| /* |
| regcomp.c - TRE POSIX compatible regex compilation functions. |
| |
| Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi> |
| All rights reserved. |
| |
| Redistribution and use in source and binary forms, with or without |
| modification, are permitted provided that the following conditions |
| are met: |
| |
| 1. Redistributions of source code must retain the above copyright |
| notice, this list of conditions and the following disclaimer. |
| |
| 2. Redistributions in binary form must reproduce the above copyright |
| notice, this list of conditions and the following disclaimer in the |
| documentation and/or other materials provided with the distribution. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS |
| ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| */ |
| |
| #include <string.h> |
| #include <stdlib.h> |
| #include <regex.h> |
| #include <limits.h> |
| #include <stdint.h> |
| #include <ctype.h> |
| |
| #include "tre.h" |
| |
| #include <assert.h> |
| |
| /*********************************************************************** |
| from tre-compile.h |
| ***********************************************************************/ |
| |
| typedef struct { |
| int position; |
| int code_min; |
| int code_max; |
| int *tags; |
| int assertions; |
| tre_ctype_t class; |
| tre_ctype_t *neg_classes; |
| int backref; |
| } tre_pos_and_tags_t; |
| |
| |
| /*********************************************************************** |
| from tre-ast.c and tre-ast.h |
| ***********************************************************************/ |
| |
| /* The different AST node types. */ |
| typedef enum { |
| LITERAL, |
| CATENATION, |
| ITERATION, |
| UNION |
| } tre_ast_type_t; |
| |
| /* Special subtypes of TRE_LITERAL. */ |
| #define EMPTY -1 /* Empty leaf (denotes empty string). */ |
| #define ASSERTION -2 /* Assertion leaf. */ |
| #define TAG -3 /* Tag leaf. */ |
| #define BACKREF -4 /* Back reference leaf. */ |
| |
| #define IS_SPECIAL(x) ((x)->code_min < 0) |
| #define IS_EMPTY(x) ((x)->code_min == EMPTY) |
| #define IS_ASSERTION(x) ((x)->code_min == ASSERTION) |
| #define IS_TAG(x) ((x)->code_min == TAG) |
| #define IS_BACKREF(x) ((x)->code_min == BACKREF) |
| |
| |
| /* A generic AST node. All AST nodes consist of this node on the top |
| level with `obj' pointing to the actual content. */ |
| typedef struct { |
| tre_ast_type_t type; /* Type of the node. */ |
| void *obj; /* Pointer to actual node. */ |
| int nullable; |
| int submatch_id; |
| int num_submatches; |
| int num_tags; |
| tre_pos_and_tags_t *firstpos; |
| tre_pos_and_tags_t *lastpos; |
| } tre_ast_node_t; |
| |
| |
| /* A "literal" node. These are created for assertions, back references, |
| tags, matching parameter settings, and all expressions that match one |
| character. */ |
| typedef struct { |
| long code_min; |
| long code_max; |
| int position; |
| tre_ctype_t class; |
| tre_ctype_t *neg_classes; |
| } tre_literal_t; |
| |
| /* A "catenation" node. These are created when two regexps are concatenated. |
| If there are more than one subexpressions in sequence, the `left' part |
| holds all but the last, and `right' part holds the last subexpression |
| (catenation is left associative). */ |
| typedef struct { |
| tre_ast_node_t *left; |
| tre_ast_node_t *right; |
| } tre_catenation_t; |
| |
| /* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}" |
| operators. */ |
| typedef struct { |
| /* Subexpression to match. */ |
| tre_ast_node_t *arg; |
| /* Minimum number of consecutive matches. */ |
| int min; |
| /* Maximum number of consecutive matches. */ |
| int max; |
| /* If 0, match as many characters as possible, if 1 match as few as |
| possible. Note that this does not always mean the same thing as |
| matching as many/few repetitions as possible. */ |
| unsigned int minimal:1; |
| } tre_iteration_t; |
| |
| /* An "union" node. These are created for the "|" operator. */ |
| typedef struct { |
| tre_ast_node_t *left; |
| tre_ast_node_t *right; |
| } tre_union_t; |
| |
| |
| static tre_ast_node_t * |
| tre_ast_new_node(tre_mem_t mem, int type, void *obj) |
| { |
| tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node); |
| if (!node || !obj) |
| return 0; |
| node->obj = obj; |
| node->type = type; |
| node->nullable = -1; |
| node->submatch_id = -1; |
| return node; |
| } |
| |
| static tre_ast_node_t * |
| tre_ast_new_literal(tre_mem_t mem, int code_min, int code_max, int position) |
| { |
| tre_ast_node_t *node; |
| tre_literal_t *lit; |
| |
| lit = tre_mem_calloc(mem, sizeof *lit); |
| node = tre_ast_new_node(mem, LITERAL, lit); |
| if (!node) |
| return 0; |
| lit->code_min = code_min; |
| lit->code_max = code_max; |
| lit->position = position; |
| return node; |
| } |
| |
| static tre_ast_node_t * |
| tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg, int min, int max, int minimal) |
| { |
| tre_ast_node_t *node; |
| tre_iteration_t *iter; |
| |
| iter = tre_mem_calloc(mem, sizeof *iter); |
| node = tre_ast_new_node(mem, ITERATION, iter); |
| if (!node) |
| return 0; |
| iter->arg = arg; |
| iter->min = min; |
| iter->max = max; |
| iter->minimal = minimal; |
| node->num_submatches = arg->num_submatches; |
| return node; |
| } |
| |
| static tre_ast_node_t * |
| tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) |
| { |
| tre_ast_node_t *node; |
| tre_union_t *un; |
| |
| if (!left) |
| return right; |
| un = tre_mem_calloc(mem, sizeof *un); |
| node = tre_ast_new_node(mem, UNION, un); |
| if (!node || !right) |
| return 0; |
| un->left = left; |
| un->right = right; |
| node->num_submatches = left->num_submatches + right->num_submatches; |
| return node; |
| } |
| |
| static tre_ast_node_t * |
| tre_ast_new_catenation(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) |
| { |
| tre_ast_node_t *node; |
| tre_catenation_t *cat; |
| |
| if (!left) |
| return right; |
| cat = tre_mem_calloc(mem, sizeof *cat); |
| node = tre_ast_new_node(mem, CATENATION, cat); |
| if (!node) |
| return 0; |
| cat->left = left; |
| cat->right = right; |
| node->num_submatches = left->num_submatches + right->num_submatches; |
| return node; |
| } |
| |
| |
| /*********************************************************************** |
| from tre-stack.c and tre-stack.h |
| ***********************************************************************/ |
| |
| typedef struct tre_stack_rec tre_stack_t; |
| |
| /* Creates a new stack object. `size' is initial size in bytes, `max_size' |
| is maximum size, and `increment' specifies how much more space will be |
| allocated with realloc() if all space gets used up. Returns the stack |
| object or NULL if out of memory. */ |
| static tre_stack_t * |
| tre_stack_new(int size, int max_size, int increment); |
| |
| /* Frees the stack object. */ |
| static void |
| tre_stack_destroy(tre_stack_t *s); |
| |
| /* Returns the current number of objects in the stack. */ |
| static int |
| tre_stack_num_objects(tre_stack_t *s); |
| |
| /* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes |
| `value' on top of stack `s'. Returns REG_ESPACE if out of memory. |
| This tries to realloc() more space before failing if maximum size |
| has not yet been reached. Returns REG_OK if successful. */ |
| #define declare_pushf(typetag, type) \ |
| static reg_errcode_t tre_stack_push_ ## typetag(tre_stack_t *s, type value) |
| |
| declare_pushf(voidptr, void *); |
| declare_pushf(int, int); |
| |
| /* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost |
| element off of stack `s' and returns it. The stack must not be |
| empty. */ |
| #define declare_popf(typetag, type) \ |
| static type tre_stack_pop_ ## typetag(tre_stack_t *s) |
| |
| declare_popf(voidptr, void *); |
| declare_popf(int, int); |
| |
| /* Just to save some typing. */ |
| #define STACK_PUSH(s, typetag, value) \ |
| do \ |
| { \ |
| status = tre_stack_push_ ## typetag(s, value); \ |
| } \ |
| while (/*CONSTCOND*/0) |
| |
| #define STACK_PUSHX(s, typetag, value) \ |
| { \ |
| status = tre_stack_push_ ## typetag(s, value); \ |
| if (status != REG_OK) \ |
| break; \ |
| } |
| |
| #define STACK_PUSHR(s, typetag, value) \ |
| { \ |
| reg_errcode_t _status; \ |
| _status = tre_stack_push_ ## typetag(s, value); \ |
| if (_status != REG_OK) \ |
| return _status; \ |
| } |
| |
| union tre_stack_item { |
| void *voidptr_value; |
| int int_value; |
| }; |
| |
| struct tre_stack_rec { |
| int size; |
| int max_size; |
| int increment; |
| int ptr; |
| union tre_stack_item *stack; |
| }; |
| |
| |
| static tre_stack_t * |
| tre_stack_new(int size, int max_size, int increment) |
| { |
| tre_stack_t *s; |
| |
| s = xmalloc(sizeof(*s)); |
| if (s != NULL) |
| { |
| s->stack = xmalloc(sizeof(*s->stack) * size); |
| if (s->stack == NULL) |
| { |
| xfree(s); |
| return NULL; |
| } |
| s->size = size; |
| s->max_size = max_size; |
| s->increment = increment; |
| s->ptr = 0; |
| } |
| return s; |
| } |
| |
| static void |
| tre_stack_destroy(tre_stack_t *s) |
| { |
| xfree(s->stack); |
| xfree(s); |
| } |
| |
| static int |
| tre_stack_num_objects(tre_stack_t *s) |
| { |
| return s->ptr; |
| } |
| |
| static reg_errcode_t |
| tre_stack_push(tre_stack_t *s, union tre_stack_item value) |
| { |
| if (s->ptr < s->size) |
| { |
| s->stack[s->ptr] = value; |
| s->ptr++; |
| } |
| else |
| { |
| if (s->size >= s->max_size) |
| { |
| return REG_ESPACE; |
| } |
| else |
| { |
| union tre_stack_item *new_buffer; |
| int new_size; |
| new_size = s->size + s->increment; |
| if (new_size > s->max_size) |
| new_size = s->max_size; |
| new_buffer = xrealloc(s->stack, sizeof(*new_buffer) * new_size); |
| if (new_buffer == NULL) |
| { |
| return REG_ESPACE; |
| } |
| assert(new_size > s->size); |
