Brian Paul | 417ed16 | 2001-03-08 17:15:01 +0000 | [diff] [blame^] | 1 | /* $Id: m_eval.c,v 1.3 2001/03/08 17:15:01 brianp Exp $ */ |
Keith Whitwell | cab974c | 2000-12-26 05:09:27 +0000 | [diff] [blame] | 2 | |
| 3 | /* |
| 4 | * Mesa 3-D graphics library |
| 5 | * Version: 3.5 |
| 6 | * |
| 7 | * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. |
| 8 | * |
| 9 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 10 | * copy of this software and associated documentation files (the "Software"), |
| 11 | * to deal in the Software without restriction, including without limitation |
| 12 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 13 | * and/or sell copies of the Software, and to permit persons to whom the |
| 14 | * Software is furnished to do so, subject to the following conditions: |
| 15 | * |
| 16 | * The above copyright notice and this permission notice shall be included |
| 17 | * in all copies or substantial portions of the Software. |
| 18 | * |
| 19 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| 20 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 21 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 22 | * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
| 23 | * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 24 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 25 | */ |
| 26 | |
| 27 | |
| 28 | /* |
| 29 | * eval.c was written by |
| 30 | * Bernd Barsuhn (bdbarsuh@cip.informatik.uni-erlangen.de) and |
| 31 | * Volker Weiss (vrweiss@cip.informatik.uni-erlangen.de). |
| 32 | * |
| 33 | * My original implementation of evaluators was simplistic and didn't |
| 34 | * compute surface normal vectors properly. Bernd and Volker applied |
| 35 | * used more sophisticated methods to get better results. |
| 36 | * |
| 37 | * Thanks guys! |
| 38 | */ |
| 39 | |
| 40 | |
| 41 | #include "glheader.h" |
| 42 | #include "config.h" |
| 43 | #include "m_eval.h" |
| 44 | |
| 45 | static GLfloat inv_tab[MAX_EVAL_ORDER]; |
| 46 | |
| 47 | |
| 48 | |
| 49 | /* |
| 50 | * Horner scheme for Bezier curves |
| 51 | * |
| 52 | * Bezier curves can be computed via a Horner scheme. |
| 53 | * Horner is numerically less stable than the de Casteljau |
| 54 | * algorithm, but it is faster. For curves of degree n |
| 55 | * the complexity of Horner is O(n) and de Casteljau is O(n^2). |
| 56 | * Since stability is not important for displaying curve |
| 57 | * points I decided to use the Horner scheme. |
| 58 | * |
| 59 | * A cubic Bezier curve with control points b0, b1, b2, b3 can be |
| 60 | * written as |
| 61 | * |
| 62 | * (([3] [3] ) [3] ) [3] |
| 63 | * c(t) = (([0]*s*b0 + [1]*t*b1)*s + [2]*t^2*b2)*s + [3]*t^2*b3 |
| 64 | * |
| 65 | * [n] |
| 66 | * where s=1-t and the binomial coefficients [i]. These can |
| 67 | * be computed iteratively using the identity: |
| 68 | * |
| 69 | * [n] [n ] [n] |
| 70 | * [i] = (n-i+1)/i * [i-1] and [0] = 1 |
| 71 | */ |
| 72 | |
| 73 | |
| 74 | void |
| 75 | _math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, |
| 76 | GLuint dim, GLuint order) |
| 77 | { |
Brian Paul | 417ed16 | 2001-03-08 17:15:01 +0000 | [diff] [blame^] | 78 | GLfloat s, powert, bincoeff; |
| 79 | GLuint i, k; |
Keith Whitwell | cab974c | 2000-12-26 05:09:27 +0000 | [diff] [blame] | 80 | |
| 81 | if(order >= 2) |
| 82 | { |
Brian Paul | 417ed16 | 2001-03-08 17:15:01 +0000 | [diff] [blame^] | 83 | bincoeff = (GLfloat) (order - 1); |
Keith Whitwell | cab974c | 2000-12-26 05:09:27 +0000 | [diff] [blame] | 84 | s = 1.0-t; |
| 85 | |
| 86 | for(k=0; k<dim; k++) |
| 87 | out[k] = s*cp[k] + bincoeff*t*cp[dim+k]; |
| 88 | |
| 89 | for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim) |
