMAT_ASTC_HDR_2D_10X6_FLT16 = 882, |
| ISL_FORMAT_ASTC_HDR_2D_10X8_FLT16 = 884, |
| ISL_FORMAT_ASTC_HDR_2D_10X10_FLT16 = 886, |
| ISL_FORMAT_ASTC_HDR_2D_12X10_FLT16 = 894, |
| ISL_FORMAT_ASTC_HDR_2D_12X12_FLT16 = 895, |
| |
| /* The formats that follow are internal to ISL and as such don't have an |
| * explicit number. We'll just let the C compiler assign it for us. Any |
| * actual hardware formats *must* come before these in the list. |
| */ |
| |
| /* Formats for auxiliary surfaces */ |
| ISL_FORMAT_HIZ, |
| ISL_FORMAT_MCS_2X, |
| ISL_FORMAT_MCS_4X, |
| ISL_FORMAT_MCS_8X, |
| ISL_FORMAT_MCS_16X, |
| ISL_FORMAT_GEN7_CCS_32BPP_X, |
| ISL_FORMAT_GEN7_CCS_64BPP_X, |
| ISL_FORMAT_GEN7_CCS_128BPP_X, |
| ISL_FORMAT_GEN7_CCS_32BPP_Y, |
| ISL_FORMAT_GEN7_CCS_64BPP_Y, |
| ISL_FORMAT_GEN7_CCS_128BPP_Y, |
| ISL_FORMAT_GEN9_CCS_32BPP, |
| ISL_FORMAT_GEN9_CCS_64BPP, |
| ISL_FORMAT_GEN9_CCS_128BPP, |
| |
| /* Hardware doesn't understand this out-of-band value */ |
| ISL_FORMAT_UNSUPPORTED = UINT16_MAX, |
| }; |
| |
| /** |
| * Numerical base type for channels of isl_format. |
| */ |
| enum isl_base_type { |
| ISL_VOID, |
| ISL_RAW, |
| ISL_UNORM, |
| ISL_SNORM, |
| ISL_UFLOAT, |
| ISL_SFLOAT, |
| ISL_UFIXED, |
| ISL_SFIXED, |
| ISL_UINT, |
| ISL_SINT, |
| ISL_USCALED, |
| ISL_SSCALED, |
| }; |
| |
| /** |
| * Colorspace of isl_format. |
| */ |
| enum isl_colorspace { |
| ISL_COLORSPACE_NONE = 0, |
| ISL_COLORSPACE_LINEAR, |
| ISL_COLORSPACE_SRGB, |
| ISL_COLORSPACE_YUV, |
| }; |
| |
| /** |
| * Texture compression mode of isl_format. |
| */ |
| enum isl_txc { |
| ISL_TXC_NONE = 0, |
| ISL_TXC_DXT1, |
| ISL_TXC_DXT3, |
| ISL_TXC_DXT5, |
| ISL_TXC_FXT1, |
| ISL_TXC_RGTC1, |
| ISL_TXC_RGTC2, |
| ISL_TXC_BPTC, |
| ISL_TXC_ETC1, |
| ISL_TXC_ETC2, |
| ISL_TXC_ASTC, |
| |
| /* Used for auxiliary surface formats */ |
| ISL_TXC_HIZ, |
| ISL_TXC_MCS, |
| ISL_TXC_CCS, |
| }; |
| |
| /** |
| * @brief Hardware tile mode |
| * |
| * WARNING: These values differ from the hardware enum values, which are |
| * unstable across hardware generations. |
| * |
| * Note that legacy Y tiling is ISL_TILING_Y0 instead of ISL_TILING_Y, to |
| * clearly distinguish it from Yf and Ys. |
| */ |
| enum isl_tiling { |
| ISL_TILING_LINEAR = 0, |
| ISL_TILING_W, |
| ISL_TILING_X, |
| ISL_TILING_Y0, /**< Legacy Y tiling */ |
| ISL_TILING_Yf, /**< Standard 4K tiling. The 'f' means "four". */ |
| ISL_TILING_Ys, /**< Standard 64K tiling. The 's' means "sixty-four". */ |
| ISL_TILING_HIZ, /**< Tiling format for HiZ surfaces */ |
| ISL_TILING_CCS, /**< Tiling format for CCS surfaces */ |
| }; |
| |
| /** |
| * @defgroup Tiling Flags |
| * @{ |
| */ |
| typedef uint32_t isl_tiling_flags_t; |
| #define ISL_TILING_LINEAR_BIT (1u << ISL_TILING_LINEAR) |
| #define ISL_TILING_W_BIT (1u << ISL_TILING_W) |
| #define ISL_TILING_X_BIT (1u << ISL_TILING_X) |
| #define ISL_TILING_Y0_BIT (1u << ISL_TILING_Y0) |
| #define ISL_TILING_Yf_BIT (1u << ISL_TILING_Yf) |
| #define ISL_TILING_Ys_BIT (1u << ISL_TILING_Ys) |
| #define ISL_TILING_HIZ_BIT (1u << ISL_TILING_HIZ) |
| #define ISL_TILING_CCS_BIT (1u << ISL_TILING_CCS) |
| #define ISL_TILING_ANY_MASK (~0u) |
| #define ISL_TILING_NON_LINEAR_MASK (~ISL_TILING_LINEAR_BIT) |
| |
| /** Any Y tiling, including legacy Y tiling. */ |
| #define ISL_TILING_ANY_Y_MASK (ISL_TILING_Y0_BIT | \ |
| ISL_TILING_Yf_BIT | \ |
| ISL_TILING_Ys_BIT) |
| |
| /** The Skylake BSpec refers to Yf and Ys as "standard tiling formats". */ |
| #define ISL_TILING_STD_Y_MASK (ISL_TILING_Yf_BIT | \ |
| ISL_TILING_Ys_BIT) |
| /** @} */ |
| |
| /** |
| * @brief Logical dimension of surface. |
| * |
| * Note: There is no dimension for cube map surfaces. ISL interprets cube maps |
| * as 2D array surfaces. |
| */ |
| enum isl_surf_dim { |
| ISL_SURF_DIM_1D, |
| ISL_SURF_DIM_2D, |
| ISL_SURF_DIM_3D, |
| }; |
| |
| /** |
| * @brief Physical layout of the surface's dimensions. |
| */ |
| enum isl_dim_layout { |
| /** |
| * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section |
| * 6.17.3: 2D Surfaces. |
| * |
| * On many gens, 1D surfaces share the same layout as 2D surfaces. From |
| * the G35 PRM >> Volume 1: Graphics Core >> Section 6.17.2: 1D Surfaces: |
| * |
| * One-dimensional surfaces are identical to 2D surfaces with height of |
| * one. |
| * |
| * @invariant isl_surf::phys_level0_sa::depth == 1 |
| */ |
| ISL_DIM_LAYOUT_GEN4_2D, |
| |
| /** |
| * For details, see the G35 PRM >> Volume 1: Graphics Core >> Section |
| * 6.17.5: 3D Surfaces. |
| * |
| * @invariant isl_surf::phys_level0_sa::array_len == 1 |
| */ |
| ISL_DIM_LAYOUT_GEN4_3D, |
| |
| /** |
| * Special layout used for HiZ and stencil on Sandy Bridge to work around |
| * the hardware's lack of mipmap support. On gen6, HiZ and stencil buffers |
| * work the same as on gen7+ except that they don't technically support |
| * mipmapping. That does not, however, stop us from doing it. As far as |
| * Sandy Bridge hardware is concerned, HiZ and stencil always operates on a |
| * single miplevel 2D (possibly array) image. The dimensions of that image |
| * are NOT minified. |
| * |
| * In order to implement HiZ and stencil on Sandy Bridge, we create one |
| * full-sized 2D (possibly array) image for every LOD with every image |
| * aligned to a page boundary. When the surface is used with the stencil |
| * or HiZ hardware, we manually offset to the image for the given LOD. |
| * |
| * As a memory saving measure, we pretend that the width of each miplevel |
| * is minified and we place LOD1 and above below LOD0 but horizontally |
| * adjacent to each other. When considered as full-sized images, LOD1 and |
| * above technically overlap. However, since we only write to part of that |
| * image, the hardware will never notice the overlap. |
| * |
| * This layout looks something like this: |
| * |
| * +---------+ |
| * | | |
| * | | |
| * +---------+ |
| * | | |
| * | | |
| * +---------+ |
| * |
| * +----+ +-+ . |
| * | | +-+ |
| * +----+ |
| * |
| * +----+ +-+ . |
| * | | +-+ |
| * +----+ |
| */ |
| ISL_DIM_LAYOUT_GEN6_STENCIL_HIZ, |
| |
| /** |
| * For details, see the Skylake BSpec >> Memory Views >> Common Surface |
| * Formats >> Surface Layout and Tiling >> » 1D Surfaces. |
| */ |
| ISL_DIM_LAYOUT_GEN9_1D, |
| }; |
| |
| enum isl_aux_usage { |
| /** No Auxiliary surface is used */ |
| ISL_AUX_USAGE_NONE, |
| |
| /** The primary surface is a depth surface and the auxiliary surface is HiZ */ |