| s->size = new_size; |
| s->stack = new_buffer; |
| tre_stack_push(s, value); |
| } |
| } |
| return REG_OK; |
| } |
| |
| #define define_pushf(typetag, type) \ |
| declare_pushf(typetag, type) { \ |
| union tre_stack_item item; \ |
| item.typetag ## _value = value; \ |
| return tre_stack_push(s, item); \ |
| } |
| |
| define_pushf(int, int) |
| define_pushf(voidptr, void *) |
| |
| #define define_popf(typetag, type) \ |
| declare_popf(typetag, type) { \ |
| return s->stack[--s->ptr].typetag ## _value; \ |
| } |
| |
| define_popf(int, int) |
| define_popf(voidptr, void *) |
| |
| |
| /*********************************************************************** |
| from tre-parse.c and tre-parse.h |
| ***********************************************************************/ |
| |
| /* Parse context. */ |
| typedef struct { |
| /* Memory allocator. The AST is allocated using this. */ |
| tre_mem_t mem; |
| /* Stack used for keeping track of regexp syntax. */ |
| tre_stack_t *stack; |
| /* The parsed node after a parse function returns. */ |
| tre_ast_node_t *n; |
| /* Position in the regexp pattern after a parse function returns. */ |
| const char *s; |
| /* The first character of the regexp. */ |
| const char *re; |
| /* Current submatch ID. */ |
| int submatch_id; |
| /* Current position (number of literal). */ |
| int position; |
| /* The highest back reference or -1 if none seen so far. */ |
| int max_backref; |
| /* Compilation flags. */ |
| int cflags; |
| } tre_parse_ctx_t; |
| |
| /* Some macros for expanding \w, \s, etc. */ |
| static const struct { |
| char c; |
| const char *expansion; |
| } tre_macros[] = { |
| {'t', "\t"}, {'n', "\n"}, {'r', "\r"}, |
| {'f', "\f"}, {'a', "\a"}, {'e', "\033"}, |
| {'w', "[[:alnum:]_]"}, {'W', "[^[:alnum:]_]"}, {'s', "[[:space:]]"}, |
| {'S', "[^[:space:]]"}, {'d', "[[:digit:]]"}, {'D', "[^[:digit:]]"}, |
| { 0, 0 } |
| }; |
| |
| /* Expands a macro delimited by `regex' and `regex_end' to `buf', which |
| must have at least `len' items. Sets buf[0] to zero if the there |
| is no match in `tre_macros'. */ |
| static const char *tre_expand_macro(const char *s) |
| { |
| int i; |
| for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++); |
| return tre_macros[i].expansion; |
| } |
| |
| static int |
| tre_compare_lit(const void *a, const void *b) |
| { |
| const tre_literal_t *const *la = a; |
| const tre_literal_t *const *lb = b; |
| /* assumes the range of valid code_min is < INT_MAX */ |
| return la[0]->code_min - lb[0]->code_min; |
| } |
| |
| struct literals { |
| tre_mem_t mem; |
| tre_literal_t **a; |
| int len; |
| int cap; |
| }; |
| |
| static tre_literal_t *tre_new_lit(struct literals *p) |
| { |
| tre_literal_t **a; |
| if (p->len >= p->cap) { |
| if (p->cap >= 1<<15) |
| return 0; |
| p->cap *= 2; |
| a = xrealloc(p->a, p->cap * sizeof *p->a); |
| if (!a) |
| return 0; |
| p->a = a; |
| } |
| a = p->a + p->len++; |
| *a = tre_mem_calloc(p->mem, sizeof **a); |
| return *a; |
| } |
| |
| static int add_icase_literals(struct literals *ls, int min, int max) |
| { |
| tre_literal_t *lit; |
| int b, e, c; |
| for (c=min; c<=max; ) { |
| /* assumes islower(c) and isupper(c) are exclusive |
| and toupper(c)!=c if islower(c). |
| multiple opposite case characters are not supported */ |
| if (tre_islower(c)) { |
| b = e = tre_toupper(c); |
| for (c++, e++; c<=max; c++, e++) |
| if (tre_toupper(c) != e) break; |
| } else if (tre_isupper(c)) { |
| b = e = tre_tolower(c); |
| for (c++, e++; c<=max; c++, e++) |
| if (tre_tolower(c) != e) break; |
| } else { |
| c++; |
| continue; |
| } |
| lit = tre_new_lit(ls); |
| if (!lit) |
| return -1; |
| lit->code_min = b; |
| lit->code_max = e-1; |
| lit->position = -1; |
| } |
| return 0; |
| } |
| |
| |
| /* Maximum number of character classes in a negated bracket expression. */ |
| #define MAX_NEG_CLASSES 64 |
| |
| struct neg { |
| int negate; |
| int len; |
| tre_ctype_t a[MAX_NEG_CLASSES]; |
| }; |
| |
| // TODO: parse bracket into a set of non-overlapping [lo,hi] ranges |
| |
| /* |
| bracket grammar: |
| Bracket = '[' List ']' | '[^' List ']' |
| List = Term | List Term |
| Term = Char | Range | Chclass | Eqclass |
| Range = Char '-' Char | Char '-' '-' |
| Char = Coll | coll_single |
| Meta = ']' | '-' |
| Coll = '[.' coll_single '.]' | '[.' coll_multi '.]' | '[.' Meta '.]' |
| Eqclass = '[=' coll_single '=]' | '[=' coll_multi '=]' |
| Chclass = '[:' class ':]' |
| |
| coll_single is a single char collating element but it can be |
| '-' only at the beginning or end of a List and |
| ']' only at the beginning of a List and |
| '^' anywhere except after the openning '[' |
| */ |
| |
| static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s, struct literals *ls, struct neg *neg) |
| { |
| const char *start = s; |
| tre_ctype_t class; |
| int min, max; |
| wchar_t wc; |
| int len; |
| |
| for (;;) { |
| class = 0; |
| len = mbtowc(&wc, s, -1); |
| if (len <= 0) |
| return *s ? REG_BADPAT : REG_EBRACK; |
| if (*s == ']' && s != start) { |
| ctx->s = s+1; |
| return REG_OK; |
| } |
| if (*s == '-' && s != start && s[1] != ']' && |
| /* extension: [a-z--@] is accepted as [a-z]|[--@] */ |
| (s[1] != '-' || s[2] == ']')) |
| return REG_ERANGE; |
| if (*s == '[' && (s[1] == '.' || s[1] == '=')) |
| /* collating symbols and equivalence classes are not supported */ |
| return REG_ECOLLATE; |
| if (*s == '[' && s[1] == ':') { |
| char tmp[CHARCLASS_NAME_MAX+1]; |
| s += 2; |
| for (len=0; len < CHARCLASS_NAME_MAX && s[len]; len++) { |
| if (s[len] == ':') { |
| memcpy(tmp, s, len); |
| tmp[len] = 0; |
| class = tre_ctype(tmp); |
| break; |
| } |
| } |
| if (!class || s[len+1] != ']') |
| return REG_ECTYPE; |
| min = 0; |
| max = TRE_CHAR_MAX; |
| s += len+2; |
| } else { |
| min = max = wc; |
| s += len; |
| if (*s == '-' && s[1] != ']') { |
| s++; |
| len = mbtowc(&wc, s, -1); |
| max = wc; |
| /* XXX - Should use collation order instead of |
| encoding values in character ranges. */ |
| if (len <= 0 || min > max) |
| return REG_ERANGE; |
| s += len; |
| } |
| } |
| |
| if (class && neg->negate) { |
| if (neg->len >= MAX_NEG_CLASSES) |
| return REG_ESPACE; |
| neg->a[neg->len++] = class; |
| } else { |
| tre_literal_t *lit = tre_new_lit(ls); |
| if (!lit) |
| return REG_ESPACE; |
| lit->code_min = min; |
| lit->code_max = max; |
| lit->class = class; |
| lit->position = -1; |
| |
| /* Add opposite-case codepoints if REG_ICASE is present. |
| It seems that POSIX requires that bracket negation |
| should happen before case-folding, but most practical |
| implementations do it the other way around. Changing |
| the order would need efficient representation of |
| case-fold ranges and bracket range sets even with |
| simple patterns so this is ok for now. */ |
| if (ctx->cflags & REG_ICASE && !class) |
| if (add_icase_literals(ls, min, max)) |
| return REG_ESPACE; |
| } |
| } |
| } |
| |
| static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s) |
| { |
| int i, max, min, negmax, negmin; |
| tre_ast_node_t *node = 0, *n; |
| tre_ctype_t *nc = 0; |
| tre_literal_t *lit; |
| struct literals ls; |
| struct neg neg; |
| reg_errcode_t err; |
| |
| ls.mem = ctx->mem; |
| ls.len = 0; |
| ls.cap = 32; |
| ls.a = xmalloc(ls.cap * sizeof *ls.a); |
| if (!ls.a) |
| return REG_ESPACE; |
| neg.len = 0; |
| neg.negate = *s == '^'; |
| if (neg.negate) |
| s++; |
| |
| err = parse_bracket_terms(ctx, s, &ls, &neg); |
| if (err != REG_OK) |
| goto parse_bracket_done; |
| |
| if (neg.negate) { |
| /* Sort the array if we need to negate it. */ |
| qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit); |
| /* extra lit for the last negated range */ |
| lit = tre_new_lit(&ls); |
| if (!lit) { |
| err = REG_ESPACE; |
| goto parse_bracket_done; |
| } |
| lit->code_min = TRE_CHAR_MAX+1; |
| lit->code_max = TRE_CHAR_MAX+1; |
| lit->position = -1; |
| /* negated classes */ |
| if (neg.len) { |
| nc = tre_mem_alloc(ctx->mem, (neg.len+1)*sizeof *neg.a); |
| if (!nc) { |
| err = REG_ESPACE; |
| goto parse_bracket_done; |
| } |
| memcpy(nc, neg.a, neg.len*sizeof *neg.a); |
| nc[neg.len] = 0; |
| } |
| } |
| |
| /* Build a union of the items in the array, negated if necessary. */ |
| negmax = negmin = 0; |
| for (i = 0; i < ls.len; i++) { |
| lit = ls.a[i]; |
| min = lit->code_min; |
| max = lit->code_max; |
| if (neg.negate) { |
| if (min <= negmin) { |
| /* Overlap. */ |
| negmin = MAX(max + 1, negmin); |
| continue; |
| } |
| negmax = min - 1; |
| lit->code_min = negmin; |
| lit->code_max = negmax; |
| negmin = max + 1; |
| } |
| lit->position = ctx->position; |
| lit->neg_classes = nc; |
| n = tre_ast_new_node(ctx->mem, LITERAL, lit); |
| node = tre_ast_new_union(ctx->mem, node, n); |
| if (!node) { |
| err = REG_ESPACE; |
| break; |
| } |
| } |
| |
| parse_bracket_done: |
| xfree(ls.a); |
| ctx->position++; |
| ctx->n = node; |
| return err; |
| } |
| |
| static const char *parse_dup_count(const char *s, int *n) |
| { |
| *n = -1; |
| if (!isdigit(*s)) |
| return s; |
| *n = 0; |
| for (;;) { |
| *n = 10 * *n + (*s - '0'); |
| s++; |
| if (!isdigit(*s) || *n > RE_DUP_MAX) |
| break; |
| } |
| return s; |
| } |
| |
| static const char *parse_dup(const char *s, int ere, int *pmin, int *pmax) |
| { |
| int min, max; |
| |
| s = parse_dup_count(s, &min); |
| if (*s == ',') |
| s = parse_dup_count(s+1, &max); |
| else |
| max = min; |
| |
| if ( |
| (max < min && max >= 0) || |
| max > RE_DUP_MAX || |
| min > RE_DUP_MAX || |
| min < 0 || |
| (!ere && *s++ != '\\') || |
| *s++ != '}' |
| ) |
| return 0; |
| *pmin = min; |
| *pmax = max; |
| return s; |
| } |
| |
| static int hexval(unsigned c) |
| { |
| if (c-'0'<10) return c-'0'; |
| c |= 32; |
| if (c-'a'<6) return c-'a'+10; |
| return -1; |
| } |
| |