| 90 | { |
Brian Paul | 417ed16 | 2001-03-08 17:15:01 +0000 | [diff] [blame^] | 91 | bincoeff *= (GLfloat) (order - i); |
| 92 | bincoeff *= inv_tab[i]; |
Keith Whitwell | cab974c | 2000-12-26 05:09:27 +0000 | [diff] [blame] | 93 | |
| 94 | for(k=0; k<dim; k++) |
| 95 | out[k] = s*out[k] + bincoeff*powert*cp[k]; |
| 96 | } |
| 97 | } |
| 98 | else /* order=1 -> constant curve */ |
| 99 | { |
| 100 | for(k=0; k<dim; k++) |
| 101 | out[k] = cp[k]; |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * Tensor product Bezier surfaces |
| 107 | * |
| 108 | * Again the Horner scheme is used to compute a point on a |
| 109 | * TP Bezier surface. First a control polygon for a curve |
| 110 | * on the surface in one parameter direction is computed, |
| 111 | * then the point on the curve for the other parameter |
| 112 | * direction is evaluated. |
| 113 | * |
| 114 | * To store the curve control polygon additional storage |
| 115 | * for max(uorder,vorder) points is needed in the |
| 116 | * control net cn. |
| 117 | */ |
| 118 | |
| 119 | void |
| 120 | _math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, |
| 121 | GLuint dim, GLuint uorder, GLuint vorder) |
| 122 | { |
| 123 | GLfloat *cp = cn + uorder*vorder*dim; |
| 124 | GLuint i, uinc = vorder*dim; |
| 125 | |
| 126 | if(vorder > uorder) |
| 127 | { |
| 128 | if(uorder >= 2) |
| 129 | { |
Brian Paul | 417ed16 | 2001-03-08 17:15:01 +0000 | [diff] [blame^] | 130 | GLfloat s, poweru, bincoeff; |
| 131 | GLuint j, k; |
Keith Whitwell | cab974c | 2000-12-26 05:09:27 +0000 | [diff] [blame] | 132 | |
| 133 | /* Compute the control polygon for the surface-curve in u-direction */ |
| 134 | for(j=0; j<vorder; j++) |
| 135 | { |
| 136 | GLfloat *ucp = &cn[j*dim]; |
| 137 | |
| 138 | /* Each control point is the point for parameter u on a */ |
| 139 | /* curve defined by the control polygons in u-direction */ |
Brian Paul | 417ed16 | 2001-03-08 17:15:01 +0000 | [diff] [blame^] | 140 | bincoeff = (GLfloat) (uorder - 1); |
Keith Whitwell | cab974c | 2000-12-26 05:09:27 +0000 | [diff] [blame] | 141 | s = 1.0-u; |
| 142 | |
| 143 | for(k=0; k<dim; k++) |
| 144 | cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k]; |
| 145 | |
| 146 | for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder; |
| 147 | i++, poweru*=u, ucp +=uinc) |
| 148 | { |
Brian Paul | 417ed16 | 2001-03-08 17:15:01 +0000 | [diff] [blame^] | 149 | bincoeff *= (GLfloat) (uorder - i); |
| 150 | bincoeff *= inv_tab[i]; |
Keith Whitwell | cab974c | 2000-12-26 05:09:27 +0000 | [diff] [blame] | 151 | |
| 152 | for(k=0; k<dim; k++) |
| 153 | cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k]; |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | /* Evaluate curve point in v */ |
| 158 | _math_horner_bezier_curve(cp, out, v, dim, vorder); |
| 159 | } |
| 160 | else /* uorder=1 -> cn defines a curve in v */ |
| 161 | _math_horner_bezier_curve(cn, out, v, dim, vorder); |
| 162 | } |
| 163 | else /* vorder <= uorder */ |
| 164 | { |
| 165 | if(vorder > 1) |
| 166 | { |
| 167 | GLuint i; |
| 168 | |
| 169 | /* Compute the control polygon for the surface-curve in u-direction */ |
| 170 | for(i=0; i<uorder; i++, cn += uinc) |
| 171 | { |
| 172 | /* For constant i all cn[i][j] (j=0..vorder) are located */ |
| 173 | /* on consecutive memory locations, so we can use */ |
| 174 | /* horner_bezier_curve to compute the control points */ |
| 175 | |
| 176 | _math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder); |
| 177 | } |
| 178 | |
| 179 | /* Evaluate curve point in u */ |
| 180 | _math_horner_bezier_curve(cp, out, u, dim, uorder); |
| 181 | } |
| 182 | else /* vorder=1 -> cn defines a curve in u */ |
