Brian Paul | 702b5b0 | 2008-12-15 18:37:39 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Mesa 3-D graphics library |
| 3 | * Version: 6.5 |
| 4 | * |
| 5 | * Copyright (C) 2006 Brian Paul All Rights Reserved. |
| 6 | * |
| 7 | * Permission is hereby granted, free of charge, to any person obtaining a |
| 8 | * copy of this software and associated documentation files (the "Software"), |
| 9 | * to deal in the Software without restriction, including without limitation |
| 10 | * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 11 | * and/or sell copies of the Software, and to permit persons to whom the |
| 12 | * Software is furnished to do so, subject to the following conditions: |
| 13 | * |
| 14 | * The above copyright notice and this permission notice shall be included |
| 15 | * in all copies or substantial portions of the Software. |
| 16 | * |
| 17 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
| 18 | * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 19 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 20 | * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
| 21 | * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| 22 | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 23 | */ |
| 24 | |
| 25 | /* |
| 26 | * SimplexNoise1234 |
| 27 | * Copyright (c) 2003-2005, Stefan Gustavson |
| 28 | * |
| 29 | * Contact: stegu@itn.liu.se |
| 30 | */ |
| 31 | |
| 32 | /** |
| 33 | * \file |
| 34 | * \brief C implementation of Perlin Simplex Noise over 1, 2, 3 and 4 dims. |
| 35 | * \author Stefan Gustavson (stegu@itn.liu.se) |
| 36 | * |
| 37 | * |
| 38 | * This implementation is "Simplex Noise" as presented by |
| 39 | * Ken Perlin at a relatively obscure and not often cited course |
| 40 | * session "Real-Time Shading" at Siggraph 2001 (before real |
| 41 | * time shading actually took on), under the title "hardware noise". |
| 42 | * The 3D function is numerically equivalent to his Java reference |
| 43 | * code available in the PDF course notes, although I re-implemented |
| 44 | * it from scratch to get more readable code. The 1D, 2D and 4D cases |
| 45 | * were implemented from scratch by me from Ken Perlin's text. |
| 46 | * |
| 47 | * This file has no dependencies on any other file, not even its own |
| 48 | * header file. The header file is made for use by external code only. |
| 49 | */ |
| 50 | |
| 51 | |
| 52 | #include "main/imports.h" |
| 53 | #include "prog_noise.h" |
| 54 | |
| 55 | #define FASTFLOOR(x) ( ((x)>0) ? ((int)x) : (((int)x)-1) ) |
| 56 | |
| 57 | /* |
| 58 | * --------------------------------------------------------------------- |
| 59 | * Static data |
| 60 | */ |
| 61 | |
| 62 | /** |
| 63 | * Permutation table. This is just a random jumble of all numbers 0-255, |
| 64 | * repeated twice to avoid wrapping the index at 255 for each lookup. |
| 65 | * This needs to be exactly the same for all instances on all platforms, |
| 66 | * so it's easiest to just keep it as static explicit data. |
| 67 | * This also removes the need for any initialisation of this class. |
| 68 | * |
| 69 | * Note that making this an int[] instead of a char[] might make the |