| ISL_AUX_USAGE_HIZ, |
| |
| /** The auxiliary surface is an MCS |
| * |
| * @invariant isl_surf::samples > 1 |
| */ |
| ISL_AUX_USAGE_MCS, |
| |
| /** The auxiliary surface is a fast-clear-only compression surface |
| * |
| * @invariant isl_surf::samples == 1 |
| */ |
| ISL_AUX_USAGE_CCS_D, |
| |
| /** The auxiliary surface provides full lossless color compression |
| * |
| * @invariant isl_surf::samples == 1 |
| */ |
| ISL_AUX_USAGE_CCS_E, |
| }; |
| |
| /** |
| * Enum for keeping track of the state an auxiliary compressed surface. |
| * |
| * For any given auxiliary surface compression format (HiZ, CCS, or MCS), any |
| * given slice (lod + array layer) can be in one of the six states described |
| * by this enum. Draw and resolve operations may cause the slice to change |
| * from one state to another. The six valid states are: |
| * |
| * 1) Clear: In this state, each block in the auxiliary surface contains a |
| * magic value that indicates that the block is in the clear state. If |
| * a block is in the clear state, it's values in the primary surface are |
| * ignored and the color of the samples in the block is taken either the |
| * RENDER_SURFACE_STATE packet for color or 3DSTATE_CLEAR_PARAMS for |
| * depth. Since neither the primary surface nor the auxiliary surface |
| * contains the clear value, the surface can be cleared to a different |
| * color by simply changing the clear color without modifying either |
| * surface. |
| * |
| * 2) Partial Clear: In this state, each block in the auxiliary surface |
| * contains either the magic clear or pass-through value. See Clear and |
| * Pass-through for more details. |
| * |
| * 3) Compressed w/ Clear: In this state, neither the auxiliary surface |
| * nor the primary surface has a complete representation of the data. |
| * Instead, both surfaces must be used together or else rendering |
| * corruption may occur. Depending on the auxiliary compression format |
| * and the data, any given block in the primary surface may contain all, |
| * some, or none of the data required to reconstruct the actual sample |
| * values. Blocks may also be in the clear state (see Clear) and have |
| * their value taken from outside the surface. |
| * |
| * 4) Compressed w/o Clear: This state is identical to the state above |
| * except that no blocks are in the clear state. In this state, all of |
| * the data required to reconstruct the final sample values is contained |
| * in the auxiliary and primary surface and the clear value is not |
| * considered. |
| * |
| * 5) Resolved: In this state, the primary surface contains 100% of the |
| * data. The auxiliary surface is also valid so the surface can be |
| * validly used with or without aux enabled. The auxiliary surface may, |
| * however, contain non-trivial data and any update to the primary |
| * surface with aux disabled will cause the two to get out of sync. |
| * |
| * 6) Pass-through: In this state, the primary surface contains 100% of the |
| * data and every block in the auxiliary surface contains a magic value |
| * which indicates that the auxiliary surface should be ignored and the |
| * only the primary surface should be considered. Updating the primary |
| * surface without aux works fine and can be done repeatedly in this |
| * mode. Writing to a surface in pass-through mode with aux enabled may |
| * cause the auxiliary buffer to contain non-trivial data and no longer |
| * be in the pass-through state. |
| * |
| * 7) Aux Invalid: In this state, the primary surface contains 100% of the |
| * data and the auxiliary surface is completely bogus. Any attempt to |
| * use the auxiliary surface is liable to result in rendering |
| * corruption. The only thing that one can do to re-enable aux once |
| * this state is reached is to use an ambiguate pass to transition into |
| * the pass-through state. |
| * |
| * Drawing with or without aux enabled may implicitly cause the surface to |
| * transition between these states. There are also four types of auxiliary |
| * compression operations which cause an explicit transition: |
| * |
| * 1) Fast Clear: This operation writes the magic "clear" value to the |
| * auxiliary surface. This operation will safely transition any slice |
| * of a surface from any state to the clear state so long as the entire |
| * slice is fast cleared at once. A fast clear that only covers part of |
| * a slice of a surface is called a partial fast clear. |
| * |
| * 2) Full Resolve: This operation combines the auxiliary surface data |
| * with the primary surface data and writes the result to the primary. |
| * For HiZ, the docs call this a depth resolve. For CCS, the hardware |
| * full resolve operation does both a full resolve and an ambiguate so |
| * it actually takes you all the way to the pass-through state. |
| * |
| * 3) Partial Resolve: This operation considers blocks which are in the |
| * "clear" state and writes the clear value directly into the primary or |
| * auxiliary surface. Once this operation completes, the surface is |
| * still compressed but no longer references the clear color. This |
| * operation is only available for CCS. |
| * |
| * 4) Ambiguate: This operation throws away the current auxiliary data and |
| * replaces it with the magic pass-through value. If an ambiguate |
| * operation is performed when the primary surface does not contain 100% |
| * of the data, data will be lost. This operation is only implemented |
| * in hardware for depth where it is called a HiZ resolve. |
| * |
| * Not all operations are valid or useful in all states. The diagram below |
| * contains a complete description of the states and all valid and useful |
| * transitions except clear. |
| * |
| * Draw w/ Aux |
| * +----------+ |
| * | | |
| * | +-------------+ Draw w/ Aux +-------------+ |
| * +------>| Compressed |<-------------------| Clear | |
| * | w/ Clear |----->----+ | | |
| * +-------------+ | +-------------+ |
| * | /|\ | | | |
| * | | | | | |
| * | | +------<-----+ | Draw w/ |
| * | | | | Clear Only |
| * | | Full | | +----------+ |
| * Partial | | Resolve | \|/ | | |
| * Resolve | | | +-------------+ | |
| * | | | | Partial |<------+ |
| * | | | | Clear |<----------+ |
| * | | | +-------------+ | |
| * | | | | | |
| * | | +------>---------+ Full | |
| * | | | Resolve | |
| * Draw w/ aux | | Partial Fast Clear | | |