| static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node, int subid) |
| { |
| if (node->submatch_id >= 0) { |
| tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); |
| if (!n) |
| return REG_ESPACE; |
| n = tre_ast_new_catenation(ctx->mem, n, node); |
| if (!n) |
| return REG_ESPACE; |
| n->num_submatches = node->num_submatches; |
| node = n; |
| } |
| node->submatch_id = subid; |
| node->num_submatches++; |
| ctx->n = node; |
| return REG_OK; |
| } |
| |
| /* |
| BRE grammar: |
| Regex = Branch | '^' | '$' | '^$' | '^' Branch | Branch '$' | '^' Branch '$' |
| Branch = Atom | Branch Atom |
| Atom = char | quoted_char | '.' | Bracket | Atom Dup | '\(' Branch '\)' | back_ref |
| Dup = '*' | '\{' Count '\}' | '\{' Count ',\}' | '\{' Count ',' Count '\}' |
| |
| (leading ^ and trailing $ in a sub expr may be an anchor or literal as well) |
| |
| ERE grammar: |
| Regex = Branch | Regex '|' Branch |
| Branch = Atom | Branch Atom |
| Atom = char | quoted_char | '.' | Bracket | Atom Dup | '(' Regex ')' | '^' | '$' |
| Dup = '*' | '+' | '?' | '{' Count '}' | '{' Count ',}' | '{' Count ',' Count '}' |
| |
| (a*+?, ^*, $+, \X, {, (|a) are unspecified) |
| */ |
| |
| static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s) |
| { |
| int len, ere = ctx->cflags & REG_EXTENDED; |
| const char *p; |
| tre_ast_node_t *node; |
| wchar_t wc; |
| switch (*s) { |
| case '[': |
| return parse_bracket(ctx, s+1); |
| case '\\': |
| p = tre_expand_macro(s+1); |
| if (p) { |
| /* assume \X expansion is a single atom */ |
| reg_errcode_t err = parse_atom(ctx, p); |
| ctx->s = s+2; |
| return err; |
| } |
| /* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */ |
| switch (*++s) { |
| case 0: |
| return REG_EESCAPE; |
| case 'b': |
| node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1); |
| break; |
| case 'B': |
| node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1); |
| break; |
| case '<': |
| node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1); |
| break; |
| case '>': |
| node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1); |
| break; |
| case 'x': |
| s++; |
| int i, v = 0, c; |
| len = 2; |
| if (*s == '{') { |
| len = 8; |
| s++; |
| } |
| for (i=0; i<len && v<0x110000; i++) { |
| c = hexval(s[i]); |
| if (c < 0) break; |
| v = 16*v + c; |
| } |
| s += i; |
| if (len == 8) { |
| if (*s != '}') |
| return REG_EBRACE; |
| s++; |
| } |
| node = tre_ast_new_literal(ctx->mem, v, v, ctx->position++); |
| s--; |
| break; |
| case '{': |
| case '+': |
| case '?': |
| /* extension: treat \+, \? as repetitions in BRE */ |
| /* reject repetitions after empty expression in BRE */ |
| if (!ere) |
| return REG_BADRPT; |
| case '|': |
| /* extension: treat \| as alternation in BRE */ |
| if (!ere) { |
| node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); |
| s--; |
| goto end; |
| } |
| /* fallthrough */ |
| default: |
| if (!ere && (unsigned)*s-'1' < 9) { |
| /* back reference */ |
| int val = *s - '0'; |
| node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position++); |
| ctx->max_backref = MAX(val, ctx->max_backref); |
| } else { |
| /* extension: accept unknown escaped char |
| as a literal */ |
| goto parse_literal; |
| } |
| } |
| s++; |
| break; |
| case '.': |
| if (ctx->cflags & REG_NEWLINE) { |
| tre_ast_node_t *tmp1, *tmp2; |
| tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n'-1, ctx->position++); |
| tmp2 = tre_ast_new_literal(ctx->mem, '\n'+1, TRE_CHAR_MAX, ctx->position++); |
| if (tmp1 && tmp2) |
| node = tre_ast_new_union(ctx->mem, tmp1, tmp2); |
| else |
| node = 0; |
| } else { |
| node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++); |
| } |
| s++; |
| break; |
| case '^': |
| /* '^' has a special meaning everywhere in EREs, and at beginning of BRE. */ |
| if (!ere && s != ctx->re) |
| goto parse_literal; |
| node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1); |
| s++; |
| break; |
| case '$': |
| /* '$' is special everywhere in EREs, and in the end of the string in BREs. */ |
| if (!ere && s[1]) |
| goto parse_literal; |
| node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1); |
| s++; |
| break; |
| case '*': |
| case '{': |
| case '+': |
| case '?': |
| /* reject repetitions after empty expression in ERE */ |
| if (ere) |
| return REG_BADRPT; |
| case '|': |
| if (!ere) |
| goto parse_literal; |
| case 0: |
| node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); |
| break; |
| default: |
| parse_literal: |
| len = mbtowc(&wc, s, -1); |
| if (len < 0) |
| return REG_BADPAT; |
| if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) { |
| tre_ast_node_t *tmp1, *tmp2; |
| /* multiple opposite case characters are not supported */ |
| tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(wc), ctx->position); |
| tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(wc), ctx->position); |
| if (tmp1 && tmp2) |
| node = tre_ast_new_union(ctx->mem, tmp1, tmp2); |
| else |
| node = 0; |
| } else { |
| node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position); |
| } |
| ctx->position++; |
| s += len; |
| break; |
| } |
| end: |
| if (!node) |
| return REG_ESPACE; |
| ctx->n = node; |
| ctx->s = s; |
| return REG_OK; |
| } |
| |
| #define PUSHPTR(err, s, v) do { \ |
| if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) \ |
| return err; \ |
| } while(0) |
| |
| #define PUSHINT(err, s, v) do { \ |
| if ((err = tre_stack_push_int(s, v)) != REG_OK) \ |
| return err; \ |
| } while(0) |
| |
| static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx) |
| { |
| tre_ast_node_t *nbranch=0, *nunion=0; |
| int ere = ctx->cflags & REG_EXTENDED; |
| const char *s = ctx->re; |
| int subid = 0; |
| int depth = 0; |
| reg_errcode_t err; |
| tre_stack_t *stack = ctx->stack; |
| |
| PUSHINT(err, stack, subid++); |
| for (;;) { |
| if ((!ere && *s == '\\' && s[1] == '(') || |
| (ere && *s == '(')) { |
| PUSHPTR(err, stack, nunion); |
| PUSHPTR(err, stack, nbranch); |
| PUSHINT(err, stack, subid++); |
| s++; |
| if (!ere) |
| s++; |
| depth++; |
| nbranch = nunion = 0; |
| continue; |
| } |
| if ((!ere && *s == '\\' && s[1] == ')') || |
| (ere && *s == ')' && depth)) { |
| ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); |
| if (!ctx->n) |
| return REG_ESPACE; |
| } else { |
| err = parse_atom(ctx, s); |
| if (err != REG_OK) |
| return err; |
| s = ctx->s; |
| } |
| |
| parse_iter: |
| for (;;) { |
| int min, max; |
| |
| if (*s!='\\' && *s!='*') { |
| if (!ere) |
| break; |
| if (*s!='+' && *s!='?' && *s!='{') |
| break; |
| } |
| if (*s=='\\' && ere) |
| break; |
| /* extension: treat \+, \? as repetitions in BRE */ |
| if (*s=='\\' && s[1]!='+' && s[1]!='?' && s[1]!='{') |
| break; |
| if (*s=='\\') |
| s++; |
| |
| /* handle ^* at the start of a complete BRE. */ |
| if (!ere && s==ctx->re+1 && s[-1]=='^') |
| break; |
| |
| /* extension: multiple consecutive *+?{,} is unspecified, |
| but (a+)+ has to be supported so accepting a++ makes |
| sense, note however that the RE_DUP_MAX limit can be |
| circumvented: (a{255}){255} uses a lot of memory.. */ |
| if (*s=='{') { |
| s = parse_dup(s+1, ere, &min, &max); |
| if (!s) |
| return REG_BADBR; |
| } else { |
| min=0; |
| max=-1; |
| if (*s == '+') |
| min = 1; |
| if (*s == '?') |
| max = 1; |
| s++; |
| } |
| if (max == 0) |
| ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); |
| else |
| ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0); |
| if (!ctx->n) |
| return REG_ESPACE; |
| } |
| |
| nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n); |
| if ((ere && *s == '|') || |
| (ere && *s == ')' && depth) || |
| (!ere && *s == '\\' && s[1] == ')') || |
| /* extension: treat \| as alternation in BRE */ |
| (!ere && *s == '\\' && s[1] == '|') || |
| !*s) { |
| /* extension: empty branch is unspecified (), (|a), (a|) |
| here they are not rejected but match on empty string */ |
| int c = *s; |
| nunion = tre_ast_new_union(ctx->mem, nunion, nbranch); |
| nbranch = 0; |
| |
| if (c == '\\' && s[1] == '|') { |
| s+=2; |
| } else if (c == '|') { |
| s++; |
| } else { |
| if (c == '\\') { |
| if (!depth) return REG_EPAREN; |
| s+=2; |
| } else if (c == ')') |
| s++; |
| depth--; |
| err = marksub(ctx, nunion, tre_stack_pop_int(stack)); |
| if (err != REG_OK) |
| return err; |
| if (!c && depth<0) { |
| ctx->submatch_id = subid; |
| return REG_OK; |
| } |
| if (!c || depth<0) |
| return REG_EPAREN; |
| nbranch = tre_stack_pop_voidptr(stack); |
| nunion = tre_stack_pop_voidptr(stack); |
| goto parse_iter; |
| } |
| } |
| } |
| } |
| |
| |
| /*********************************************************************** |
| from tre-compile.c |
| ***********************************************************************/ |
| |
| |
| /* |
| TODO: |
| - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive |
| function calls. |
| */ |
| |
| /* |
| Algorithms to setup tags so that submatch addressing can be done. |
| */ |
| |
| |
| /* Inserts a catenation node to the root of the tree given in `node'. |
| As the left child a new tag with number `tag_id' to `node' is added, |
| and the right child is the old root. */ |
| static reg_errcode_t |
| tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id) |
| { |
| tre_catenation_t *c; |
| |
| c = tre_mem_alloc(mem, sizeof(*c)); |
| if (c == NULL) |
| return REG_ESPACE; |
| c->left = tre_ast_new_literal(mem, TAG, tag_id, -1); |
| if (c->left == NULL) |
| return REG_ESPACE; |
| c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t)); |
| if (c->right == NULL) |
| return REG_ESPACE; |
| |
| c->right->obj = node->obj; |
| c->right->type = node->type; |
| c->right->nullable = -1; |
| c->right->submatch_id = -1; |
| c->right->firstpos = NULL; |
| c->right->lastpos = NULL; |