| 70 | * code run faster on platforms with a high penalty for unaligned single |
| 71 | * byte addressing. Intel x86 is generally single-byte-friendly, but |
| 72 | * some other CPUs are faster with 4-aligned reads. |
| 73 | * However, a char[] is smaller, which avoids cache trashing, and that |
| 74 | * is probably the most important aspect on most architectures. |
| 75 | * This array is accessed a *lot* by the noise functions. |
| 76 | * A vector-valued noise over 3D accesses it 96 times, and a |
| 77 | * float-valued 4D noise 64 times. We want this to fit in the cache! |
| 78 | */ |
| 79 | unsigned char perm[512] = { 151, 160, 137, 91, 90, 15, |
| 80 | 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, |
| 81 | 99, 37, 240, 21, 10, 23, |
| 82 | 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, |
| 83 | 11, 32, 57, 177, 33, |
| 84 | 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, |
| 85 | 134, 139, 48, 27, 166, |
| 86 | 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, |
| 87 | 55, 46, 245, 40, 244, |
| 88 | 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, |
| 89 | 18, 169, 200, 196, |
| 90 | 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, |
| 91 | 226, 250, 124, 123, |
| 92 | 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, |
| 93 | 17, 182, 189, 28, 42, |
| 94 | 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, |
| 95 | 167, 43, 172, 9, |
| 96 | 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, |
| 97 | 218, 246, 97, 228, |
| 98 | 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, |
| 99 | 249, 14, 239, 107, |
| 100 | 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, |
| 101 | 127, 4, 150, 254, |
| 102 | 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, |
| 103 | 215, 61, 156, 180, |
| 104 | 151, 160, 137, 91, 90, 15, |
| 105 | 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, |
| 106 | 99, 37, 240, 21, 10, 23, |
| 107 | 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, |
| 108 | 11, 32, 57, 177, 33, |
| 109 | 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, |
| 110 | 134, 139, 48, 27, 166, |
| 111 | 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, |
| 112 | 55, 46, 245, 40, 244, |
| 113 | 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, |
| 114 | 18, 169, 200, 196, |
| 115 | 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, |
| 116 | 226, 250, 124, 123, |
| 117 | 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, |
| 118 | 17, 182, 189, 28, 42, |
| 119 | 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, |
| 120 | 167, 43, 172, 9, |
| 121 | 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, |
| 122 | 218, 246, 97, 228, |
| 123 | 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, |
| 124 | 249, 14, 239, 107, |
| 125 | 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, |
| 126 | 127, 4, 150, 254, |
| 127 | 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, |
| 128 | 215, 61, 156, 180 |
| 129 | }; |
| 130 | |
| 131 | /* |
| 132 | * --------------------------------------------------------------------- |
| 133 | */ |
| 134 | |
| 135 | /* |
| 136 | * Helper functions to compute gradients-dot-residualvectors (1D to 4D) |
| 137 | * Note that these generate gradients of more than unit length. To make |