| * +----------+ | +--------------------------+ | | |
| * | | \|/ | \|/ | |
| * | +-------------+ Full Resolve +-------------+ | |
| * +------>| Compressed |------------------->| Resolved | | |
| * | w/o Clear |<-------------------| | | |
| * +-------------+ Draw w/ Aux +-------------+ | |
| * /|\ | | | |
| * | Draw | | Draw | |
| * | w/ Aux | | w/o Aux | |
| * | Ambiguate | | | |
| * | +--------------------------+ | | |
| * Draw w/o Aux | | | Draw w/o Aux | |
| * +----------+ | | | +----------+ | |
| * | | | \|/ \|/ | | | |
| * | +-------------+ Ambiguate +-------------+ | | |
| * +------>| Pass- |<-------------------| Aux |<------+ | |
| * +------>| through | | Invalid | | |
| * | +-------------+ +-------------+ | |
| * | | | | |
| * +----------+ +-----------------------------------------------------+ |
| * Draw w/ Partial Fast Clear |
| * Clear Only |
| * |
| * |
| * While the above general theory applies to all forms of auxiliary |
| * compression on Intel hardware, not all states and operations are available |
| * on all compression types. However, each of the auxiliary states and |
| * operations can be fairly easily mapped onto the above diagram: |
| * |
| * HiZ: Hierarchical depth compression is capable of being in any of the |
| * states above. Hardware provides three HiZ operations: "Depth |
| * Clear", "Depth Resolve", and "HiZ Resolve" which map to "Fast |
| * Clear", "Full Resolve", and "Ambiguate" respectively. The |
| * hardware provides no HiZ partial resolve operation so the only way |
| * to get into the "Compressed w/o Clear" state is to render with HiZ |
| * when the surface is in the resolved or pass-through states. |
| * |
| * MCS: Multisample compression is technically capable of being in any of |
| * the states above except that most of them aren't useful. Both the |
| * render engine and the sampler support MCS compression and, apart |
| * from clear color, MCS is format-unaware so we leave the surface |
| * compressed 100% of the time. The hardware provides no MCS |
| * operations. |
| * |
| * CCS_D: Single-sample fast-clears (also called CCS_D in ISL) are one of |
| * the simplest forms of compression since they don't do anything |
| * beyond clear color tracking. They really only support three of |
| * the six states: Clear, Partial Clear, and Pass-through. The |
| * only CCS_D operation is "Resolve" which maps to a full resolve |
| * followed by an ambiguate. |
| * |
| * CCS_E: Single-sample render target compression (also called CCS_E in ISL) |
| * is capable of being in almost all of the above states. THe only |
| * exception is that it does not have separate resolved and pass- |
| * through states. Instead, the CCS_E full resolve operation does |
| * both a resolve and an ambiguate so it goes directly into the |
| * pass-through state. CCS_E also provides fast clear and partial |
| * resolve operations which work as described above. |
| * |
| * While it is technically possible to perform a CCS_E ambiguate, it |
| * is not provided by Sky Lake hardware so we choose to avoid the aux |
| * invalid state. If the aux invalid state were determined to be |
| * useful, a CCS ambiguate could be done by carefully rendering to |
| * the CCS and filling it with zeros. |
| */ |
| enum isl_aux_state { |
| ISL_AUX_STATE_CLEAR = 0, |
| ISL_AUX_STATE_PARTIAL_CLEAR, |
| ISL_AUX_STATE_COMPRESSED_CLEAR, |
| ISL_AUX_STATE_COMPRESSED_NO_CLEAR, |
| ISL_AUX_STATE_RESOLVED, |
| ISL_AUX_STATE_PASS_THROUGH, |
| ISL_AUX_STATE_AUX_INVALID, |
| }; |
| |
| /* TODO(chadv): Explain */ |
| enum isl_array_pitch_span { |
| ISL_ARRAY_PITCH_SPAN_FULL, |
| ISL_ARRAY_PITCH_SPAN_COMPACT, |
| }; |
| |
| /** |
| * @defgroup Surface Usage |
| * @{ |
| */ |
| typedef uint64_t isl_surf_usage_flags_t; |
| #define ISL_SURF_USAGE_RENDER_TARGET_BIT (1u << 0) |
| #define ISL_SURF_USAGE_DEPTH_BIT (1u << 1) |
| #define ISL_SURF_USAGE_STENCIL_BIT (1u << 2) |
| #define ISL_SURF_USAGE_TEXTURE_BIT (1u << 3) |
| #define ISL_SURF_USAGE_CUBE_BIT (1u << 4) |
| #define ISL_SURF_USAGE_DISABLE_AUX_BIT (1u << 5) |
| #define ISL_SURF_USAGE_DISPLAY_BIT (1u << 6) |
| #define ISL_SURF_USAGE_DISPLAY_ROTATE_90_BIT (1u << 7) |
| #define ISL_SURF_USAGE_DISPLAY_ROTATE_180_BIT (1u << 8) |
| #define ISL_SURF_USAGE_DISPLAY_ROTATE_270_BIT (1u << 9) |
| #define ISL_SURF_USAGE_DISPLAY_FLIP_X_BIT (1u << 10) |
| #define ISL_SURF_USAGE_DISPLAY_FLIP_Y_BIT (1u << 11) |
| #define ISL_SURF_USAGE_STORAGE_BIT (1u << 12) |
| #define ISL_SURF_USAGE_HIZ_BIT (1u << 13) |
| #define ISL_SURF_USAGE_MCS_BIT (1u << 14) |
| #define ISL_SURF_USAGE_CCS_BIT (1u << 15) |
| /** @} */ |
| |
| /** |
| * @defgroup Channel Mask |
| * |
| * These #define values are chosen to match the values of |
| * RENDER_SURFACE_STATE::Color Buffer Component Write Disables |
| * |
| * @{ |
| */ |
| typedef uint8_t isl_channel_mask_t; |
| #define ISL_CHANNEL_BLUE_BIT (1 << 0) |
| #define ISL_CHANNEL_GREEN_BIT (1 << 1) |
| #define ISL_CHANNEL_RED_BIT (1 << 2) |
| #define ISL_CHANNEL_ALPHA_BIT (1 << 3) |
| /** @} */ |
| |
| /** |
| * @brief A channel select (also known as texture swizzle) value |
| */ |
| enum isl_channel_select { |
| ISL_CHANNEL_SELECT_ZERO = 0, |
| ISL_CHANNEL_SELECT_ONE = 1, |
| ISL_CHANNEL_SELECT_RED = 4, |
| ISL_CHANNEL_SELECT_GREEN = 5, |
| ISL_CHANNEL_SELECT_BLUE = 6, |
| ISL_CHANNEL_SELECT_ALPHA = 7, |
| }; |
| |
| /** |
| * Identical to VkSampleCountFlagBits. |
| */ |
| enum isl_sample_count { |
| ISL_SAMPLE_COUNT_1_BIT = 1u, |
| ISL_SAMPLE_COUNT_2_BIT = 2u, |
| ISL_SAMPLE_COUNT_4_BIT = 4u, |
| ISL_SAMPLE_COUNT_8_BIT = 8u, |
| ISL_SAMPLE_COUNT_16_BIT = 16u, |
| }; |
| typedef uint32_t isl_sample_count_mask_t; |
| |
| /** |
| * @brief Multisample Format |
| */ |
| enum isl_msaa_layout { |
| /** |
| * @brief Suface is single-sampled. |
| */ |
| ISL_MSAA_LAYOUT_NONE, |
| |
| /** |
| * @brief [SNB+] Interleaved Multisample Format |
| * |
| * In this format, multiple samples are interleaved into each cacheline. |
| * In other words, the sample index is swizzled into the low 6 bits of the |
| * surface's virtual address space. |
| * |
| * For example, suppose the surface is legacy Y tiled, is 4x multisampled, |
| * and its pixel format is 32bpp. Then the first cacheline is arranged |
| * thus: |
| * |
| * (0,0,0) (0,1,0) (0,0,1) (1,0,1) |
| * (1,0,0) (1,1,0) (0,1,1) (1,1,1) |
| * |
| * (0,0,2) (1,0,2) (0,0,3) (1,0,3) |
| * (0,1,2) (1,1,2) (0,1,3) (1,1,3) |
| * |