| c->right->num_tags = 0; |
| node->obj = c; |
| node->type = CATENATION; |
| return REG_OK; |
| } |
| |
| /* Inserts a catenation node to the root of the tree given in `node'. |
| As the right child a new tag with number `tag_id' to `node' is added, |
| and the left child is the old root. */ |
| static reg_errcode_t |
| tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id) |
| { |
| tre_catenation_t *c; |
| |
| c = tre_mem_alloc(mem, sizeof(*c)); |
| if (c == NULL) |
| return REG_ESPACE; |
| c->right = tre_ast_new_literal(mem, TAG, tag_id, -1); |
| if (c->right == NULL) |
| return REG_ESPACE; |
| c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t)); |
| if (c->left == NULL) |
| return REG_ESPACE; |
| |
| c->left->obj = node->obj; |
| c->left->type = node->type; |
| c->left->nullable = -1; |
| c->left->submatch_id = -1; |
| c->left->firstpos = NULL; |
| c->left->lastpos = NULL; |
| c->left->num_tags = 0; |
| node->obj = c; |
| node->type = CATENATION; |
| return REG_OK; |
| } |
| |
| typedef enum { |
| ADDTAGS_RECURSE, |
| ADDTAGS_AFTER_ITERATION, |
| ADDTAGS_AFTER_UNION_LEFT, |
| ADDTAGS_AFTER_UNION_RIGHT, |
| ADDTAGS_AFTER_CAT_LEFT, |
| ADDTAGS_AFTER_CAT_RIGHT, |
| ADDTAGS_SET_SUBMATCH_END |
| } tre_addtags_symbol_t; |
| |
| |
| typedef struct { |
| int tag; |
| int next_tag; |
| } tre_tag_states_t; |
| |
| |
| /* Go through `regset' and set submatch data for submatches that are |
| using this tag. */ |
| static void |
| tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag) |
| { |
| int i; |
| |
| for (i = 0; regset[i] >= 0; i++) |
| { |
| int id = regset[i] / 2; |
| int start = !(regset[i] % 2); |
| if (start) |
| tnfa->submatch_data[id].so_tag = tag; |
| else |
| tnfa->submatch_data[id].eo_tag = tag; |
| } |
| regset[0] = -1; |
| } |
| |
| |
| /* Adds tags to appropriate locations in the parse tree in `tree', so that |
| subexpressions marked for submatch addressing can be traced. */ |
| static reg_errcode_t |
| tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree, |
| tre_tnfa_t *tnfa) |
| { |
| reg_errcode_t status = REG_OK; |
| tre_addtags_symbol_t symbol; |
| tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */ |
| int bottom = tre_stack_num_objects(stack); |
| /* True for first pass (counting number of needed tags) */ |
| int first_pass = (mem == NULL || tnfa == NULL); |
| int *regset, *orig_regset; |
| int num_tags = 0; /* Total number of tags. */ |
| int num_minimals = 0; /* Number of special minimal tags. */ |
| int tag = 0; /* The tag that is to be added next. */ |
| int next_tag = 1; /* Next tag to use after this one. */ |
| int *parents; /* Stack of submatches the current submatch is |
| contained in. */ |
| int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */ |
| tre_tag_states_t *saved_states; |
| |
| tre_tag_direction_t direction = TRE_TAG_MINIMIZE; |
| if (!first_pass) |
| { |
| tnfa->end_tag = 0; |
| tnfa->minimal_tags[0] = -1; |
| } |
| |
| regset = xmalloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2)); |
| if (regset == NULL) |
| return REG_ESPACE; |
| regset[0] = -1; |
| orig_regset = regset; |
| |
| parents = xmalloc(sizeof(*parents) * (tnfa->num_submatches + 1)); |
| if (parents == NULL) |
| { |
| xfree(regset); |
| return REG_ESPACE; |
| } |
| parents[0] = -1; |
| |
| saved_states = xmalloc(sizeof(*saved_states) * (tnfa->num_submatches + 1)); |
| if (saved_states == NULL) |
| { |
| xfree(regset); |
| xfree(parents); |
| return REG_ESPACE; |
| } |
| else |
| { |
| unsigned int i; |
| for (i = 0; i <= tnfa->num_submatches; i++) |
| saved_states[i].tag = -1; |
| } |
| |
| STACK_PUSH(stack, voidptr, node); |
| STACK_PUSH(stack, int, ADDTAGS_RECURSE); |
| |
| while (tre_stack_num_objects(stack) > bottom) |
| { |
| if (status != REG_OK) |
| break; |
| |
| symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack); |
| switch (symbol) |
| { |
| |
| case ADDTAGS_SET_SUBMATCH_END: |
| { |
| int id = tre_stack_pop_int(stack); |
| int i; |
| |
| /* Add end of this submatch to regset. */ |
| for (i = 0; regset[i] >= 0; i++); |
| regset[i] = id * 2 + 1; |
| regset[i + 1] = -1; |
| |
| /* Pop this submatch from the parents stack. */ |
| for (i = 0; parents[i] >= 0; i++); |
| parents[i - 1] = -1; |
| break; |
| } |
| |
| case ADDTAGS_RECURSE: |
| node = tre_stack_pop_voidptr(stack); |
| |
| if (node->submatch_id >= 0) |
| { |
| int id = node->submatch_id; |
| int i; |
| |
| |
| /* Add start of this submatch to regset. */ |
| for (i = 0; regset[i] >= 0; i++); |
| regset[i] = id * 2; |
| regset[i + 1] = -1; |
| |
| if (!first_pass) |
| { |
| for (i = 0; parents[i] >= 0; i++); |
| tnfa->submatch_data[id].parents = NULL; |
| if (i > 0) |
| { |
| int *p = xmalloc(sizeof(*p) * (i + 1)); |
| if (p == NULL) |
| { |
| status = REG_ESPACE; |
| break; |
| } |
| assert(tnfa->submatch_data[id].parents == NULL); |
| tnfa->submatch_data[id].parents = p; |
| for (i = 0; parents[i] >= 0; i++) |
| p[i] = parents[i]; |
| p[i] = -1; |
| } |
| } |
| |
| /* Add end of this submatch to regset after processing this |
| node. */ |
| STACK_PUSHX(stack, int, node->submatch_id); |
| STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END); |
| } |
| |
| switch (node->type) |
| { |
| case LITERAL: |
| { |
| tre_literal_t *lit = node->obj; |
| |
| if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) |
| { |
| int i; |
| if (regset[0] >= 0) |
| { |
| /* Regset is not empty, so add a tag before the |
| literal or backref. */ |
| if (!first_pass) |
| { |
| status = tre_add_tag_left(mem, node, tag); |
| tnfa->tag_directions[tag] = direction; |
| if (minimal_tag >= 0) |
| { |
| for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| tnfa->minimal_tags[i] = tag; |
| tnfa->minimal_tags[i + 1] = minimal_tag; |
| tnfa->minimal_tags[i + 2] = -1; |
| minimal_tag = -1; |
| num_minimals++; |
| } |
| tre_purge_regset(regset, tnfa, tag); |
| } |
| else |
| { |
| node->num_tags = 1; |
| } |
| |
| regset[0] = -1; |
| tag = next_tag; |
| num_tags++; |
| next_tag++; |
| } |
| } |
| else |
| { |
| assert(!IS_TAG(lit)); |
| } |
| break; |
| } |
| case CATENATION: |
| { |
| tre_catenation_t *cat = node->obj; |
| tre_ast_node_t *left = cat->left; |
| tre_ast_node_t *right = cat->right; |
| int reserved_tag = -1; |
| |
| |
| /* After processing right child. */ |
| STACK_PUSHX(stack, voidptr, node); |
| STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT); |
| |
| /* Process right child. */ |
| STACK_PUSHX(stack, voidptr, right); |
| STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| |
| /* After processing left child. */ |
| STACK_PUSHX(stack, int, next_tag + left->num_tags); |
| if (left->num_tags > 0 && right->num_tags > 0) |
| { |
| /* Reserve the next tag to the right child. */ |
| reserved_tag = next_tag; |
| next_tag++; |
| } |
| STACK_PUSHX(stack, int, reserved_tag); |
| STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT); |
| |
| /* Process left child. */ |
| STACK_PUSHX(stack, voidptr, left); |
| STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| |
| } |
| break; |
| case ITERATION: |
| { |
| tre_iteration_t *iter = node->obj; |
| |
| if (first_pass) |
| { |
| STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal); |
| } |
| else |
| { |
| STACK_PUSHX(stack, int, tag); |
| STACK_PUSHX(stack, int, iter->minimal); |
| } |
| STACK_PUSHX(stack, voidptr, node); |
| STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION); |
| |
| STACK_PUSHX(stack, voidptr, iter->arg); |
| STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| |
| /* Regset is not empty, so add a tag here. */ |
| if (regset[0] >= 0 || iter->minimal) |
| { |
| if (!first_pass) |
| { |
| int i; |
| status = tre_add_tag_left(mem, node, tag); |
| if (iter->minimal) |
| tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE; |
| else |
| tnfa->tag_directions[tag] = direction; |
| if (minimal_tag >= 0) |
| { |
| for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| tnfa->minimal_tags[i] = tag; |
| tnfa->minimal_tags[i + 1] = minimal_tag; |
| tnfa->minimal_tags[i + 2] = -1; |
| minimal_tag = -1; |
| num_minimals++; |
| } |
| tre_purge_regset(regset, tnfa, tag); |
| } |
| |
| regset[0] = -1; |
| tag = next_tag; |
| num_tags++; |
| next_tag++; |
| } |
| direction = TRE_TAG_MINIMIZE; |
| } |
| break; |
| case UNION: |
| { |
| tre_union_t *uni = node->obj; |
| tre_ast_node_t *left = uni->left; |
| tre_ast_node_t *right = uni->right; |
| int left_tag; |
| int right_tag; |
| |
| if (regset[0] >= 0) |
| { |
| left_tag = next_tag; |
| right_tag = next_tag + 1; |
| } |
| else |
| { |
| left_tag = tag; |
| right_tag = next_tag; |
| } |
| |
| /* After processing right child. */ |
| STACK_PUSHX(stack, int, right_tag); |
| STACK_PUSHX(stack, int, left_tag); |
| STACK_PUSHX(stack, voidptr, regset); |
| STACK_PUSHX(stack, int, regset[0] >= 0); |
| STACK_PUSHX(stack, voidptr, node); |
| STACK_PUSHX(stack, voidptr, right); |
| STACK_PUSHX(stack, voidptr, left); |
| STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT); |
| |
| /* Process right child. */ |
| STACK_PUSHX(stack, voidptr, right); |
| STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| |
| /* After processing left child. */ |
| STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT); |
| |
| /* Process left child. */ |
| STACK_PUSHX(stack, voidptr, left); |
| STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| |
| /* Regset is not empty, so add a tag here. */ |
| if (regset[0] >= 0) |
| { |
| if (!first_pass) |
| { |
| int i; |
| status = tre_add_tag_left(mem, node, tag); |
| tnfa->tag_directions[tag] = direction; |
| if (minimal_tag >= 0) |
| { |
| for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| tnfa->minimal_tags[i] = tag; |
| tnfa->minimal_tags[i + 1] = minimal_tag; |