| 183 | _math_horner_bezier_curve(cn, out, u, dim, uorder); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | /* |
| 188 | * The direct de Casteljau algorithm is used when a point on the |
| 189 | * surface and the tangent directions spanning the tangent plane |
| 190 | * should be computed (this is needed to compute normals to the |
| 191 | * surface). In this case the de Casteljau algorithm approach is |
| 192 | * nicer because a point and the partial derivatives can be computed |
| 193 | * at the same time. To get the correct tangent length du and dv |
| 194 | * must be multiplied with the (u2-u1)/uorder-1 and (v2-v1)/vorder-1. |
| 195 | * Since only the directions are needed, this scaling step is omitted. |
| 196 | * |
| 197 | * De Casteljau needs additional storage for uorder*vorder |
| 198 | * values in the control net cn. |
| 199 | */ |
| 200 | |
| 201 | void |
| 202 | _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, |
| 203 | GLfloat u, GLfloat v, GLuint dim, |
| 204 | GLuint uorder, GLuint vorder) |
| 205 | { |
| 206 | GLfloat *dcn = cn + uorder*vorder*dim; |
| 207 | GLfloat us = 1.0-u, vs = 1.0-v; |
| 208 | GLuint h, i, j, k; |
| 209 | GLuint minorder = uorder < vorder ? uorder : vorder; |
| 210 | GLuint uinc = vorder*dim; |
| 211 | GLuint dcuinc = vorder; |
| 212 | |
| 213 | /* Each component is evaluated separately to save buffer space */ |
| 214 | /* This does not drasticaly decrease the performance of the */ |
| 215 | /* algorithm. If additional storage for (uorder-1)*(vorder-1) */ |
| 216 | /* points would be available, the components could be accessed */ |
| 217 | /* in the innermost loop which could lead to less cache misses. */ |
| 218 | |
| 219 | #define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] |
| 220 | #define DCN(I, J) dcn[(I)*dcuinc+(J)] |
| 221 | if(minorder < 3) |
| 222 | { |
| 223 | if(uorder==vorder) |
| 224 | { |
| 225 | for(k=0; k<dim; k++) |
| 226 | { |
| 227 | /* Derivative direction in u */ |
| 228 | du[k] = vs*(CN(1,0,k) - CN(0,0,k)) + |
| 229 | v*(CN(1,1,k) - CN(0,1,k)); |
| 230 | |
| 231 | /* Derivative direction in v */ |
| 232 | dv[k] = us*(CN(0,1,k) - CN(0,0,k)) + |
| 233 | u*(CN(1,1,k) - CN(1,0,k)); |
| 234 | |
| 235 | /* bilinear de Casteljau step */ |
| 236 | out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) + |
| 237 | u*(vs*CN(1,0,k) + v*CN(1,1,k)); |
| 238 | } |
| 239 | } |
| 240 | else if(minorder == uorder) |
| 241 | { |
| 242 | for(k=0; k<dim; k++) |
| 243 | { |
| 244 | /* bilinear de Casteljau step */ |
| 245 | DCN(1,0) = CN(1,0,k) - CN(0,0,k); |
| 246 | DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k); |
| 247 | |
| 248 | for(j=0; j<vorder-1; j++) |
| 249 | { |
| 250 | /* for the derivative in u */ |
| 251 | DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k); |
| 252 | DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); |
| 253 | |
| 254 | /* for the `point' */ |
| 255 | DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k); |
| 256 | DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
| 257 | } |
| 258 | |
| 259 | /* remaining linear de Casteljau steps until the second last step */ |
| 260 | for(h=minorder; h<vorder-1; h++) |
| 261 | for(j=0; j<vorder-h; j++) |
| 262 | { |
| 263 | /* for the derivative in u */ |
| 264 | DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); |
| 265 | |
| 266 | /* for the `point' */ |
| 267 | DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
| 268 | } |
| 269 | |
| 270 | /* derivative direction in v */ |
| 271 | dv[k] = DCN(0,1) - DCN(0,0); |
| 272 | |
| 273 | /* derivative direction in u */ |
| 274 | du[k] = vs*DCN(1,0) + v*DCN(1,1); |
| 275 | |
| 276 | /* last linear de Casteljau step */ |