| * The hardware docs refer to this format with multiple terms. In |
| * Sandybridge, this is the only multisample format; so no term is used. |
| * The Ivybridge docs refer to surfaces in this format as IMS (Interleaved |
| * Multisample Surface). Later hardware docs additionally refer to this |
| * format as MSFMT_DEPTH_STENCIL (because the format is deprecated for |
| * color surfaces). |
| * |
| * See the Sandybridge PRM, Volume 4, Part 1, Section 2.7 "Multisampled |
| * Surface Behavior". |
| * |
| * See the Ivybridge PRM, Volume 1, Part 1, Section 6.18.4.1 "Interleaved |
| * Multisampled Surfaces". |
| */ |
| ISL_MSAA_LAYOUT_INTERLEAVED, |
| |
| /** |
| * @brief [IVB+] Array Multisample Format |
| * |
| * In this format, the surface's physical layout resembles that of a |
| * 2D array surface. |
| * |
| * Suppose the multisample surface's logical extent is (w, h) and its |
| * sample count is N. Then surface's physical extent is the same as |
| * a singlesample 2D surface whose logical extent is (w, h) and array |
| * length is N. Array slice `i` contains the pixel values for sample |
| * index `i`. |
| * |
| * The Ivybridge docs refer to surfaces in this format as UMS |
| * (Uncompressed Multsample Layout) and CMS (Compressed Multisample |
| * Surface). The Broadwell docs additionally refer to this format as |
| * MSFMT_MSS (MSS=Multisample Surface Storage). |
| * |
| * See the Broadwell PRM, Volume 5 "Memory Views", Section "Uncompressed |
| * Multisample Surfaces". |
| * |
| * See the Broadwell PRM, Volume 5 "Memory Views", Section "Compressed |
| * Multisample Surfaces". |
| */ |
| ISL_MSAA_LAYOUT_ARRAY, |
| }; |
| |
| |
| struct isl_device { |
| const struct gen_device_info *info; |
| bool use_separate_stencil; |
| bool has_bit6_swizzling; |
| |
| /** |
| * Describes the layout of a RENDER_SURFACE_STATE structure for the |
| * current gen. |
| */ |
| struct { |
| uint8_t size; |
| uint8_t align; |
| uint8_t addr_offset; |
| uint8_t aux_addr_offset; |
| |
| /* Rounded up to the nearest dword to simplify GPU memcpy operations. */ |
| uint8_t clear_value_size; |
| uint8_t clear_value_offset; |
| } ss; |
| |
| /** |
| * Describes the layout of the depth/stencil/hiz commands as emitted by |
| * isl_emit_depth_stencil_hiz. |
| */ |
| struct { |
| uint8_t size; |
| uint8_t depth_offset; |
| uint8_t stencil_offset; |
| uint8_t hiz_offset; |
| } ds; |
| }; |
| |
| struct isl_extent2d { |
| union { uint32_t w, width; }; |
| union { uint32_t h, height; }; |
| }; |
| |
| struct isl_extent3d { |
| union { uint32_t w, width; }; |
| union { uint32_t h, height; }; |
| union { uint32_t d, depth; }; |
| }; |
| |
| struct isl_extent4d { |
| union { uint32_t w, width; }; |
| union { uint32_t h, height; }; |
| union { uint32_t d, depth; }; |
| union { uint32_t a, array_len; }; |
| }; |
| |
| struct isl_channel_layout { |
| enum isl_base_type type; |
| uint8_t bits; /**< Size in bits */ |
| }; |
| |
| /** |
| * Each format has 3D block extent (width, height, depth). The block extent of |
| * compressed formats is that of the format's compression block. For example, |
| * the block extent of ISL_FORMAT_ETC2_RGB8 is (w=4, h=4, d=1). The block |
| * extent of uncompressed pixel formats, such as ISL_FORMAT_R8G8B8A8_UNORM, is |
| * is (w=1, h=1, d=1). |
| */ |
| struct isl_format_layout { |
| enum isl_format format; |
| const char *name; |
| |
| uint16_t bpb; /**< Bits per block */ |
| uint8_t bw; /**< Block width, in pixels */ |
| uint8_t bh; /**< Block height, in pixels */ |
| uint8_t bd; /**< Block depth, in pixels */ |
| |
| union { |
| struct { |
| struct isl_channel_layout r; /**< Red channel */ |
| struct isl_channel_layout g; /**< Green channel */ |
| struct isl_channel_layout b; /**< Blue channel */ |
| struct isl_channel_layout a; /**< Alpha channel */ |
| struct isl_channel_layout l; /**< Luminance channel */ |
| struct isl_channel_layout i; /**< Intensity channel */ |
| struct isl_channel_layout p; /**< Palette channel */ |
| } channels; |
| struct isl_channel_layout channels_array[7]; |
| }; |
| |
| enum isl_colorspace colorspace; |
| enum isl_txc txc; |
| }; |
| |
| struct isl_tile_info { |
| enum isl_tiling tiling; |
| |
| /* The size (in bits per block) of a single surface element |
| * |
| * For surfaces with power-of-two formats, this is the same as |
| * isl_format_layout::bpb. For non-power-of-two formats it may be smaller. |
| * The logical_extent_el field is in terms of elements of this size. |
| * |
| * For example, consider ISL_FORMAT_R32G32B32_FLOAT for which |
| * isl_format_layout::bpb is 96 (a non-power-of-two). In this case, none |
| * of the tiling formats can actually hold an integer number of 96-bit |
| * surface elements so isl_tiling_get_info returns an isl_tile_info for a |
| * 32-bit element size. It is the responsibility of the caller to |
| * recognize that 32 != 96 ad adjust accordingly. For instance, to compute |
| * the width of a surface in tiles, you would do: |
| * |
| * width_tl = DIV_ROUND_UP(width_el * (format_bpb / tile_info.format_bpb), |
| * tile_info.logical_extent_el.width); |
| */ |
| uint32_t format_bpb; |
| |
| /** The logical size of the tile in units of format_bpb size elements |
| * |
| * This field determines how a given surface is cut up into tiles. It is |
| * used to compute the size of a surface in tiles and can be used to |
| * determine the location of the tile containing any given surface element. |
| * The exact value of this field depends heavily on the bits-per-block of |
| * the format being used. |
| */ |
| struct isl_extent2d logical_extent_el; |
| |
| /** The physical size of the tile in bytes and rows of bytes |
| * |
| * This field determines how the tiles of a surface are physically layed |
| * out in memory. The logical and physical tile extent are frequently the |
| * same but this is not always the case. For instance, a W-tile (which is |
| * always used with ISL_FORMAT_R8) has a logical size of 64el x 64el but |
| * its physical size is 128B x 32rows, the same as a Y-tile. |
| * |
| * @see isl_surf::row_pitch |
| */ |
| struct isl_extent2d phys_extent_B; |
| }; |
| |
| /** |
| * Metadata about a DRM format modifier. |
| */ |
| struct isl_drm_modifier_info { |
| uint64_t modifier; |
| |
| /** Text name of the modifier */ |
| const char *name; |
| |
| /** ISL tiling implied by this modifier */ |
| enum isl_tiling tiling; |
| |