| tnfa->minimal_tags[i + 2] = -1; |
| minimal_tag = -1; |
| num_minimals++; |
| } |
| tre_purge_regset(regset, tnfa, tag); |
| } |
| |
| regset[0] = -1; |
| tag = next_tag; |
| num_tags++; |
| next_tag++; |
| } |
| |
| if (node->num_submatches > 0) |
| { |
| /* The next two tags are reserved for markers. */ |
| next_tag++; |
| tag = next_tag; |
| next_tag++; |
| } |
| |
| break; |
| } |
| } |
| |
| if (node->submatch_id >= 0) |
| { |
| int i; |
| /* Push this submatch on the parents stack. */ |
| for (i = 0; parents[i] >= 0; i++); |
| parents[i] = node->submatch_id; |
| parents[i + 1] = -1; |
| } |
| |
| break; /* end case: ADDTAGS_RECURSE */ |
| |
| case ADDTAGS_AFTER_ITERATION: |
| { |
| int minimal = 0; |
| int enter_tag; |
| node = tre_stack_pop_voidptr(stack); |
| if (first_pass) |
| { |
| node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags |
| + tre_stack_pop_int(stack); |
| minimal_tag = -1; |
| } |
| else |
| { |
| minimal = tre_stack_pop_int(stack); |
| enter_tag = tre_stack_pop_int(stack); |
| if (minimal) |
| minimal_tag = enter_tag; |
| } |
| |
| if (!first_pass) |
| { |
| if (minimal) |
| direction = TRE_TAG_MINIMIZE; |
| else |
| direction = TRE_TAG_MAXIMIZE; |
| } |
| break; |
| } |
| |
| case ADDTAGS_AFTER_CAT_LEFT: |
| { |
| int new_tag = tre_stack_pop_int(stack); |
| next_tag = tre_stack_pop_int(stack); |
| if (new_tag >= 0) |
| { |
| tag = new_tag; |
| } |
| break; |
| } |
| |
| case ADDTAGS_AFTER_CAT_RIGHT: |
| node = tre_stack_pop_voidptr(stack); |
| if (first_pass) |
| node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags |
| + ((tre_catenation_t *)node->obj)->right->num_tags; |
| break; |
| |
| case ADDTAGS_AFTER_UNION_LEFT: |
| /* Lift the bottom of the `regset' array so that when processing |
| the right operand the items currently in the array are |
| invisible. The original bottom was saved at ADDTAGS_UNION and |
| will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */ |
| while (*regset >= 0) |
| regset++; |
| break; |
| |
| case ADDTAGS_AFTER_UNION_RIGHT: |
| { |
| int added_tags, tag_left, tag_right; |
| tre_ast_node_t *left = tre_stack_pop_voidptr(stack); |
| tre_ast_node_t *right = tre_stack_pop_voidptr(stack); |
| node = tre_stack_pop_voidptr(stack); |
| added_tags = tre_stack_pop_int(stack); |
| if (first_pass) |
| { |
| node->num_tags = ((tre_union_t *)node->obj)->left->num_tags |
| + ((tre_union_t *)node->obj)->right->num_tags + added_tags |
| + ((node->num_submatches > 0) ? 2 : 0); |
| } |
| regset = tre_stack_pop_voidptr(stack); |
| tag_left = tre_stack_pop_int(stack); |
| tag_right = tre_stack_pop_int(stack); |
| |
| /* Add tags after both children, the left child gets a smaller |
| tag than the right child. This guarantees that we prefer |
| the left child over the right child. */ |
| /* XXX - This is not always necessary (if the children have |
| tags which must be seen for every match of that child). */ |
| /* XXX - Check if this is the only place where tre_add_tag_right |
| is used. If so, use tre_add_tag_left (putting the tag before |
| the child as opposed after the child) and throw away |
| tre_add_tag_right. */ |
| if (node->num_submatches > 0) |
| { |
| if (!first_pass) |
| { |
| status = tre_add_tag_right(mem, left, tag_left); |
| tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE; |
| if (status == REG_OK) |
| status = tre_add_tag_right(mem, right, tag_right); |
| tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE; |
| } |
| num_tags += 2; |
| } |
| direction = TRE_TAG_MAXIMIZE; |
| break; |
| } |
| |
| default: |
| assert(0); |
| break; |
| |
| } /* end switch(symbol) */ |
| } /* end while(tre_stack_num_objects(stack) > bottom) */ |
| |
| if (!first_pass) |
| tre_purge_regset(regset, tnfa, tag); |
| |
| if (!first_pass && minimal_tag >= 0) |
| { |
| int i; |
| for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| tnfa->minimal_tags[i] = tag; |
| tnfa->minimal_tags[i + 1] = minimal_tag; |
| tnfa->minimal_tags[i + 2] = -1; |
| minimal_tag = -1; |
| num_minimals++; |
| } |
| |
| assert(tree->num_tags == num_tags); |
| tnfa->end_tag = num_tags; |
| tnfa->num_tags = num_tags; |
| tnfa->num_minimals = num_minimals; |
| xfree(orig_regset); |
| xfree(parents); |
| xfree(saved_states); |
| return status; |
| } |
| |
| |
| |
| /* |
| AST to TNFA compilation routines. |
| */ |
| |
| typedef enum { |
| COPY_RECURSE, |
| COPY_SET_RESULT_PTR |
| } tre_copyast_symbol_t; |
| |
| /* Flags for tre_copy_ast(). */ |
| #define COPY_REMOVE_TAGS 1 |
| #define COPY_MAXIMIZE_FIRST_TAG 2 |
| |
| static reg_errcode_t |
| tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, |
| int flags, int *pos_add, tre_tag_direction_t *tag_directions, |
| tre_ast_node_t **copy, int *max_pos) |
| { |
| reg_errcode_t status = REG_OK; |
| int bottom = tre_stack_num_objects(stack); |
| int num_copied = 0; |
| int first_tag = 1; |
| tre_ast_node_t **result = copy; |
| tre_copyast_symbol_t symbol; |
| |
| STACK_PUSH(stack, voidptr, ast); |
| STACK_PUSH(stack, int, COPY_RECURSE); |
| |
| while (status == REG_OK && tre_stack_num_objects(stack) > bottom) |
| { |
| tre_ast_node_t *node; |
| if (status != REG_OK) |
| break; |
| |
| symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack); |
| switch (symbol) |
| { |
| case COPY_SET_RESULT_PTR: |
| result = tre_stack_pop_voidptr(stack); |
| break; |
| case COPY_RECURSE: |
| node = tre_stack_pop_voidptr(stack); |
| switch (node->type) |
| { |
| case LITERAL: |
| { |
| tre_literal_t *lit = node->obj; |
| int pos = lit->position; |
| int min = lit->code_min; |
| int max = lit->code_max; |
| if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) |
| { |
| /* XXX - e.g. [ab] has only one position but two |
| nodes, so we are creating holes in the state space |
| here. Not fatal, just wastes memory. */ |
| pos += *pos_add; |
| num_copied++; |
| } |
| else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS)) |
| { |
| /* Change this tag to empty. */ |
| min = EMPTY; |
| max = pos = -1; |
| } |
| else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) |
| && first_tag) |
| { |
| /* Maximize the first tag. */ |
| tag_directions[max] = TRE_TAG_MAXIMIZE; |
| first_tag = 0; |
| } |
| *result = tre_ast_new_literal(mem, min, max, pos); |
| if (*result == NULL) |
| status = REG_ESPACE; |
| else { |
| tre_literal_t *p = (*result)->obj; |
| p->class = lit->class; |
| p->neg_classes = lit->neg_classes; |
| } |
| |
| if (pos > *max_pos) |
| *max_pos = pos; |
| break; |
| } |
| case UNION: |
| { |
| tre_union_t *uni = node->obj; |
| tre_union_t *tmp; |
| *result = tre_ast_new_union(mem, uni->left, uni->right); |
| if (*result == NULL) |
| { |
| status = REG_ESPACE; |
| break; |
| } |
| tmp = (*result)->obj; |
| result = &tmp->left; |
| STACK_PUSHX(stack, voidptr, uni->right); |
| STACK_PUSHX(stack, int, COPY_RECURSE); |
| STACK_PUSHX(stack, voidptr, &tmp->right); |
| STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR); |
| STACK_PUSHX(stack, voidptr, uni->left); |
| STACK_PUSHX(stack, int, COPY_RECURSE); |
| break; |
| } |
| case CATENATION: |
| { |
| tre_catenation_t *cat = node->obj; |
| tre_catenation_t *tmp; |
| *result = tre_ast_new_catenation(mem, cat->left, cat->right); |
| if (*result == NULL) |
| { |
| status = REG_ESPACE; |
| break; |
| } |
| tmp = (*result)->obj; |
| tmp->left = NULL; |
| tmp->right = NULL; |
| result = &tmp->left; |
| |
| STACK_PUSHX(stack, voidptr, cat->right); |
| STACK_PUSHX(stack, int, COPY_RECURSE); |
| STACK_PUSHX(stack, voidptr, &tmp->right); |
| STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR); |
| STACK_PUSHX(stack, voidptr, cat->left); |
| STACK_PUSHX(stack, int, COPY_RECURSE); |
| break; |
| } |
| case ITERATION: |
| { |
| tre_iteration_t *iter = node->obj; |
| STACK_PUSHX(stack, voidptr, iter->arg); |
| STACK_PUSHX(stack, int, COPY_RECURSE); |
| *result = tre_ast_new_iter(mem, iter->arg, iter->min, |
| iter->max, iter->minimal); |
| if (*result == NULL) |
| { |
| status = REG_ESPACE; |
| break; |
| } |
| iter = (*result)->obj; |
| result = &iter->arg; |
| break; |
| } |
| default: |
| assert(0); |
| break; |
| } |
| break; |
| } |
| } |
| *pos_add += num_copied; |
| return status; |
| } |
| |
| typedef enum { |
| EXPAND_RECURSE, |
| EXPAND_AFTER_ITER |
| } tre_expand_ast_symbol_t; |
| |
| /* Expands each iteration node that has a finite nonzero minimum or maximum |
| iteration count to a catenated sequence of copies of the node. */ |
| static reg_errcode_t |
| tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, |
| int *position, tre_tag_direction_t *tag_directions) |
| { |
| reg_errcode_t status = REG_OK; |
| int bottom = tre_stack_num_objects(stack); |
| int pos_add = 0; |
| int pos_add_total = 0; |
| int max_pos = 0; |
| int iter_depth = 0; |
| |
| STACK_PUSHR(stack, voidptr, ast); |
| STACK_PUSHR(stack, int, EXPAND_RECURSE); |
| while (status == REG_OK && tre_stack_num_objects(stack) > bottom) |
| { |
| tre_ast_node_t *node; |
| tre_expand_ast_symbol_t symbol; |
| |
| if (status != REG_OK) |
| break; |
| |
| symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack); |
| node = tre_stack_pop_voidptr(stack); |
| switch (symbol) |
| { |
| case EXPAND_RECURSE: |
| switch (node->type) |
| { |
| case LITERAL: |
| { |
| tre_literal_t *lit= node->obj; |
| if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) |
| { |
| lit->position += pos_add; |
| if (lit->position > max_pos) |
| max_pos = lit->position; |
| } |
| break; |
| } |
| case UNION: |
| { |
| tre_union_t *uni = node->obj; |
| STACK_PUSHX(stack, voidptr, uni->right); |
| STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| STACK_PUSHX(stack, voidptr, uni->left); |
| STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| break; |
| } |
| case CATENATION: |