| 277 | out[k] = vs*DCN(0,0) + v*DCN(0,1); |
| 278 | } |
| 279 | } |
| 280 | else /* minorder == vorder */ |
| 281 | { |
| 282 | for(k=0; k<dim; k++) |
| 283 | { |
| 284 | /* bilinear de Casteljau step */ |
| 285 | DCN(0,1) = CN(0,1,k) - CN(0,0,k); |
| 286 | DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k); |
| 287 | for(i=0; i<uorder-1; i++) |
| 288 | { |
| 289 | /* for the derivative in v */ |
| 290 | DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k); |
| 291 | DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); |
| 292 | |
| 293 | /* for the `point' */ |
| 294 | DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k); |
| 295 | DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| 296 | } |
| 297 | |
| 298 | /* remaining linear de Casteljau steps until the second last step */ |
| 299 | for(h=minorder; h<uorder-1; h++) |
| 300 | for(i=0; i<uorder-h; i++) |
| 301 | { |
| 302 | /* for the derivative in v */ |
| 303 | DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); |
| 304 | |
| 305 | /* for the `point' */ |
| 306 | DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| 307 | } |
| 308 | |
| 309 | /* derivative direction in u */ |
| 310 | du[k] = DCN(1,0) - DCN(0,0); |
| 311 | |
| 312 | /* derivative direction in v */ |
| 313 | dv[k] = us*DCN(0,1) + u*DCN(1,1); |
| 314 | |
| 315 | /* last linear de Casteljau step */ |
| 316 | out[k] = us*DCN(0,0) + u*DCN(1,0); |
| 317 | } |
| 318 | } |
| 319 | } |
| 320 | else if(uorder == vorder) |
| 321 | { |
| 322 | for(k=0; k<dim; k++) |
| 323 | { |
| 324 | /* first bilinear de Casteljau step */ |
| 325 | for(i=0; i<uorder-1; i++) |
| 326 | { |
| 327 | DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
| 328 | for(j=0; j<vorder-1; j++) |
| 329 | { |
| 330 | DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
| 331 | DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | /* remaining bilinear de Casteljau steps until the second last step */ |
| 336 | for(h=2; h<minorder-1; h++) |
| 337 | for(i=0; i<uorder-h; i++) |
| 338 | { |
| 339 | DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| 340 | for(j=0; j<vorder-h; j++) |
| 341 | { |
| 342 | DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
| 343 | DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| 344 | } |
| 345 | } |
| 346 | |
| 347 | /* derivative direction in u */ |
| 348 | du[k] = vs*(DCN(1,0) - DCN(0,0)) + |
| 349 | v*(DCN(1,1) - DCN(0,1)); |
| 350 | |
| 351 | /* derivative direction in v */ |
| 352 | dv[k] = us*(DCN(0,1) - DCN(0,0)) + |
| 353 | u*(DCN(1,1) - DCN(1,0)); |
| 354 | |
| 355 | /* last bilinear de Casteljau step */ |
| 356 | out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) + |
| 357 | u*(vs*DCN(1,0) + v*DCN(1,1)); |
| 358 | } |
| 359 | } |
| 360 | else if(minorder == uorder) |
| 361 | { |
| 362 | for(k=0; k<dim; k++) |
| 363 | { |
| 364 | /* first bilinear de Casteljau step */ |
| 365 | for(i=0; i<uorder-1; i++) |
| 366 | { |
| 367 | DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
| 368 | for(j=0; j<vorder-1; j++) |
| 369 | { |
| 370 | DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
| 371 | DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | /* remaining bilinear de Casteljau steps until the second last step */ |
| 376 | for(h=2; h<minorder-1; h++) |
| 377 | for(i=0; i<uorder-h; i++) |
| 378 | { |
| 379 | DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| 380 | for(j=0; j<vorder-h; j++) |
| 381 | { |
| 382 | DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
| 383 | DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | /* last bilinear de Casteljau step */ |
| 388 | DCN(2,0) = DCN(1,0) - DCN(0,0); |