| /** ISL aux usage implied by this modifier */ |
| enum isl_aux_usage aux_usage; |
| |
| /** Whether or not this modifier supports clear color */ |
| bool supports_clear_color; |
| }; |
| |
| /** |
| * @brief Input to surface initialization |
| * |
| * @invariant width >= 1 |
| * @invariant height >= 1 |
| * @invariant depth >= 1 |
| * @invariant levels >= 1 |
| * @invariant samples >= 1 |
| * @invariant array_len >= 1 |
| * |
| * @invariant if 1D then height == 1 and depth == 1 and samples == 1 |
| * @invariant if 2D then depth == 1 |
| * @invariant if 3D then array_len == 1 and samples == 1 |
| */ |
| struct isl_surf_init_info { |
| enum isl_surf_dim dim; |
| enum isl_format format; |
| |
| uint32_t width; |
| uint32_t height; |
| uint32_t depth; |
| uint32_t levels; |
| uint32_t array_len; |
| uint32_t samples; |
| |
| /** Lower bound for isl_surf::alignment, in bytes. */ |
| uint32_t min_alignment; |
| |
| /** |
| * Exact value for isl_surf::row_pitch. Ignored if zero. isl_surf_init() |
| * will fail if this is misaligned or out of bounds. |
| */ |
| uint32_t row_pitch; |
| |
| isl_surf_usage_flags_t usage; |
| |
| /** Flags that alter how ISL selects isl_surf::tiling. */ |
| isl_tiling_flags_t tiling_flags; |
| }; |
| |
| struct isl_surf { |
| enum isl_surf_dim dim; |
| enum isl_dim_layout dim_layout; |
| enum isl_msaa_layout msaa_layout; |
| enum isl_tiling tiling; |
| enum isl_format format; |
| |
| /** |
| * Alignment of the upper-left sample of each subimage, in units of surface |
| * elements. |
| */ |
| struct isl_extent3d image_alignment_el; |
| |
| /** |
| * Logical extent of the surface's base level, in units of pixels. This is |
| * identical to the extent defined in isl_surf_init_info. |
| */ |
| struct isl_extent4d logical_level0_px; |
| |
| /** |
| * Physical extent of the surface's base level, in units of physical |
| * surface samples and aligned to the format's compression block. |
| * |
| * Consider isl_dim_layout as an operator that transforms a logical surface |
| * layout to a physical surface layout. Then |
| * |
| * logical_layout := (isl_surf::dim, isl_surf::logical_level0_px) |
| * isl_surf::phys_level0_sa := isl_surf::dim_layout * logical_layout |
| */ |
| struct isl_extent4d phys_level0_sa; |
| |
| uint32_t levels; |
| uint32_t samples; |
| |
| /** Total size of the surface, in bytes. */ |
| uint64_t size; |
| |
| /** Required alignment for the surface's base address. */ |
| uint32_t alignment; |
| |
| /** |
| * The interpretation of this field depends on the value of |
| * isl_tile_info::physical_extent_B. In particular, the width of the |
| * surface in tiles is row_pitch / isl_tile_info::physical_extent_B.width |
| * and the distance in bytes between vertically adjacent tiles in the image |
| * is given by row_pitch * isl_tile_info::physical_extent_B.height. |
| * |
| * For linear images where isl_tile_info::physical_extent_B.height == 1, |
| * this cleanly reduces to being the distance, in bytes, between vertically |
| * adjacent surface elements. |
| * |
| * @see isl_tile_info::phys_extent_B; |
| */ |
| uint32_t row_pitch; |
| |
| /** |
| * Pitch between physical array slices, in rows of surface elements. |
| */ |
| uint32_t array_pitch_el_rows; |
| |
| enum isl_array_pitch_span array_pitch_span; |
| |
| /** Copy of isl_surf_init_info::usage. */ |
| isl_surf_usage_flags_t usage; |
| }; |
| |
| struct isl_swizzle { |
| enum isl_channel_select r:4; |
| enum isl_channel_select g:4; |
| enum isl_channel_select b:4; |
| enum isl_channel_select a:4; |
| }; |
| |
| #define ISL_SWIZZLE(R, G, B, A) ((struct isl_swizzle) { \ |
| .r = ISL_CHANNEL_SELECT_##R, \ |
| .g = ISL_CHANNEL_SELECT_##G, \ |
| .b = ISL_CHANNEL_SELECT_##B, \ |
| .a = ISL_CHANNEL_SELECT_##A, \ |
| }) |
| |
| #define ISL_SWIZZLE_IDENTITY ISL_SWIZZLE(RED, GREEN, BLUE, ALPHA) |
| |
| struct isl_view { |
| /** |
| * Indicates the usage of the particular view |
| * |
| * Normally, this is one bit. However, for a cube map texture, it |
| * should be ISL_SURF_USAGE_TEXTURE_BIT | ISL_SURF_USAGE_CUBE_BIT. |
| */ |
| isl_surf_usage_flags_t usage; |
| |
| /** |
| * The format to use in the view |
| * |
| * This may differ from the format of the actual isl_surf but must have |
| * the same block size. |
| */ |
| enum isl_format format; |
| |
| uint32_t base_level; |
| uint32_t levels; |
| |
| /** |
| * Base array layer |
| * |
| * For cube maps, both base_array_layer and array_len should be |
| * specified in terms of 2-D layers and must be a multiple of 6. |
| * |
| * 3-D textures are effectively treated as 2-D arrays when used as a |
| * storage image or render target. If `usage` contains |
| * ISL_SURF_USAGE_RENDER_TARGET_BIT or ISL_SURF_USAGE_STORAGE_BIT then |
| * base_array_layer and array_len are applied. If the surface is only used |
| * for texturing, they are ignored. |
| */ |
| uint32_t base_array_layer; |
| |
| /** |
| * Array Length |
| * |
| * Indicates the number of array elements starting at Base Array Layer. |
| */ |
| uint32_t array_len; |
| |
| struct isl_swizzle swizzle; |
| }; |
| |
| union isl_color_value { |
| float f32[4]; |
| uint32_t u32[4]; |
| int32_t i32[4]; |
| }; |
| |
| struct isl_surf_fill_state_info { |
| const struct isl_surf *surf; |
| const struct isl_view *view; |
| |
| /** |
| * The address of the surface in GPU memory. |
| */ |
| uint64_t address; |
| |
| /** |
| * The Memory Object Control state for the filled surface state. |
| * |
| * The exact format of this value depends on hardware generation. |
| */ |
| uint32_t mocs; |
| |
| /** |
| * The auxilary surface or NULL if no auxilary surface is to be used. |
| */ |
| const struct isl_surf *aux_surf; |
| enum isl_aux_usage aux_usage; |
| uint64_t aux_address; |
| |
| /** |
| * The clear color for this surface |
| * |
| * Valid values depend on hardware generation. |
| */ |
| union isl_color_value clear_color; |
| |
| /** |
| * Surface write disables for gen4-5 |
| */ |
| isl_channel_mask_t write_disables; |
| |
| /* Intra-tile offset */ |
| uint16_t x_offset_sa, y_offset_sa; |
| }; |
| |
| struct isl_buffer_fill_state_info { |
| /** |
| * The address of the surface in GPU memory. |
| */ |
| uint64_t address; |
| |
| /** |
| * The size of the buffer |
| */ |
| uint64_t size; |
| |
| /** |
| * The Memory Object Control state for the filled surface state. |
| * |
| * The exact format of this value depends on hardware generation. |