| { |
| tre_catenation_t *cat = node->obj; |
| STACK_PUSHX(stack, voidptr, cat->right); |
| STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| STACK_PUSHX(stack, voidptr, cat->left); |
| STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| break; |
| } |
| case ITERATION: |
| { |
| tre_iteration_t *iter = node->obj; |
| STACK_PUSHX(stack, int, pos_add); |
| STACK_PUSHX(stack, voidptr, node); |
| STACK_PUSHX(stack, int, EXPAND_AFTER_ITER); |
| STACK_PUSHX(stack, voidptr, iter->arg); |
| STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| /* If we are going to expand this node at EXPAND_AFTER_ITER |
| then don't increase the `pos' fields of the nodes now, it |
| will get done when expanding. */ |
| if (iter->min > 1 || iter->max > 1) |
| pos_add = 0; |
| iter_depth++; |
| break; |
| } |
| default: |
| assert(0); |
| break; |
| } |
| break; |
| case EXPAND_AFTER_ITER: |
| { |
| tre_iteration_t *iter = node->obj; |
| int pos_add_last; |
| pos_add = tre_stack_pop_int(stack); |
| pos_add_last = pos_add; |
| if (iter->min > 1 || iter->max > 1) |
| { |
| tre_ast_node_t *seq1 = NULL, *seq2 = NULL; |
| int j; |
| int pos_add_save = pos_add; |
| |
| /* Create a catenated sequence of copies of the node. */ |
| for (j = 0; j < iter->min; j++) |
| { |
| tre_ast_node_t *copy; |
| /* Remove tags from all but the last copy. */ |
| int flags = ((j + 1 < iter->min) |
| ? COPY_REMOVE_TAGS |
| : COPY_MAXIMIZE_FIRST_TAG); |
| pos_add_save = pos_add; |
| status = tre_copy_ast(mem, stack, iter->arg, flags, |
| &pos_add, tag_directions, ©, |
| &max_pos); |
| if (status != REG_OK) |
| return status; |
| if (seq1 != NULL) |
| seq1 = tre_ast_new_catenation(mem, seq1, copy); |
| else |
| seq1 = copy; |
| if (seq1 == NULL) |
| return REG_ESPACE; |
| } |
| |
| if (iter->max == -1) |
| { |
| /* No upper limit. */ |
| pos_add_save = pos_add; |
| status = tre_copy_ast(mem, stack, iter->arg, 0, |
| &pos_add, NULL, &seq2, &max_pos); |
| if (status != REG_OK) |
| return status; |
| seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0); |
| if (seq2 == NULL) |
| return REG_ESPACE; |
| } |
| else |
| { |
| for (j = iter->min; j < iter->max; j++) |
| { |
| tre_ast_node_t *tmp, *copy; |
| pos_add_save = pos_add; |
| status = tre_copy_ast(mem, stack, iter->arg, 0, |
| &pos_add, NULL, ©, &max_pos); |
| if (status != REG_OK) |
| return status; |
| if (seq2 != NULL) |
| seq2 = tre_ast_new_catenation(mem, copy, seq2); |
| else |
| seq2 = copy; |
| if (seq2 == NULL) |
| return REG_ESPACE; |
| tmp = tre_ast_new_literal(mem, EMPTY, -1, -1); |
| if (tmp == NULL) |
| return REG_ESPACE; |
| seq2 = tre_ast_new_union(mem, tmp, seq2); |
| if (seq2 == NULL) |
| return REG_ESPACE; |
| } |
| } |
| |
| pos_add = pos_add_save; |
| if (seq1 == NULL) |
| seq1 = seq2; |
| else if (seq2 != NULL) |
| seq1 = tre_ast_new_catenation(mem, seq1, seq2); |
| if (seq1 == NULL) |
| return REG_ESPACE; |
| node->obj = seq1->obj; |
| node->type = seq1->type; |
| } |
| |
| iter_depth--; |
| pos_add_total += pos_add - pos_add_last; |
| if (iter_depth == 0) |
| pos_add = pos_add_total; |
| |
| break; |
| } |
| default: |
| assert(0); |
| break; |
| } |
| } |
| |
| *position += pos_add_total; |
| |
| /* `max_pos' should never be larger than `*position' if the above |
| code works, but just an extra safeguard let's make sure |
| `*position' is set large enough so enough memory will be |
| allocated for the transition table. */ |
| if (max_pos > *position) |
| *position = max_pos; |
| |
| return status; |
| } |
| |
| static tre_pos_and_tags_t * |
| tre_set_empty(tre_mem_t mem) |
| { |
| tre_pos_and_tags_t *new_set; |
| |
| new_set = tre_mem_calloc(mem, sizeof(*new_set)); |
| if (new_set == NULL) |
| return NULL; |
| |
| new_set[0].position = -1; |
| new_set[0].code_min = -1; |
| new_set[0].code_max = -1; |
| |
| return new_set; |
| } |
| |
| static tre_pos_and_tags_t * |
| tre_set_one(tre_mem_t mem, int position, int code_min, int code_max, |
| tre_ctype_t class, tre_ctype_t *neg_classes, int backref) |
| { |
| tre_pos_and_tags_t *new_set; |
| |
| new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2); |
| if (new_set == NULL) |
| return NULL; |
| |
| new_set[0].position = position; |
| new_set[0].code_min = code_min; |
| new_set[0].code_max = code_max; |
| new_set[0].class = class; |
| new_set[0].neg_classes = neg_classes; |
| new_set[0].backref = backref; |
| new_set[1].position = -1; |
| new_set[1].code_min = -1; |
| new_set[1].code_max = -1; |
| |
| return new_set; |
| } |
| |
| static tre_pos_and_tags_t * |
| tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2, |
| int *tags, int assertions) |
| { |
| int s1, s2, i, j; |
| tre_pos_and_tags_t *new_set; |
| int *new_tags; |
| int num_tags; |
| |
| for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++); |
| for (s1 = 0; set1[s1].position >= 0; s1++); |
| for (s2 = 0; set2[s2].position >= 0; s2++); |
| new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1)); |
| if (!new_set ) |
| return NULL; |
| |
| for (s1 = 0; set1[s1].position >= 0; s1++) |
| { |
| new_set[s1].position = set1[s1].position; |
| new_set[s1].code_min = set1[s1].code_min; |
| new_set[s1].code_max = set1[s1].code_max; |
| new_set[s1].assertions = set1[s1].assertions | assertions; |
| new_set[s1].class = set1[s1].class; |
| new_set[s1].neg_classes = set1[s1].neg_classes; |
| new_set[s1].backref = set1[s1].backref; |
| if (set1[s1].tags == NULL && tags == NULL) |
| new_set[s1].tags = NULL; |
| else |
| { |
| for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++); |
| new_tags = tre_mem_alloc(mem, (sizeof(*new_tags) |
| * (i + num_tags + 1))); |
| if (new_tags == NULL) |
| return NULL; |
| for (j = 0; j < i; j++) |
| new_tags[j] = set1[s1].tags[j]; |
| for (i = 0; i < num_tags; i++) |
| new_tags[j + i] = tags[i]; |
| new_tags[j + i] = -1; |
| new_set[s1].tags = new_tags; |
| } |
| } |
| |
| for (s2 = 0; set2[s2].position >= 0; s2++) |
| { |
| new_set[s1 + s2].position = set2[s2].position; |
| new_set[s1 + s2].code_min = set2[s2].code_min; |
| new_set[s1 + s2].code_max = set2[s2].code_max; |
| /* XXX - why not | assertions here as well? */ |
| new_set[s1 + s2].assertions = set2[s2].assertions; |
| new_set[s1 + s2].class = set2[s2].class; |
| new_set[s1 + s2].neg_classes = set2[s2].neg_classes; |
| new_set[s1 + s2].backref = set2[s2].backref; |
| if (set2[s2].tags == NULL) |
| new_set[s1 + s2].tags = NULL; |
| else |
| { |
| for (i = 0; set2[s2].tags[i] >= 0; i++); |
| new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1)); |
| if (new_tags == NULL) |
| return NULL; |
| for (j = 0; j < i; j++) |
| new_tags[j] = set2[s2].tags[j]; |
| new_tags[j] = -1; |
| new_set[s1 + s2].tags = new_tags; |
| } |
| } |
| new_set[s1 + s2].position = -1; |
| return new_set; |
| } |
| |
| /* Finds the empty path through `node' which is the one that should be |
| taken according to POSIX.2 rules, and adds the tags on that path to |
| `tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is |
| set to the number of tags seen on the path. */ |
| static reg_errcode_t |
| tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags, |
| int *assertions, int *num_tags_seen) |
| { |
| tre_literal_t *lit; |
| tre_union_t *uni; |
| tre_catenation_t *cat; |
| tre_iteration_t *iter; |
| int i; |
| int bottom = tre_stack_num_objects(stack); |
| reg_errcode_t status = REG_OK; |
| if (num_tags_seen) |
| *num_tags_seen = 0; |
| |
| status = tre_stack_push_voidptr(stack, node); |
| |
| /* Walk through the tree recursively. */ |
| while (status == REG_OK && tre_stack_num_objects(stack) > bottom) |
| { |
| node = tre_stack_pop_voidptr(stack); |
| |
| switch (node->type) |
| { |
| case LITERAL: |
| lit = (tre_literal_t *)node->obj; |
| switch (lit->code_min) |
| { |
| case TAG: |
| if (lit->code_max >= 0) |
| { |
| if (tags != NULL) |
| { |
| /* Add the tag to `tags'. */ |
| for (i = 0; tags[i] >= 0; i++) |
| if (tags[i] == lit->code_max) |
| break; |
| if (tags[i] < 0) |
| { |
| tags[i] = lit->code_max; |
| tags[i + 1] = -1; |
| } |
| } |
| if (num_tags_seen) |
| (*num_tags_seen)++; |
| } |
| break; |
| case ASSERTION: |
| assert(lit->code_max >= 1 |
| || lit->code_max <= ASSERT_LAST); |
| if (assertions != NULL) |
| *assertions |= lit->code_max; |
| break; |
| case EMPTY: |
| break; |
| default: |
| assert(0); |
| break; |
| } |
| break; |
| |
| case UNION: |
| /* Subexpressions starting earlier take priority over ones |
| starting later, so we prefer the left subexpression over the |
| right subexpression. */ |
| uni = (tre_union_t *)node->obj; |
| if (uni->left->nullable) |
| STACK_PUSHX(stack, voidptr, uni->left) |
| else if (uni->right->nullable) |
| STACK_PUSHX(stack, voidptr, uni->right) |
| else |
| assert(0); |
| break; |
| |
| case CATENATION: |
| /* The path must go through both children. */ |
| cat = (tre_catenation_t *)node->obj; |
| assert(cat->left->nullable); |
| assert(cat->right->nullable); |
| STACK_PUSHX(stack, voidptr, cat->left); |
| STACK_PUSHX(stack, voidptr, cat->right); |
| break; |
| |
| case ITERATION: |
| /* A match with an empty string is preferred over no match at |
| all, so we go through the argument if possible. */ |
| iter = (tre_iteration_t *)node->obj; |
| if (iter->arg->nullable) |
| STACK_PUSHX(stack, voidptr, iter->arg); |
| break; |
| |
| default: |
| assert(0); |
| break; |
| } |
| } |
| |
| return status; |
| } |
| |
| |
| typedef enum { |
| NFL_RECURSE, |
| NFL_POST_UNION, |
| NFL_POST_CATENATION, |
| NFL_POST_ITERATION |
| } tre_nfl_stack_symbol_t; |
| |
| |
| /* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for |
| the nodes of the AST `tree'. */ |
| static reg_errcode_t |
| tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree) |
| { |