| 138 | * a close match with the value range of classic Perlin noise, the final |
| 139 | * noise values need to be rescaled to fit nicely within [-1,1]. |
| 140 | * (The simplex noise functions as such also have different scaling.) |
| 141 | * Note also that these noise functions are the most practical and useful |
| 142 | * signed version of Perlin noise. To return values according to the |
| 143 | * RenderMan specification from the SL noise() and pnoise() functions, |
| 144 | * the noise values need to be scaled and offset to [0,1], like this: |
| 145 | * float SLnoise = (SimplexNoise1234::noise(x,y,z) + 1.0) * 0.5; |
| 146 | */ |
| 147 | |
| 148 | static float |
| 149 | grad1(int hash, float x) |
| 150 | { |
| 151 | int h = hash & 15; |
| 152 | float grad = 1.0f + (h & 7); /* Gradient value 1.0, 2.0, ..., 8.0 */ |
| 153 | if (h & 8) |
| 154 | grad = -grad; /* Set a random sign for the gradient */ |
| 155 | return (grad * x); /* Multiply the gradient with the distance */ |
| 156 | } |
| 157 | |
| 158 | static float |
| 159 | grad2(int hash, float x, float y) |
| 160 | { |
| 161 | int h = hash & 7; /* Convert low 3 bits of hash code */ |
| 162 | float u = h < 4 ? x : y; /* into 8 simple gradient directions, */ |
| 163 | float v = h < 4 ? y : x; /* and compute the dot product with (x,y). */ |
| 164 | return ((h & 1) ? -u : u) + ((h & 2) ? -2.0f * v : 2.0f * v); |
| 165 | } |
| 166 | |
| 167 | static float |
| 168 | grad3(int hash, float x, float y, float z) |
| 169 | { |
| 170 | int h = hash & 15; /* Convert low 4 bits of hash code into 12 simple */ |
| 171 | float u = h < 8 ? x : y; /* gradient directions, and compute dot product. */ |
| 172 | float v = h < 4 ? y : h == 12 || h == 14 ? x : z; /* Fix repeats at h = 12 to 15 */ |
| 173 | return ((h & 1) ? -u : u) + ((h & 2) ? -v : v); |
| 174 | } |
| 175 | |
| 176 | static float |
| 177 | grad4(int hash, float x, float y, float z, float t) |
| 178 | { |
| 179 | int h = hash & 31; /* Convert low 5 bits of hash code into 32 simple */ |
| 180 | float u = h < 24 ? x : y; /* gradient directions, and compute dot product. */ |
| 181 | float v = h < 16 ? y : z; |
| 182 | float w = h < 8 ? z : t; |
| 183 | return ((h & 1) ? -u : u) + ((h & 2) ? -v : v) + ((h & 4) ? -w : w); |
| 184 | } |
| 185 | |
| 186 | /** |
| 187 | * A lookup table to traverse the simplex around a given point in 4D. |
| 188 | * Details can be found where this table is used, in the 4D noise method. |
| 189 | * TODO: This should not be required, backport it from Bill's GLSL code! |
| 190 | */ |
| 191 | static unsigned char simplex[64][4] = { |
| 192 | {0, 1, 2, 3}, {0, 1, 3, 2}, {0, 0, 0, 0}, {0, 2, 3, 1}, |
| 193 | {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 2, 3, 0}, |
| 194 | {0, 2, 1, 3}, {0, 0, 0, 0}, {0, 3, 1, 2}, {0, 3, 2, 1}, |
| 195 | {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {1, 3, 2, 0}, |
| 196 | {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, |
| 197 | {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, |
| 198 | {1, 2, 0, 3}, {0, 0, 0, 0}, {1, 3, 0, 2}, {0, 0, 0, 0}, |
| 199 | {0, 0, 0, 0}, {0, 0, 0, 0}, {2, 3, 0, 1}, {2, 3, 1, 0}, |