| */ |
| uint32_t mocs; |
| |
| /** |
| * The format to use in the surface state |
| * |
| * This may differ from the format of the actual isl_surf but have the |
| * same block size. |
| */ |
| enum isl_format format; |
| |
| uint32_t stride; |
| }; |
| |
| struct isl_depth_stencil_hiz_emit_info { |
| /** |
| * The depth surface |
| */ |
| const struct isl_surf *depth_surf; |
| |
| /** |
| * The stencil surface |
| * |
| * If separate stencil is not available, this must point to the same |
| * isl_surf as depth_surf. |
| */ |
| const struct isl_surf *stencil_surf; |
| |
| /** |
| * The view into the depth and stencil surfaces. |
| * |
| * This view applies to both surfaces simultaneously. |
| */ |
| const struct isl_view *view; |
| |
| /** |
| * The address of the depth surface in GPU memory |
| */ |
| uint64_t depth_address; |
| |
| /** |
| * The address of the stencil surface in GPU memory |
| * |
| * If separate stencil is not available, this must have the same value as |
| * depth_address. |
| */ |
| uint64_t stencil_address; |
| |
| /** |
| * The Memory Object Control state for depth and stencil buffers |
| * |
| * Both depth and stencil will get the same MOCS value. The exact format |
| * of this value depends on hardware generation. |
| */ |
| uint32_t mocs; |
| |
| /** |
| * The HiZ surface or NULL if HiZ is disabled. |
| */ |
| const struct isl_surf *hiz_surf; |
| enum isl_aux_usage hiz_usage; |
| uint64_t hiz_address; |
| |
| /** |
| * The depth clear value |
| */ |
| float depth_clear_value; |
| }; |
| |
| extern const struct isl_format_layout isl_format_layouts[]; |
| |
| void |
| isl_device_init(struct isl_device *dev, |
| const struct gen_device_info *info, |
| bool has_bit6_swizzling); |
| |
| isl_sample_count_mask_t ATTRIBUTE_CONST |
| isl_device_get_sample_counts(struct isl_device *dev); |
| |
| static inline const struct isl_format_layout * ATTRIBUTE_CONST |
| isl_format_get_layout(enum isl_format fmt) |
| { |
| return &isl_format_layouts[fmt]; |
| } |
| |
| static inline const char * ATTRIBUTE_CONST |
| isl_format_get_name(enum isl_format fmt) |
| { |
| return isl_format_layouts[fmt].name; |
| } |
| |
| bool isl_format_supports_rendering(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_alpha_blending(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_sampling(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_filtering(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_vertex_fetch(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_typed_writes(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_typed_reads(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_ccs_d(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_ccs_e(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| bool isl_format_supports_multisampling(const struct gen_device_info *devinfo, |
| enum isl_format format); |
| |
| bool isl_formats_are_ccs_e_compatible(const struct gen_device_info *devinfo, |
| enum isl_format format1, |
| enum isl_format format2); |
| |
| bool isl_format_has_unorm_channel(enum isl_format fmt) ATTRIBUTE_CONST; |
| bool isl_format_has_snorm_channel(enum isl_format fmt) ATTRIBUTE_CONST; |
| bool isl_format_has_ufloat_channel(enum isl_format fmt) ATTRIBUTE_CONST; |
| bool isl_format_has_sfloat_channel(enum isl_format fmt) ATTRIBUTE_CONST; |
| bool isl_format_has_uint_channel(enum isl_format fmt) ATTRIBUTE_CONST; |
| bool isl_format_has_sint_channel(enum isl_format fmt) ATTRIBUTE_CONST; |
| |
| static inline bool |
| isl_format_has_normalized_channel(enum isl_format fmt) |
| { |
| return isl_format_has_unorm_channel(fmt) || |
| isl_format_has_snorm_channel(fmt); |
| } |
| |
| static inline bool |
| isl_format_has_float_channel(enum isl_format fmt) |
| { |
| return isl_format_has_ufloat_channel(fmt) || |
| isl_format_has_sfloat_channel(fmt); |
| } |
| |
| static inline bool |
| isl_format_has_int_channel(enum isl_format fmt) |
| { |
| return isl_format_has_uint_channel(fmt) || |
| isl_format_has_sint_channel(fmt); |
| } |
| |
| unsigned isl_format_get_num_channels(enum isl_format fmt); |
| |
| uint32_t isl_format_get_depth_format(enum isl_format fmt, bool has_stencil); |
| |
| static inline bool |
| isl_format_is_compressed(enum isl_format fmt) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(fmt); |
| |
| return fmtl->txc != ISL_TXC_NONE; |
| } |
| |
| static inline bool |
| isl_format_has_bc_compression(enum isl_format fmt) |
| { |
| switch (isl_format_get_layout(fmt)->txc) { |
| case ISL_TXC_DXT1: |
| case ISL_TXC_DXT3: |
| case ISL_TXC_DXT5: |
| return true; |
| case ISL_TXC_NONE: |
| case ISL_TXC_FXT1: |
| case ISL_TXC_RGTC1: |
| case ISL_TXC_RGTC2: |
| case ISL_TXC_BPTC: |
| case ISL_TXC_ETC1: |
| case ISL_TXC_ETC2: |
| case ISL_TXC_ASTC: |
| return false; |
| |
| case ISL_TXC_HIZ: |
| case ISL_TXC_MCS: |
| case ISL_TXC_CCS: |
| unreachable("Should not be called on an aux surface"); |
| } |
| |
| unreachable("bad texture compression mode"); |
| return false; |
| } |
| |
| static inline bool |
| isl_format_is_yuv(enum isl_format fmt) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(fmt); |
| |
| return fmtl->colorspace == ISL_COLORSPACE_YUV; |
| } |
| |
| static inline bool |
| isl_format_block_is_1x1x1(enum isl_format fmt) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(fmt); |
| |
| return fmtl->bw == 1 && fmtl->bh == 1 && fmtl->bd == 1; |
| } |
| |
| static inline bool |
| isl_format_is_srgb(enum isl_format fmt) |
| { |
| return isl_format_layouts[fmt].colorspace == ISL_COLORSPACE_SRGB; |
| } |
| |
| enum isl_format isl_format_srgb_to_linear(enum isl_format fmt); |
| |
| static inline bool |
| isl_format_is_rgb(enum isl_format fmt) |
| { |
| if (isl_format_is_yuv(fmt)) |
| return false; |
| return isl_format_layouts[fmt].channels.r.bits > 0 && |
| isl_format_layouts[fmt].channels.g.bits > 0 && |
| isl_format_layouts[fmt].channels.b.bits > 0 && |
| isl_format_layouts[fmt].channels.a.bits == 0; |
| } |
| |
| enum isl_format isl_format_rgb_to_rgba(enum isl_format rgb) ATTRIBUTE_CONST; |
| enum isl_format isl_format_rgb_to_rgbx(enum isl_format rgb) ATTRIBUTE_CONST; |
| |
| bool isl_is_storage_image_format(enum isl_format fmt); |
| |
| enum isl_format |
| isl_lower_storage_image_format(const struct gen_device_info *devinfo, |
| enum isl_format fmt); |
| |
| /* Returns true if this hardware supports typed load/store on a format with |