| 389 | DCN(0,0) = us*DCN(0,0) + u*DCN(1,0); |
| 390 | for(j=0; j<vorder-1; j++) |
| 391 | { |
| 392 | /* for the derivative in u */ |
| 393 | DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1); |
| 394 | DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); |
| 395 | |
| 396 | /* for the `point' */ |
| 397 | DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1); |
| 398 | DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
| 399 | } |
| 400 | |
| 401 | /* remaining linear de Casteljau steps until the second last step */ |
| 402 | for(h=minorder; h<vorder-1; h++) |
| 403 | for(j=0; j<vorder-h; j++) |
| 404 | { |
| 405 | /* for the derivative in u */ |
| 406 | DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); |
| 407 | |
| 408 | /* for the `point' */ |
| 409 | DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
| 410 | } |
| 411 | |
| 412 | /* derivative direction in v */ |
| 413 | dv[k] = DCN(0,1) - DCN(0,0); |
| 414 | |
| 415 | /* derivative direction in u */ |
| 416 | du[k] = vs*DCN(2,0) + v*DCN(2,1); |
| 417 | |
| 418 | /* last linear de Casteljau step */ |
| 419 | out[k] = vs*DCN(0,0) + v*DCN(0,1); |
| 420 | } |
| 421 | } |
| 422 | else /* minorder == vorder */ |
| 423 | { |
| 424 | for(k=0; k<dim; k++) |
| 425 | { |
| 426 | /* first bilinear de Casteljau step */ |
| 427 | for(i=0; i<uorder-1; i++) |
| 428 | { |
| 429 | DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
| 430 | for(j=0; j<vorder-1; j++) |
| 431 | { |
| 432 | DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
| 433 | DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| 434 | } |
| 435 | } |
| 436 | |
| 437 | /* remaining bilinear de Casteljau steps until the second last step */ |
| 438 | for(h=2; h<minorder-1; h++) |
| 439 | for(i=0; i<uorder-h; i++) |
| 440 | { |
| 441 | DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| 442 | for(j=0; j<vorder-h; j++) |
| 443 | { |
| 444 | DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
| 445 | DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | /* last bilinear de Casteljau step */ |
| 450 | DCN(0,2) = DCN(0,1) - DCN(0,0); |
| 451 | DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1); |
| 452 | for(i=0; i<uorder-1; i++) |
| 453 | { |
| 454 | /* for the derivative in v */ |
| 455 | DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0); |
| 456 | DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); |
| 457 | |
| 458 | /* for the `point' */ |
| 459 | DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1); |
| 460 | DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| 461 | } |
| 462 | |
| 463 | /* remaining linear de Casteljau steps until the second last step */ |
| 464 | for(h=minorder; h<uorder-1; h++) |
| 465 | for(i=0; i<uorder-h; i++) |
| 466 | { |
| 467 | /* for the derivative in v */ |
| 468 | DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); |
| 469 | |
| 470 | /* for the `point' */ |
| 471 | DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
| 472 | } |
| 473 | |
| 474 | /* derivative direction in u */ |
| 475 | du[k] = DCN(1,0) - DCN(0,0); |
| 476 | |
| 477 | /* derivative direction in v */ |
| 478 | dv[k] = us*DCN(0,2) + u*DCN(1,2); |
| 479 | |
| 480 | /* last linear de Casteljau step */ |
| 481 | out[k] = us*DCN(0,0) + u*DCN(1,0); |
| 482 | } |
| 483 | } |
| 484 | #undef DCN |
| 485 | #undef CN |
| 486 | } |
| 487 | |
| 488 | |
| 489 | /* |
| 490 | * Do one-time initialization for evaluators. |
| 491 | */ |
| 492 | void _math_init_eval( void ) |
| 493 | { |
| 494 | GLuint i; |
| 495 | |
| 496 | /* KW: precompute 1/x for useful x. |
| 497 | */ |
| 498 | for (i = 1 ; i < MAX_EVAL_ORDER ; i++) |
| 499 | inv_tab[i] = 1.0 / i; |
| 500 | } |
| 501 | |