| 200 | {1, 0, 2, 3}, {1, 0, 3, 2}, {0, 0, 0, 0}, {0, 0, 0, 0}, |
| 201 | {0, 0, 0, 0}, {2, 0, 3, 1}, {0, 0, 0, 0}, {2, 1, 3, 0}, |
| 202 | {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, |
| 203 | {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, |
| 204 | {2, 0, 1, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, |
| 205 | {3, 0, 1, 2}, {3, 0, 2, 1}, {0, 0, 0, 0}, {3, 1, 2, 0}, |
| 206 | {2, 1, 0, 3}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, |
| 207 | {3, 1, 0, 2}, {0, 0, 0, 0}, {3, 2, 0, 1}, {3, 2, 1, 0} |
| 208 | }; |
| 209 | |
| 210 | |
| 211 | /** 1D simplex noise */ |
| 212 | GLfloat |
| 213 | _mesa_noise1(GLfloat x) |
| 214 | { |
| 215 | int i0 = FASTFLOOR(x); |
| 216 | int i1 = i0 + 1; |
| 217 | float x0 = x - i0; |
| 218 | float x1 = x0 - 1.0f; |
| 219 | float t1 = 1.0f - x1 * x1; |
| 220 | float n0, n1; |
| 221 | |
| 222 | float t0 = 1.0f - x0 * x0; |
| 223 | /* if(t0 < 0.0f) t0 = 0.0f; // this never happens for the 1D case */ |
| 224 | t0 *= t0; |
| 225 | n0 = t0 * t0 * grad1(perm[i0 & 0xff], x0); |
| 226 | |
| 227 | /* if(t1 < 0.0f) t1 = 0.0f; // this never happens for the 1D case */ |
| 228 | t1 *= t1; |
| 229 | n1 = t1 * t1 * grad1(perm[i1 & 0xff], x1); |
| 230 | /* The maximum value of this noise is 8*(3/4)^4 = 2.53125 */ |
| 231 | /* A factor of 0.395 would scale to fit exactly within [-1,1], but */ |
| 232 | /* we want to match PRMan's 1D noise, so we scale it down some more. */ |
| 233 | return 0.25f * (n0 + n1); |
| 234 | } |
| 235 | |
| 236 | |
| 237 | /** 2D simplex noise */ |
| 238 | GLfloat |
| 239 | _mesa_noise2(GLfloat x, GLfloat y) |
| 240 | { |
| 241 | #define F2 0.366025403f /* F2 = 0.5*(sqrt(3.0)-1.0) */ |
| 242 | #define G2 0.211324865f /* G2 = (3.0-Math.sqrt(3.0))/6.0 */ |
| 243 | |
| 244 | float n0, n1, n2; /* Noise contributions from the three corners */ |
| 245 | |
| 246 | /* Skew the input space to determine which simplex cell we're in */ |
| 247 | float s = (x + y) * F2; /* Hairy factor for 2D */ |
| 248 | float xs = x + s; |
| 249 | float ys = y + s; |
| 250 | int i = FASTFLOOR(xs); |
| 251 | int j = FASTFLOOR(ys); |
| 252 | |
| 253 | float t = (float) (i + j) * G2; |
| 254 | float X0 = i - t; /* Unskew the cell origin back to (x,y) space */ |
| 255 | float Y0 = j - t; |
| 256 | float x0 = x - X0; /* The x,y distances from the cell origin */ |
| 257 | float y0 = y - Y0; |
| 258 | |
| 259 | float x1, y1, x2, y2; |
| 260 | int ii, jj; |
| 261 | float t0, t1, t2; |
| 262 | |
| 263 | /* For the 2D case, the simplex shape is an equilateral triangle. */ |
| 264 | /* Determine which simplex we are in. */ |
| 265 | int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */ |
| 266 | if (x0 > y0) { |
| 267 | i1 = 1; |
| 268 | j1 = 0; |
| 269 | } /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */ |
| 270 | else { |
| 271 | i1 = 0; |
| 272 | j1 = 1; |
| 273 | } /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */ |
| 274 | |
| 275 | /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and */ |
| 276 | /* a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where */ |
| 277 | /* c = (3-sqrt(3))/6 */ |
| 278 | |
| 279 | x1 = x0 - i1 + G2; /* Offsets for middle corner in (x,y) unskewed coords */ |