| int bottom = tre_stack_num_objects(stack); |
| |
| STACK_PUSHR(stack, voidptr, tree); |
| STACK_PUSHR(stack, int, NFL_RECURSE); |
| |
| while (tre_stack_num_objects(stack) > bottom) |
| { |
| tre_nfl_stack_symbol_t symbol; |
| tre_ast_node_t *node; |
| |
| symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack); |
| node = tre_stack_pop_voidptr(stack); |
| switch (symbol) |
| { |
| case NFL_RECURSE: |
| switch (node->type) |
| { |
| case LITERAL: |
| { |
| tre_literal_t *lit = (tre_literal_t *)node->obj; |
| if (IS_BACKREF(lit)) |
| { |
| /* Back references: nullable = false, firstpos = {i}, |
| lastpos = {i}. */ |
| node->nullable = 0; |
| node->firstpos = tre_set_one(mem, lit->position, 0, |
| TRE_CHAR_MAX, 0, NULL, -1); |
| if (!node->firstpos) |
| return REG_ESPACE; |
| node->lastpos = tre_set_one(mem, lit->position, 0, |
| TRE_CHAR_MAX, 0, NULL, |
| (int)lit->code_max); |
| if (!node->lastpos) |
| return REG_ESPACE; |
| } |
| else if (lit->code_min < 0) |
| { |
| /* Tags, empty strings, params, and zero width assertions: |
| nullable = true, firstpos = {}, and lastpos = {}. */ |
| node->nullable = 1; |
| node->firstpos = tre_set_empty(mem); |
| if (!node->firstpos) |
| return REG_ESPACE; |
| node->lastpos = tre_set_empty(mem); |
| if (!node->lastpos) |
| return REG_ESPACE; |
| } |
| else |
| { |
| /* Literal at position i: nullable = false, firstpos = {i}, |
| lastpos = {i}. */ |
| node->nullable = 0; |
| node->firstpos = |
| tre_set_one(mem, lit->position, (int)lit->code_min, |
| (int)lit->code_max, 0, NULL, -1); |
| if (!node->firstpos) |
| return REG_ESPACE; |
| node->lastpos = tre_set_one(mem, lit->position, |
| (int)lit->code_min, |
| (int)lit->code_max, |
| lit->class, lit->neg_classes, |
| -1); |
| if (!node->lastpos) |
| return REG_ESPACE; |
| } |
| break; |
| } |
| |
| case UNION: |
| /* Compute the attributes for the two subtrees, and after that |
| for this node. */ |
| STACK_PUSHR(stack, voidptr, node); |
| STACK_PUSHR(stack, int, NFL_POST_UNION); |
| STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right); |
| STACK_PUSHR(stack, int, NFL_RECURSE); |
| STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left); |
| STACK_PUSHR(stack, int, NFL_RECURSE); |
| break; |
| |
| case CATENATION: |
| /* Compute the attributes for the two subtrees, and after that |
| for this node. */ |
| STACK_PUSHR(stack, voidptr, node); |
| STACK_PUSHR(stack, int, NFL_POST_CATENATION); |
| STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right); |
| STACK_PUSHR(stack, int, NFL_RECURSE); |
| STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left); |
| STACK_PUSHR(stack, int, NFL_RECURSE); |
| break; |
| |
| case ITERATION: |
| /* Compute the attributes for the subtree, and after that for |
| this node. */ |
| STACK_PUSHR(stack, voidptr, node); |
| STACK_PUSHR(stack, int, NFL_POST_ITERATION); |
| STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg); |
| STACK_PUSHR(stack, int, NFL_RECURSE); |
| break; |
| } |
| break; /* end case: NFL_RECURSE */ |
| |
| case NFL_POST_UNION: |
| { |
| tre_union_t *uni = (tre_union_t *)node->obj; |
| node->nullable = uni->left->nullable || uni->right->nullable; |
| node->firstpos = tre_set_union(mem, uni->left->firstpos, |
| uni->right->firstpos, NULL, 0); |
| if (!node->firstpos) |
| return REG_ESPACE; |
| node->lastpos = tre_set_union(mem, uni->left->lastpos, |
| uni->right->lastpos, NULL, 0); |
| if (!node->lastpos) |
| return REG_ESPACE; |
| break; |
| } |
| |
| case NFL_POST_ITERATION: |
| { |
| tre_iteration_t *iter = (tre_iteration_t *)node->obj; |
| |
| if (iter->min == 0 || iter->arg->nullable) |
| node->nullable = 1; |
| else |
| node->nullable = 0; |
| node->firstpos = iter->arg->firstpos; |
| node->lastpos = iter->arg->lastpos; |
| break; |
| } |
| |
| case NFL_POST_CATENATION: |
| { |
| int num_tags, *tags, assertions; |
| reg_errcode_t status; |
| tre_catenation_t *cat = node->obj; |
| node->nullable = cat->left->nullable && cat->right->nullable; |
| |
| /* Compute firstpos. */ |
| if (cat->left->nullable) |
| { |
| /* The left side matches the empty string. Make a first pass |
| with tre_match_empty() to get the number of tags and |
| parameters. */ |
| status = tre_match_empty(stack, cat->left, |
| NULL, NULL, &num_tags); |
| if (status != REG_OK) |
| return status; |
| /* Allocate arrays for the tags and parameters. */ |
| tags = xmalloc(sizeof(*tags) * (num_tags + 1)); |
| if (!tags) |
| return REG_ESPACE; |
| tags[0] = -1; |
| assertions = 0; |
| /* Second pass with tre_mach_empty() to get the list of |
| tags and parameters. */ |
| status = tre_match_empty(stack, cat->left, tags, |
| &assertions, NULL); |
| if (status != REG_OK) |
| { |
| xfree(tags); |
| return status; |
| } |
| node->firstpos = |
| tre_set_union(mem, cat->right->firstpos, cat->left->firstpos, |
| tags, assertions); |
| xfree(tags); |
| if (!node->firstpos) |
| return REG_ESPACE; |
| } |
| else |
| { |
| node->firstpos = cat->left->firstpos; |
| } |
| |
| /* Compute lastpos. */ |
| if (cat->right->nullable) |
| { |
| /* The right side matches the empty string. Make a first pass |
| with tre_match_empty() to get the number of tags and |
| parameters. */ |
| status = tre_match_empty(stack, cat->right, |
| NULL, NULL, &num_tags); |
| if (status != REG_OK) |
| return status; |
| /* Allocate arrays for the tags and parameters. */ |
| tags = xmalloc(sizeof(int) * (num_tags + 1)); |
| if (!tags) |
| return REG_ESPACE; |
| tags[0] = -1; |
| assertions = 0; |
| /* Second pass with tre_mach_empty() to get the list of |
| tags and parameters. */ |
| status = tre_match_empty(stack, cat->right, tags, |
| &assertions, NULL); |
| if (status != REG_OK) |
| { |
| xfree(tags); |
| return status; |
| } |
| node->lastpos = |
| tre_set_union(mem, cat->left->lastpos, cat->right->lastpos, |
| tags, assertions); |
| xfree(tags); |
| if (!node->lastpos) |
| return REG_ESPACE; |
| } |
| else |
| { |
| node->lastpos = cat->right->lastpos; |
| } |
| break; |
| } |
| |
| default: |
| assert(0); |
| break; |
| } |
| } |
| |
| return REG_OK; |
| } |
| |
| |
| /* Adds a transition from each position in `p1' to each position in `p2'. */ |
| static reg_errcode_t |
| tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2, |
| tre_tnfa_transition_t *transitions, |
| int *counts, int *offs) |
| { |
| tre_pos_and_tags_t *orig_p2 = p2; |
| tre_tnfa_transition_t *trans; |
| int i, j, k, l, dup, prev_p2_pos; |
| |
| if (transitions != NULL) |
| while (p1->position >= 0) |
| { |
| p2 = orig_p2; |
| prev_p2_pos = -1; |
| while (p2->position >= 0) |
| { |
| /* Optimization: if this position was already handled, skip it. */ |
| if (p2->position == prev_p2_pos) |
| { |
| p2++; |
| continue; |
| } |
| prev_p2_pos = p2->position; |
| /* Set `trans' to point to the next unused transition from |
| position `p1->position'. */ |
| trans = transitions + offs[p1->position]; |
| while (trans->state != NULL) |
| { |
| #if 0 |
| /* If we find a previous transition from `p1->position' to |
| `p2->position', it is overwritten. This can happen only |
| if there are nested loops in the regexp, like in "((a)*)*". |
| In POSIX.2 repetition using the outer loop is always |
| preferred over using the inner loop. Therefore the |
| transition for the inner loop is useless and can be thrown |
| away. */ |
| /* XXX - The same position is used for all nodes in a bracket |
| expression, so this optimization cannot be used (it will |
| break bracket expressions) unless I figure out a way to |
| detect it here. */ |
| if (trans->state_id == p2->position) |
| { |
| break; |
| } |
| #endif |
| trans++; |
| } |
| |
| if (trans->state == NULL) |
| (trans + 1)->state = NULL; |
| /* Use the character ranges, assertions, etc. from `p1' for |
| the transition from `p1' to `p2'. */ |
| trans->code_min = p1->code_min; |
| trans->code_max = p1->code_max; |
| trans->state = transitions + offs[p2->position]; |
| trans->state_id = p2->position; |
| trans->assertions = p1->assertions | p2->assertions |
| | (p1->class ? ASSERT_CHAR_CLASS : 0) |
| | (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0); |
| if (p1->backref >= 0) |
| { |
| assert((trans->assertions & ASSERT_CHAR_CLASS) == 0); |
| assert(p2->backref < 0); |
| trans->u.backref = p1->backref; |
| trans->assertions |= ASSERT_BACKREF; |
| } |
| else |
| trans->u.class = p1->class; |
| if (p1->neg_classes != NULL) |
| { |
| for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++); |
| trans->neg_classes = |
| xmalloc(sizeof(*trans->neg_classes) * (i + 1)); |
| if (trans->neg_classes == NULL) |
| return REG_ESPACE; |
| for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++) |
| trans->neg_classes[i] = p1->neg_classes[i]; |
| trans->neg_classes[i] = (tre_ctype_t)0; |
| } |
| else |
| trans->neg_classes = NULL; |
| |
| /* Find out how many tags this transition has. */ |
| i = 0; |
| if (p1->tags != NULL) |
| while(p1->tags[i] >= 0) |
| i++; |
| j = 0; |
| if (p2->tags != NULL) |
| while(p2->tags[j] >= 0) |
| j++; |
| |
| /* If we are overwriting a transition, free the old tag array. */ |
| if (trans->tags != NULL) |
| xfree(trans->tags); |
| trans->tags = NULL; |
| |
| /* If there were any tags, allocate an array and fill it. */ |
| if (i + j > 0) |
| { |
| trans->tags = xmalloc(sizeof(*trans->tags) * (i + j + 1)); |
| if (!trans->tags) |
| return REG_ESPACE; |
| i = 0; |
| if (p1->tags != NULL) |
| while(p1->tags[i] >= 0) |
| { |
| trans->tags[i] = p1->tags[i]; |
| i++; |
| } |
| l = i; |
| j = 0; |
| if (p2->tags != NULL) |
| while (p2->tags[j] >= 0) |
| { |
| /* Don't add duplicates. */ |
| dup = 0; |
| for (k = 0; k < i; k++) |
| if (trans->tags[k] == p2->tags[j]) |
| { |
| dup = 1; |
| break; |
| } |
| if (!dup) |
| trans->tags[l++] = p2->tags[j]; |