| * the same size as the given format. |
| */ |
| bool |
| isl_has_matching_typed_storage_image_format(const struct gen_device_info *devinfo, |
| enum isl_format fmt); |
| |
| static inline bool |
| isl_tiling_is_any_y(enum isl_tiling tiling) |
| { |
| return (1u << tiling) & ISL_TILING_ANY_Y_MASK; |
| } |
| |
| static inline bool |
| isl_tiling_is_std_y(enum isl_tiling tiling) |
| { |
| return (1u << tiling) & ISL_TILING_STD_Y_MASK; |
| } |
| |
| uint32_t |
| isl_tiling_to_i915_tiling(enum isl_tiling tiling); |
| |
| enum isl_tiling |
| isl_tiling_from_i915_tiling(uint32_t tiling); |
| |
| const struct isl_drm_modifier_info * ATTRIBUTE_CONST |
| isl_drm_modifier_get_info(uint64_t modifier); |
| |
| static inline bool |
| isl_drm_modifier_has_aux(uint64_t modifier) |
| { |
| return isl_drm_modifier_get_info(modifier)->aux_usage != ISL_AUX_USAGE_NONE; |
| } |
| |
| /** Returns the default isl_aux_state for the given modifier. |
| * |
| * All modified images are required to be kept out of the AUX_INVALID state |
| * but they may or may not actually be compressed and may or may not have |
| * clear color. This function returns the worst case aux_state that we need |
| * to assume when getting a surface from another process or API. |
| */ |
| static inline enum isl_aux_state |
| isl_drm_modifier_get_default_aux_state(uint64_t modifier) |
| { |
| const struct isl_drm_modifier_info *mod_info = |
| isl_drm_modifier_get_info(modifier); |
| |
| if (!mod_info || mod_info->aux_usage == ISL_AUX_USAGE_NONE) |
| return ISL_AUX_STATE_AUX_INVALID; |
| |
| return mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR : |
| ISL_AUX_STATE_COMPRESSED_NO_CLEAR; |
| } |
| |
| struct isl_extent2d ATTRIBUTE_CONST |
| isl_get_interleaved_msaa_px_size_sa(uint32_t samples); |
| |
| static inline bool |
| isl_surf_usage_is_display(isl_surf_usage_flags_t usage) |
| { |
| return usage & ISL_SURF_USAGE_DISPLAY_BIT; |
| } |
| |
| static inline bool |
| isl_surf_usage_is_depth(isl_surf_usage_flags_t usage) |
| { |
| return usage & ISL_SURF_USAGE_DEPTH_BIT; |
| } |
| |
| static inline bool |
| isl_surf_usage_is_stencil(isl_surf_usage_flags_t usage) |
| { |
| return usage & ISL_SURF_USAGE_STENCIL_BIT; |
| } |
| |
| static inline bool |
| isl_surf_usage_is_depth_and_stencil(isl_surf_usage_flags_t usage) |
| { |
| return (usage & ISL_SURF_USAGE_DEPTH_BIT) && |
| (usage & ISL_SURF_USAGE_STENCIL_BIT); |
| } |
| |
| static inline bool |
| isl_surf_usage_is_depth_or_stencil(isl_surf_usage_flags_t usage) |
| { |
| return usage & (ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_STENCIL_BIT); |
| } |
| |
| static inline bool |
| isl_surf_info_is_z16(const struct isl_surf_init_info *info) |
| { |
| return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) && |
| (info->format == ISL_FORMAT_R16_UNORM); |
| } |
| |
| static inline bool |
| isl_surf_info_is_z32_float(const struct isl_surf_init_info *info) |
| { |
| return (info->usage & ISL_SURF_USAGE_DEPTH_BIT) && |
| (info->format == ISL_FORMAT_R32_FLOAT); |
| } |
| |
| static inline struct isl_extent2d |
| isl_extent2d(uint32_t width, uint32_t height) |
| { |
| struct isl_extent2d e = { { 0 } }; |
| |
| e.width = width; |
| e.height = height; |
| |
| return e; |
| } |
| |
| static inline struct isl_extent3d |
| isl_extent3d(uint32_t width, uint32_t height, uint32_t depth) |
| { |
| struct isl_extent3d e = { { 0 } }; |
| |
| e.width = width; |
| e.height = height; |
| e.depth = depth; |
| |
| return e; |
| } |
| |
| static inline struct isl_extent4d |
| isl_extent4d(uint32_t width, uint32_t height, uint32_t depth, |
| uint32_t array_len) |
| { |
| struct isl_extent4d e = { { 0 } }; |
| |
| e.width = width; |
| e.height = height; |
| e.depth = depth; |
| e.array_len = array_len; |
| |
| return e; |
| } |
| |
| bool isl_color_value_is_zero_one(union isl_color_value value, |
| enum isl_format format); |
| |
| #define isl_surf_init(dev, surf, ...) \ |
| isl_surf_init_s((dev), (surf), \ |
| &(struct isl_surf_init_info) { __VA_ARGS__ }); |
| |
| bool |
| isl_surf_init_s(const struct isl_device *dev, |
| struct isl_surf *surf, |
| const struct isl_surf_init_info *restrict info); |
| |
| void |
| isl_surf_get_tile_info(const struct isl_surf *surf, |
| struct isl_tile_info *tile_info); |
| |
| bool |
| isl_surf_get_hiz_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *hiz_surf); |
| |
| bool |
| isl_surf_get_mcs_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *mcs_surf); |
| |
| bool |
| isl_surf_get_ccs_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| struct isl_surf *ccs_surf, |
| uint32_t row_pitch /**< Ignored if 0 */); |
| |
| #define isl_surf_fill_state(dev, state, ...) \ |
| isl_surf_fill_state_s((dev), (state), \ |
| &(struct isl_surf_fill_state_info) { __VA_ARGS__ }); |
| |
| void |
| isl_surf_fill_state_s(const struct isl_device *dev, void *state, |
| const struct isl_surf_fill_state_info *restrict info); |
| |
| #define isl_buffer_fill_state(dev, state, ...) \ |
| isl_buffer_fill_state_s((dev), (state), \ |
| &(struct isl_buffer_fill_state_info) { __VA_ARGS__ }); |
| |
| void |
| isl_buffer_fill_state_s(const struct isl_device *dev, void *state, |
| const struct isl_buffer_fill_state_info *restrict info); |
| |
| void |
| isl_null_fill_state(const struct isl_device *dev, void *state, |
| struct isl_extent3d size); |
| |
| #define isl_emit_depth_stencil_hiz(dev, batch, ...) \ |
| isl_emit_depth_stencil_hiz_s((dev), (batch), \ |
| &(struct isl_depth_stencil_hiz_emit_info) { __VA_ARGS__ }) |
| |
| void |
| isl_emit_depth_stencil_hiz_s(const struct isl_device *dev, void *batch, |
| const struct isl_depth_stencil_hiz_emit_info *restrict info); |
| |
| void |
| isl_surf_fill_image_param(const struct isl_device *dev, |
| struct brw_image_param *param, |
| const struct isl_surf *surf, |
| const struct isl_view *view); |
| |
| void |
| isl_buffer_fill_image_param(const struct isl_device *dev, |
| struct brw_image_param *param, |
| enum isl_format format, |
| uint64_t size); |
| |
| /** |
| * Alignment of the upper-left sample of each subimage, in units of surface |
| * elements. |
| */ |
| static inline struct isl_extent3d |
| isl_surf_get_image_alignment_el(const struct isl_surf *surf) |
| { |
| return surf->image_alignment_el; |
| } |
| |
| /** |
| * Alignment of the upper-left sample of each subimage, in units of surface |
| * samples. |
| */ |