| 280 | y1 = y0 - j1 + G2; |
| 281 | x2 = x0 - 1.0f + 2.0f * G2; /* Offsets for last corner in (x,y) unskewed coords */ |
| 282 | y2 = y0 - 1.0f + 2.0f * G2; |
| 283 | |
| 284 | /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */ |
| 285 | ii = i % 256; |
| 286 | jj = j % 256; |
| 287 | |
| 288 | /* Calculate the contribution from the three corners */ |
| 289 | t0 = 0.5f - x0 * x0 - y0 * y0; |
| 290 | if (t0 < 0.0f) |
| 291 | n0 = 0.0f; |
| 292 | else { |
| 293 | t0 *= t0; |
| 294 | n0 = t0 * t0 * grad2(perm[ii + perm[jj]], x0, y0); |
| 295 | } |
| 296 | |
| 297 | t1 = 0.5f - x1 * x1 - y1 * y1; |
| 298 | if (t1 < 0.0f) |
| 299 | n1 = 0.0f; |
| 300 | else { |
| 301 | t1 *= t1; |
| 302 | n1 = t1 * t1 * grad2(perm[ii + i1 + perm[jj + j1]], x1, y1); |
| 303 | } |
| 304 | |
| 305 | t2 = 0.5f - x2 * x2 - y2 * y2; |
| 306 | if (t2 < 0.0f) |
| 307 | n2 = 0.0f; |
| 308 | else { |
| 309 | t2 *= t2; |
| 310 | n2 = t2 * t2 * grad2(perm[ii + 1 + perm[jj + 1]], x2, y2); |
| 311 | } |
| 312 | |
| 313 | /* Add contributions from each corner to get the final noise value. */ |
| 314 | /* The result is scaled to return values in the interval [-1,1]. */ |
| 315 | return 40.0f * (n0 + n1 + n2); /* TODO: The scale factor is preliminary! */ |
| 316 | } |
| 317 | |
| 318 | |
| 319 | /** 3D simplex noise */ |
| 320 | GLfloat |
| 321 | _mesa_noise3(GLfloat x, GLfloat y, GLfloat z) |
| 322 | { |
| 323 | /* Simple skewing factors for the 3D case */ |
| 324 | #define F3 0.333333333f |
| 325 | #define G3 0.166666667f |
| 326 | |
| 327 | float n0, n1, n2, n3; /* Noise contributions from the four corners */ |
| 328 | |
| 329 | /* Skew the input space to determine which simplex cell we're in */ |
| 330 | float s = (x + y + z) * F3; /* Very nice and simple skew factor for 3D */ |
| 331 | float xs = x + s; |
| 332 | float ys = y + s; |
| 333 | float zs = z + s; |
| 334 | int i = FASTFLOOR(xs); |
| 335 | int j = FASTFLOOR(ys); |
| 336 | int k = FASTFLOOR(zs); |
| 337 | |
| 338 | float t = (float) (i + j + k) * G3; |
| 339 | float X0 = i - t; /* Unskew the cell origin back to (x,y,z) space */ |
| 340 | float Y0 = j - t; |
| 341 | float Z0 = k - t; |
| 342 | float x0 = x - X0; /* The x,y,z distances from the cell origin */ |
| 343 | float y0 = y - Y0; |
| 344 | float z0 = z - Z0; |
| 345 | |
| 346 | float x1, y1, z1, x2, y2, z2, x3, y3, z3; |
| 347 | int ii, jj, kk; |
| 348 | float t0, t1, t2, t3; |
| 349 | |
| 350 | /* For the 3D case, the simplex shape is a slightly irregular tetrahedron. */ |
| 351 | /* Determine which simplex we are in. */ |
| 352 | int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */ |
| 353 | int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */ |
| 354 | |
| 355 | /* This code would benefit from a backport from the GLSL version! */ |
| 356 | if (x0 >= y0) { |
| 357 | if (y0 >= z0) { |
| 358 | i1 = 1; |
| 359 | j1 = 0; |
| 360 | k1 = 0; |
| 361 | i2 = 1; |
| 362 | j2 = 1; |
| 363 | k2 = 0; |
| 364 | } /* X Y Z order */ |
| 365 | else if (x0 >= z0) { |
| 366 | i1 = 1; |
| 367 | j1 = 0; |
| 368 | k1 = 0; |
| 369 | i2 = 1; |
| 370 | j2 = 0; |
| 371 | k2 = 1; |
| 372 | } /* X Z Y order */ |
| 373 | else { |
| 374 | i1 = 0; |