| j++; |
| } |
| trans->tags[l] = -1; |
| } |
| |
| p2++; |
| } |
| p1++; |
| } |
| else |
| /* Compute a maximum limit for the number of transitions leaving |
| from each state. */ |
| while (p1->position >= 0) |
| { |
| p2 = orig_p2; |
| while (p2->position >= 0) |
| { |
| counts[p1->position]++; |
| p2++; |
| } |
| p1++; |
| } |
| return REG_OK; |
| } |
| |
| /* Converts the syntax tree to a TNFA. All the transitions in the TNFA are |
| labelled with one character range (there are no transitions on empty |
| strings). The TNFA takes O(n^2) space in the worst case, `n' is size of |
| the regexp. */ |
| static reg_errcode_t |
| tre_ast_to_tnfa(tre_ast_node_t *node, tre_tnfa_transition_t *transitions, |
| int *counts, int *offs) |
| { |
| tre_union_t *uni; |
| tre_catenation_t *cat; |
| tre_iteration_t *iter; |
| reg_errcode_t errcode = REG_OK; |
| |
| /* XXX - recurse using a stack!. */ |
| switch (node->type) |
| { |
| case LITERAL: |
| break; |
| case UNION: |
| uni = (tre_union_t *)node->obj; |
| errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs); |
| if (errcode != REG_OK) |
| return errcode; |
| errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs); |
| break; |
| |
| case CATENATION: |
| cat = (tre_catenation_t *)node->obj; |
| /* Add a transition from each position in cat->left->lastpos |
| to each position in cat->right->firstpos. */ |
| errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos, |
| transitions, counts, offs); |
| if (errcode != REG_OK) |
| return errcode; |
| errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs); |
| if (errcode != REG_OK) |
| return errcode; |
| errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs); |
| break; |
| |
| case ITERATION: |
| iter = (tre_iteration_t *)node->obj; |
| assert(iter->max == -1 || iter->max == 1); |
| |
| if (iter->max == -1) |
| { |
| assert(iter->min == 0 || iter->min == 1); |
| /* Add a transition from each last position in the iterated |
| expression to each first position. */ |
| errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos, |
| transitions, counts, offs); |
| if (errcode != REG_OK) |
| return errcode; |
| } |
| errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs); |
| break; |
| } |
| return errcode; |
| } |
| |
| |
| #define ERROR_EXIT(err) \ |
| do \ |
| { \ |
| errcode = err; \ |
| if (/*CONSTCOND*/1) \ |
| goto error_exit; \ |
| } \ |
| while (/*CONSTCOND*/0) |
| |
| |
| int |
| regcomp(regex_t *restrict preg, const char *restrict regex, int cflags) |
| { |
| tre_stack_t *stack; |
| tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r; |
| tre_pos_and_tags_t *p; |
| int *counts = NULL, *offs = NULL; |
| int i, add = 0; |
| tre_tnfa_transition_t *transitions, *initial; |
| tre_tnfa_t *tnfa = NULL; |
| tre_submatch_data_t *submatch_data; |
| tre_tag_direction_t *tag_directions = NULL; |
| reg_errcode_t errcode; |
| tre_mem_t mem; |
| |
| /* Parse context. */ |
| tre_parse_ctx_t parse_ctx; |
| |
| /* Allocate a stack used throughout the compilation process for various |
| purposes. */ |
| stack = tre_stack_new(512, 1024000, 128); |
| if (!stack) |
| return REG_ESPACE; |
| /* Allocate a fast memory allocator. */ |
| mem = tre_mem_new(); |
| if (!mem) |
| { |
| tre_stack_destroy(stack); |
| return REG_ESPACE; |
| } |
| |
| /* Parse the regexp. */ |
| memset(&parse_ctx, 0, sizeof(parse_ctx)); |
| parse_ctx.mem = mem; |
| parse_ctx.stack = stack; |
| parse_ctx.re = regex; |
| parse_ctx.cflags = cflags; |
| parse_ctx.max_backref = -1; |
| errcode = tre_parse(&parse_ctx); |
| if (errcode != REG_OK) |
| ERROR_EXIT(errcode); |
| preg->re_nsub = parse_ctx.submatch_id - 1; |
| tree = parse_ctx.n; |
| |
| #ifdef TRE_DEBUG |
| tre_ast_print(tree); |
| #endif /* TRE_DEBUG */ |
| |
| /* Referring to nonexistent subexpressions is illegal. */ |
| if (parse_ctx.max_backref > (int)preg->re_nsub) |
| ERROR_EXIT(REG_ESUBREG); |
| |
| /* Allocate the TNFA struct. */ |
| tnfa = xcalloc(1, sizeof(tre_tnfa_t)); |
| if (tnfa == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| tnfa->have_backrefs = parse_ctx.max_backref >= 0; |
| tnfa->have_approx = 0; |
| tnfa->num_submatches = parse_ctx.submatch_id; |
| |
| /* Set up tags for submatch addressing. If REG_NOSUB is set and the |
| regexp does not have back references, this can be skipped. */ |
| if (tnfa->have_backrefs || !(cflags & REG_NOSUB)) |
| { |
| |
| /* Figure out how many tags we will need. */ |
| errcode = tre_add_tags(NULL, stack, tree, tnfa); |
| if (errcode != REG_OK) |
| ERROR_EXIT(errcode); |
| |
| if (tnfa->num_tags > 0) |
| { |
| tag_directions = xmalloc(sizeof(*tag_directions) |
| * (tnfa->num_tags + 1)); |
| if (tag_directions == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| tnfa->tag_directions = tag_directions; |
| memset(tag_directions, -1, |
| sizeof(*tag_directions) * (tnfa->num_tags + 1)); |
| } |
| tnfa->minimal_tags = xcalloc((unsigned)tnfa->num_tags * 2 + 1, |
| sizeof(*tnfa->minimal_tags)); |
| if (tnfa->minimal_tags == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| |
| submatch_data = xcalloc((unsigned)parse_ctx.submatch_id, |
| sizeof(*submatch_data)); |
| if (submatch_data == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| tnfa->submatch_data = submatch_data; |
| |
| errcode = tre_add_tags(mem, stack, tree, tnfa); |
| if (errcode != REG_OK) |
| ERROR_EXIT(errcode); |
| |
| } |
| |
| /* Expand iteration nodes. */ |
| errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position, |
| tag_directions); |
| if (errcode != REG_OK) |
| ERROR_EXIT(errcode); |
| |
| /* Add a dummy node for the final state. |
| XXX - For certain patterns this dummy node can be optimized away, |
| for example "a*" or "ab*". Figure out a simple way to detect |
| this possibility. */ |
| tmp_ast_l = tree; |
| tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++); |
| if (tmp_ast_r == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| |
| tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r); |
| if (tree == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| |
| errcode = tre_compute_nfl(mem, stack, tree); |
| if (errcode != REG_OK) |
| ERROR_EXIT(errcode); |
| |
| counts = xmalloc(sizeof(int) * parse_ctx.position); |
| if (counts == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| |
| offs = xmalloc(sizeof(int) * parse_ctx.position); |
| if (offs == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| |
| for (i = 0; i < parse_ctx.position; i++) |
| counts[i] = 0; |
| tre_ast_to_tnfa(tree, NULL, counts, NULL); |
| |
| add = 0; |
| for (i = 0; i < parse_ctx.position; i++) |
| { |
| offs[i] = add; |
| add += counts[i] + 1; |
| counts[i] = 0; |
| } |
| transitions = xcalloc((unsigned)add + 1, sizeof(*transitions)); |
| if (transitions == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| tnfa->transitions = transitions; |
| tnfa->num_transitions = add; |
| |
| errcode = tre_ast_to_tnfa(tree, transitions, counts, offs); |
| if (errcode != REG_OK) |
| ERROR_EXIT(errcode); |
| |
| tnfa->firstpos_chars = NULL; |
| |
| p = tree->firstpos; |
| i = 0; |
| while (p->position >= 0) |
| { |
| i++; |
| p++; |
| } |
| |
| initial = xcalloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t)); |
| if (initial == NULL) |
| ERROR_EXIT(REG_ESPACE); |
| tnfa->initial = initial; |
| |
| i = 0; |
| for (p = tree->firstpos; p->position >= 0; p++) |
| { |
| initial[i].state = transitions + offs[p->position]; |
| initial[i].state_id = p->position; |
| initial[i].tags = NULL; |
| /* Copy the arrays p->tags, and p->params, they are allocated |
| from a tre_mem object. */ |
| if (p->tags) |
| { |
| int j; |
| for (j = 0; p->tags[j] >= 0; j++); |
| initial[i].tags = xmalloc(sizeof(*p->tags) * (j + 1)); |
| if (!initial[i].tags) |
| ERROR_EXIT(REG_ESPACE); |
| memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1)); |
| } |
| initial[i].assertions = p->assertions; |
| i++; |
| } |
| initial[i].state = NULL; |
| |
| tnfa->num_transitions = add; |
| tnfa->final = transitions + offs[tree->lastpos[0].position]; |
| tnfa->num_states = parse_ctx.position; |
| tnfa->cflags = cflags; |
| |
| tre_mem_destroy(mem); |
| tre_stack_destroy(stack); |
| xfree(counts); |
| xfree(offs); |
| |
| preg->TRE_REGEX_T_FIELD = (void *)tnfa; |
| return REG_OK; |
| |
| error_exit: |
| /* Free everything that was allocated and return the error code. */ |
| tre_mem_destroy(mem); |
| if (stack != NULL) |
| tre_stack_destroy(stack); |
| if (counts != NULL) |
| xfree(counts); |
| if (offs != NULL) |
| xfree(offs); |
| preg->TRE_REGEX_T_FIELD = (void *)tnfa; |
| regfree(preg); |
| return errcode; |
| } |
| |
| |
| |
| |
| void |
| regfree(regex_t *preg) |
| { |
| tre_tnfa_t *tnfa; |
| unsigned int i; |
| tre_tnfa_transition_t *trans; |
| |
| tnfa = (void *)preg->TRE_REGEX_T_FIELD; |
| if (!tnfa) |
| return; |
| |
| for (i = 0; i < tnfa->num_transitions; i++) |
| if (tnfa->transitions[i].state) |
| { |
| if (tnfa->transitions[i].tags) |
| xfree(tnfa->transitions[i].tags); |
| if (tnfa->transitions[i].neg_classes) |
| xfree(tnfa->transitions[i].neg_classes); |
| } |
| if (tnfa->transitions) |
| xfree(tnfa->transitions); |
| |
| if (tnfa->initial) |
| { |
| for (trans = tnfa->initial; trans->state; trans++) |
| { |
| if (trans->tags) |
| xfree(trans->tags); |
| } |
| xfree(tnfa->initial); |
| } |
| |
| if (tnfa->submatch_data) |
| { |
| for (i = 0; i < tnfa->num_submatches; i++) |
| if (tnfa->submatch_data[i].parents) |
| xfree(tnfa->submatch_data[i].parents); |
| xfree(tnfa->submatch_data); |
| } |
| |
| if (tnfa->tag_directions) |
| xfree(tnfa->tag_directions); |
| if (tnfa->firstpos_chars) |
| xfree(tnfa->firstpos_chars); |
| if (tnfa->minimal_tags) |
| xfree(tnfa->minimal_tags); |
| xfree(tnfa); |
| } |