| static inline struct isl_extent3d |
| isl_surf_get_image_alignment_sa(const struct isl_surf *surf) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| return isl_extent3d(fmtl->bw * surf->image_alignment_el.w, |
| fmtl->bh * surf->image_alignment_el.h, |
| fmtl->bd * surf->image_alignment_el.d); |
| } |
| |
| /** |
| * Pitch between vertically adjacent surface elements, in bytes. |
| */ |
| static inline uint32_t |
| isl_surf_get_row_pitch(const struct isl_surf *surf) |
| { |
| return surf->row_pitch; |
| } |
| |
| /** |
| * Pitch between vertically adjacent surface elements, in units of surface elements. |
| */ |
| static inline uint32_t |
| isl_surf_get_row_pitch_el(const struct isl_surf *surf) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| |
| assert(surf->row_pitch % (fmtl->bpb / 8) == 0); |
| return surf->row_pitch / (fmtl->bpb / 8); |
| } |
| |
| /** |
| * Pitch between physical array slices, in rows of surface elements. |
| */ |
| static inline uint32_t |
| isl_surf_get_array_pitch_el_rows(const struct isl_surf *surf) |
| { |
| return surf->array_pitch_el_rows; |
| } |
| |
| /** |
| * Pitch between physical array slices, in units of surface elements. |
| */ |
| static inline uint32_t |
| isl_surf_get_array_pitch_el(const struct isl_surf *surf) |
| { |
| return isl_surf_get_array_pitch_el_rows(surf) * |
| isl_surf_get_row_pitch_el(surf); |
| } |
| |
| /** |
| * Pitch between physical array slices, in rows of surface samples. |
| */ |
| static inline uint32_t |
| isl_surf_get_array_pitch_sa_rows(const struct isl_surf *surf) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(surf->format); |
| return fmtl->bh * isl_surf_get_array_pitch_el_rows(surf); |
| } |
| |
| /** |
| * Pitch between physical array slices, in bytes. |
| */ |
| static inline uint32_t |
| isl_surf_get_array_pitch(const struct isl_surf *surf) |
| { |
| return isl_surf_get_array_pitch_sa_rows(surf) * surf->row_pitch; |
| } |
| |
| /** |
| * Calculate the offset, in units of surface samples, to a subimage in the |
| * surface. |
| * |
| * @invariant level < surface levels |
| * @invariant logical_array_layer < logical array length of surface |
| * @invariant logical_z_offset_px < logical depth of surface at level |
| */ |
| void |
| isl_surf_get_image_offset_sa(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa); |
| |
| /** |
| * Calculate the offset, in units of surface elements, to a subimage in the |
| * surface. |
| * |
| * @invariant level < surface levels |
| * @invariant logical_array_layer < logical array length of surface |
| * @invariant logical_z_offset_px < logical depth of surface at level |
| */ |
| void |
| isl_surf_get_image_offset_el(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el); |
| |
| /** |
| * Calculate the offset, in bytes and intratile surface samples, to a |
| * subimage in the surface. |
| * |
| * This is equivalent to calling isl_surf_get_image_offset_el, passing the |
| * result to isl_tiling_get_intratile_offset_el, and converting the tile |
| * offsets to samples. |
| * |
| * @invariant level < surface levels |
| * @invariant logical_array_layer < logical array length of surface |
| * @invariant logical_z_offset_px < logical depth of surface at level |
| */ |
| void |
| isl_surf_get_image_offset_B_tile_sa(const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| uint32_t *offset_B, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa); |
| |
| /** |
| * Create an isl_surf that represents a particular subimage in the surface. |
| * |
| * The newly created surface will have a single miplevel and array slice. The |
| * surface lives at the returned byte and intratile offsets, in samples. |
| * |
| * It is safe to call this function with surf == image_surf. |
| * |
| * @invariant level < surface levels |
| * @invariant logical_array_layer < logical array length of surface |
| * @invariant logical_z_offset_px < logical depth of surface at level |
| */ |
| void |
| isl_surf_get_image_surf(const struct isl_device *dev, |
| const struct isl_surf *surf, |
| uint32_t level, |
| uint32_t logical_array_layer, |
| uint32_t logical_z_offset_px, |
| struct isl_surf *image_surf, |
| uint32_t *offset_B, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa); |
| |
| /** |
| * @brief Calculate the intratile offsets to a surface. |
| * |
| * In @a base_address_offset return the offset from the base of the surface to |
| * the base address of the first tile of the subimage. In @a x_offset_B and |
| * @a y_offset_rows, return the offset, in units of bytes and rows, from the |
| * tile's base to the subimage's first surface element. The x and y offsets |
| * are intratile offsets; that is, they do not exceed the boundary of the |
| * surface's tiling format. |
| */ |
| void |
| isl_tiling_get_intratile_offset_el(enum isl_tiling tiling, |
| uint32_t bpb, |
| uint32_t row_pitch, |
| uint32_t total_x_offset_el, |
| uint32_t total_y_offset_el, |
| uint32_t *base_address_offset, |
| uint32_t *x_offset_el, |
| uint32_t *y_offset_el); |
| |
| static inline void |
| isl_tiling_get_intratile_offset_sa(enum isl_tiling tiling, |
| enum isl_format format, |
| uint32_t row_pitch, |
| uint32_t total_x_offset_sa, |
| uint32_t total_y_offset_sa, |
| uint32_t *base_address_offset, |
| uint32_t *x_offset_sa, |
| uint32_t *y_offset_sa) |
| { |
| const struct isl_format_layout *fmtl = isl_format_get_layout(format); |
| |
| /* For computing the intratile offsets, we actually want a strange unit |
| * which is samples for multisampled surfaces but elements for compressed |
| * surfaces. |
| */ |
| assert(total_x_offset_sa % fmtl->bw == 0); |
| assert(total_y_offset_sa % fmtl->bh == 0); |
| const uint32_t total_x_offset = total_x_offset_sa / fmtl->bw; |
| const uint32_t total_y_offset = total_y_offset_sa / fmtl->bh; |
| |
| isl_tiling_get_intratile_offset_el(tiling, fmtl->bpb, row_pitch, |
| total_x_offset, total_y_offset, |
| base_address_offset, |
| x_offset_sa, y_offset_sa); |
| *x_offset_sa *= fmtl->bw; |
| *y_offset_sa *= fmtl->bh; |
| } |
| |
| /** |
| * @brief Get value of 3DSTATE_DEPTH_BUFFER.SurfaceFormat |
| * |
| * @pre surf->usage has ISL_SURF_USAGE_DEPTH_BIT |
| * @pre surf->format must be a valid format for depth surfaces |
| */ |
| uint32_t |
| isl_surf_get_depth_format(const struct isl_device *dev, |
| const struct isl_surf *surf); |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif /* ISL_H */ |