| 375 | j1 = 0; |
| 376 | k1 = 1; |
| 377 | i2 = 1; |
| 378 | j2 = 0; |
| 379 | k2 = 1; |
| 380 | } /* Z X Y order */ |
| 381 | } |
| 382 | else { /* x0<y0 */ |
| 383 | if (y0 < z0) { |
| 384 | i1 = 0; |
| 385 | j1 = 0; |
| 386 | k1 = 1; |
| 387 | i2 = 0; |
| 388 | j2 = 1; |
| 389 | k2 = 1; |
| 390 | } /* Z Y X order */ |
| 391 | else if (x0 < z0) { |
| 392 | i1 = 0; |
| 393 | j1 = 1; |
| 394 | k1 = 0; |
| 395 | i2 = 0; |
| 396 | j2 = 1; |
| 397 | k2 = 1; |
| 398 | } /* Y Z X order */ |
| 399 | else { |
| 400 | i1 = 0; |
| 401 | j1 = 1; |
| 402 | k1 = 0; |
| 403 | i2 = 1; |
| 404 | j2 = 1; |
| 405 | k2 = 0; |
| 406 | } /* Y X Z order */ |
| 407 | } |
| 408 | |
| 409 | /* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in |
| 410 | * (x,y,z), a step of (0,1,0) in (i,j,k) means a step of |
| 411 | * (-c,1-c,-c) in (x,y,z), and a step of (0,0,1) in (i,j,k) means a |
| 412 | * step of (-c,-c,1-c) in (x,y,z), where c = 1/6. |
| 413 | */ |
| 414 | |
| 415 | x1 = x0 - i1 + G3; /* Offsets for second corner in (x,y,z) coords */ |
| 416 | y1 = y0 - j1 + G3; |
| 417 | z1 = z0 - k1 + G3; |
| 418 | x2 = x0 - i2 + 2.0f * G3; /* Offsets for third corner in (x,y,z) coords */ |
| 419 | y2 = y0 - j2 + 2.0f * G3; |
| 420 | z2 = z0 - k2 + 2.0f * G3; |
| 421 | x3 = x0 - 1.0f + 3.0f * G3;/* Offsets for last corner in (x,y,z) coords */ |
| 422 | y3 = y0 - 1.0f + 3.0f * G3; |
| 423 | z3 = z0 - 1.0f + 3.0f * G3; |
| 424 | |
| 425 | /* Wrap the integer indices at 256 to avoid indexing perm[] out of bounds */ |
| 426 | ii = i % 256; |
| 427 | jj = j % 256; |
| 428 | kk = k % 256; |
| 429 | |
| 430 | /* Calculate the contribution from the four corners */ |
| 431 | t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; |
| 432 | if (t0 < 0.0f) |
| 433 | n0 = 0.0f; |
| 434 | else { |
| 435 | t0 *= t0; |
| 436 | n0 = t0 * t0 * grad3(perm[ii + perm[jj + perm[kk]]], x0, y0, z0); |
| 437 | } |
| 438 | |
| 439 | t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; |
| 440 | if (t1 < 0.0f) |
| 441 | n1 = 0.0f; |
| 442 | else { |
| 443 | t1 *= t1; |
| 444 | n1 = |
| 445 | t1 * t1 * grad3(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, |
| 446 | y1, z1); |
| 447 | } |
| 448 | |
| 449 | t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; |
| 450 | if (t2 < 0.0f) |
| 451 | n2 = 0.0f; |
| 452 | else { |
| 453 | t2 *= t2; |
| 454 | n2 = |
| 455 | t2 * t2 * grad3(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, |
| 456 | y2, z2); |
| 457 | } |
| 458 | |
| 459 | t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; |
| 460 | if (t3 < 0.0f) |
| 461 | n3 = 0.0f; |
| 462 | else { |
| 463 | t3 *= t3; |
| 464 | n3 = |
| 465 | t3 * t3 * grad3(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, |
| 466 | z3); |
| 467 | } |
| 468 | |
| 469 | /* Add contributions from each corner to get the final noise value. |
| 470 | * The result is scaled to stay just inside [-1,1] |
| 471 | */ |
| 472 | return 32.0f * (n0 + n1 + n2 + n3); /* TODO: The scale factor is preliminary! */ |
| 473 | } |
| 474 | |
| 475 | |
| 476 | /** 4D simplex noise */ |
| 477 | GLfloat |
| 478 | _mesa_noise4(GLfloat x, GLfloat y, GLfloat z, GLfloat w) |
| 479 | { |
| 480 | /* The skewing and unskewing factors are hairy again for the 4D case */ |
| 481 | #define F4 0.309016994f /* F4 = (Math.sqrt(5.0)-1.0)/4.0 */ |
| 482 | #define G4 0.138196601f /* G4 = (5.0-Math.sqrt(5.0))/20.0 */ |
| 483 | |
| 484 | float n0, n1, n2, n3, n4; /* Noise contributions from the five corners */ |
| 485 | |
| 486 | /* Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in */ |
| 487 | float s = (x + y + z + w) * F4; /* Factor for 4D skewing */ |
| 488 | float xs = x + s; |
| 489 | float ys = y + s; |
| 490 | float zs = z + s; |
| 491 | float ws = w + s; |
| 492 | int i = FASTFLOOR(xs); |
| 493 | int j = FASTFLOOR(ys); |
| 494 | int k = FASTFLOOR(zs); |
| 495 | int l = FASTFLOOR(ws); |
| 496 | |
| 497 | float t = (i + j + k + l) * G4; /* Factor for 4D unskewing */ |
| 498 | float X0 = i - t; /* Unskew the cell origin back to (x,y,z,w) space */ |
| 499 | float Y0 = j - t; |
| 500 | float Z0 = k - t; |
| 501 | float W0 = l - t; |
| 502 | |
| 503 | float x0 = x - X0; /* The x,y,z,w distances from the cell origin */ |
| 504 | float y0 = y - Y0; |
| 505 | float z0 = z - Z0; |
| 506 | float w0 = w - W0; |
| 507 | |
| 508 | /* For the 4D case, the simplex is a 4D shape I won't even try to describe. |
| 509 | * To find out which of the 24 possible simplices we're in, we need to |
| 510 | * determine the magnitude ordering of x0, y0, z0 and w0. |
| 511 | * The method below is a good way of finding the ordering of x,y,z,w and |
| 512 | * then find the correct traversal order for the simplex we're in. |
| 513 | * First, six pair-wise comparisons are performed between each possible pair |
| 514 | * of the four coordinates, and the results are used to add up binary bits |
| 515 | * for an integer index. |
| 516 | */ |
| 517 | int c1 = (x0 > y0) ? 32 : 0; |
| 518 | int c2 = (x0 > z0) ? 16 : 0; |
| 519 | int c3 = (y0 > z0) ? 8 : 0; |
| 520 | int c4 = (x0 > w0) ? 4 : 0; |
| 521 | int c5 = (y0 > w0) ? 2 : 0; |
| 522 | int c6 = (z0 > w0) ? 1 : 0; |
| 523 | int c = c1 + c2 + c3 + c4 + c5 + c6; |
| 524 | |
| 525 | int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */ |
| 526 | int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */ |
| 527 | int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */ |
| 528 | |
| 529 | float x1, y1, z1, w1, x2, y2, z2, w2, x3, y3, z3, w3, x4, y4, z4, w4; |
| 530 | int ii, jj, kk, ll; |
| 531 | float t0, t1, t2, t3, t4; |
| 532 | |
| 533 | /* |
| 534 | * simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some |
| 535 | * order. Many values of c will never occur, since e.g. x>y>z>w |
| 536 | * makes x<z, y<w and x<w impossible. Only the 24 indices which |
| 537 | * have non-zero entries make any sense. We use a thresholding to |
| 538 | * set the coordinates in turn from the largest magnitude. The |
| 539 | * number 3 in the "simplex" array is at the position of the |
| 540 | * largest coordinate. |
| 541 | */ |
| 542 | i1 = simplex[c][0] >= 3 ? 1 : 0; |
| 543 | j1 = simplex[c][1] >= 3 ? 1 : 0; |
| 544 | k1 = simplex[c][2] >= 3 ? 1 : 0; |
| 545 | l1 = simplex[c][3] >= 3 ? 1 : 0; |
| 546 | /* The number 2 in the "simplex" array is at the second largest coordinate. */ |
| 547 | i2 = simplex[c][0] >= 2 ? 1 : 0; |
| 548 | j2 = simplex[c][1] >= 2 ? 1 : 0; |
| 549 | k2 = simplex[c][2] >= 2 ? 1 : 0; |
| 550 | l2 = simplex[c][3] >= 2 ? 1 : 0; |
| 551 | /* The number 1 in the "simplex" array is at the second smallest coordinate. */ |
| 552 | i3 = simplex[c][0] >= 1 ? 1 : 0; |
| 553 | j3 = simplex[c][1] >= 1 ? 1 : 0; |
| 554 | k3 = simplex[c][2] >= 1 ? 1 : 0; |
| 555 | l3 = simplex[c][3] >= 1 ? 1 : 0; |
| 556 | /* The fifth corner has all coordinate offsets = 1, so no need to look that up. */ |
| 557 | |
| 558 | x1 = x0 - i1 + G4; /* Offsets for second corner in (x,y,z,w) coords */ |
| 559 | y1 = y0 - j1 + G4; |
| 560 | z1 = z0 - k1 + G4; |
| 561 | w1 = w0 - l1 + G4; |
| 562 | x2 = x0 - i2 + 2.0f * G4; /* Offsets for third corner in (x,y,z,w) coords */ |
| 563 | y2 = y0 - j2 + 2.0f * G4; |
| 564 | z2 = z0 - k2 + 2.0f * G4; |
| 565 | w2 = w0 - l2 + 2.0f * G4; |
| 566 | x3 = x0 - i3 + 3.0f * G4; /* Offsets for fourth corner in (x,y,z,w) coords */ |
| 567 | y3 = y0 - j3 + 3.0f * G4; |
| 568 | z3 = z0 - k3 + 3.0f * G4; |
| 569 | w3 = w0 - l3 + 3.0f * G4; |
| 570 | x4 = x0 - 1.0f + 4.0f * G4; /* Offsets for last corner in (x,y,z,w) coords */ |
| 571 | y4 = y0 - 1.0f + 4.0f * G4; |
| 572 | z4 = z0 - 1.0f + 4.0f * G4; |
| 573 | w4 = w0 - 1.0f + 4.0f * G4; |
| 574 | |
| 575 | /* Wrap the integer indices at 256, to avoid indexing perm[] out of bounds */ |
| 576 | ii = i % 256; |
| 577 | jj = j % 256; |
| 578 | kk = k % 256; |
| 579 | ll = l % 256; |
| 580 | |
| 581 | /* Calculate the contribution from the five corners */ |
| 582 | t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; |
| 583 | if (t0 < 0.0f) |
| 584 | n0 = 0.0f; |
| 585 | else { |
| 586 | t0 *= t0; |
| 587 | n0 = |
| 588 | t0 * t0 * grad4(perm[ii + perm[jj + perm[kk + perm[ll]]]], x0, y0, |
| 589 | z0, w0); |
| 590 | } |
| 591 | |
| 592 | t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; |
| 593 | if (t1 < 0.0f) |
| 594 | n1 = 0.0f; |
| 595 | else { |
| 596 | t1 *= t1; |
| 597 | n1 = |
| 598 | t1 * t1 * |
| 599 | grad4(perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]], |
| 600 | x1, y1, z1, w1); |
| 601 | } |
| 602 | |
| 603 | t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; |
| 604 | if (t2 < 0.0f) |
| 605 | n2 = 0.0f; |
| 606 | else { |
| 607 | t2 *= t2; |
| 608 | n2 = |
| 609 | t2 * t2 * |
| 610 | grad4(perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]], |
| 611 | x2, y2, z2, w2); |
| 612 | } |
| 613 | |
| 614 | t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; |
| 615 | if (t3 < 0.0f) |
| 616 | n3 = 0.0f; |
| 617 | else { |
| 618 | t3 *= t3; |
| 619 | n3 = |
| 620 | t3 * t3 * |
| 621 | grad4(perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]], |
| 622 | x3, y3, z3, w3); |
| 623 | } |
| 624 | |
| 625 | t4 = 0.6f - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; |
| 626 | if (t4 < 0.0f) |
| 627 | n4 = 0.0f; |
| 628 | else { |
| 629 | t4 *= t4; |
| 630 | n4 = |
| 631 | t4 * t4 * |
| 632 | grad4(perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]], x4, |
| 633 | y4, z4, w4); |
| 634 | } |
| 635 | |
| 636 | /* Sum up and scale the result to cover the range [-1,1] */ |
| 637 | return 27.0f * (n0 + n1 + n2 + n3 + n4); /* TODO: The scale factor is preliminary! */ |
| 638 | } |