| /* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */ |
| /*- |
| * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG> |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| |
| #include "libm.h" |
| #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| long double fmal(long double x, long double y, long double z) |
| { |
| return fma(x, y, z); |
| } |
| #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 |
| #include <fenv.h> |
| #if LDBL_MANT_DIG == 64 |
| #define LASTBIT(u) (u.i.m & 1) |
| #define SPLIT (0x1p32L + 1) |
| #elif LDBL_MANT_DIG == 113 |
| #define LASTBIT(u) (u.i.lo & 1) |
| #define SPLIT (0x1p57L + 1) |
| #endif |
| |
| /* |
| * A struct dd represents a floating-point number with twice the precision |
| * of a long double. We maintain the invariant that "hi" stores the high-order |
| * bits of the result. |
| */ |
| struct dd { |
| long double hi; |
| long double lo; |
| }; |
| |
| /* |
| * Compute a+b exactly, returning the exact result in a struct dd. We assume |
| * that both a and b are finite, but make no assumptions about their relative |
| * magnitudes. |
| */ |
| static inline struct dd dd_add(long double a, long double b) |
| { |
| struct dd ret; |
| long double s; |
| |
| ret.hi = a + b; |
| s = ret.hi - a; |
| ret.lo = (a - (ret.hi - s)) + (b - s); |
| return (ret); |
| } |
| |
| /* |
| * Compute a+b, with a small tweak: The least significant bit of the |
| * result is adjusted into a sticky bit summarizing all the bits that |
| * were lost to rounding. This adjustment negates the effects of double |
| * rounding when the result is added to another number with a higher |
| * exponent. For an explanation of round and sticky bits, see any reference |
| * on FPU design, e.g., |
| * |
| * J. Coonen. An Implementation Guide to a Proposed Standard for |
| * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980. |
| */ |
| static inline long double add_adjusted(long double a, long double b) |
| { |
| struct dd sum; |
| union ldshape u; |
| |
| sum = dd_add(a, b); |
| if (sum.lo != 0) { |
| u.f = sum.hi; |
| if (!LASTBIT(u)) |
| sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); |
| } |
| return (sum.hi); |
| } |
| |
| /* |
| * Compute ldexp(a+b, scale) with a single rounding error. It is assumed |
| * that the result will be subnormal, and care is taken to ensure that |
| * double rounding does not occur. |
| */ |
| static inline long double add_and_denormalize(long double a, long double b, int scale) |
| { |
| struct dd sum; |
| int bits_lost; |
| union ldshape u; |
| |
| sum = dd_add(a, b); |
| |
| /* |
| * If we are losing at least two bits of accuracy to denormalization, |
| * then the first lost bit becomes a round bit, and we adjust the |
| * lowest bit of sum.hi to make it a sticky bit summarizing all the |
| * bits in sum.lo. With the sticky bit adjusted, the hardware will |
| * break any ties in the correct direction. |
| * |
| * If we are losing only one bit to denormalization, however, we must |
| * break the ties manually. |
| */ |
| if (sum.lo != 0) { |
| u.f = sum.hi; |
| bits_lost = -u.i.se - scale + 1; |
| if ((bits_lost != 1) ^ LASTBIT(u)) |
| sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); |
| } |
| return scalbnl(sum.hi, scale); |
| } |
| |
| /* |
| * Compute a*b exactly, returning the exact result in a struct dd. We assume |
| * that both a and b are normalized, so no underflow or overflow will occur. |
| * The current rounding mode must be round-to-nearest. |
| */ |
| static inline struct dd dd_mul(long double a, long double b) |
| { |
| struct dd ret; |
| long double ha, hb, la, lb, p, q; |
| |
| p = a * SPLIT; |
| ha = a - p; |
| ha += p; |
| la = a - ha; |
| |
| p = b * SPLIT; |
| hb = b - p; |
| hb += p; |
| lb = b - hb; |
| |
| p = ha * hb; |
| q = ha * lb + la * hb; |
| |
| ret.hi = p + q; |
| ret.lo = p - ret.hi + q + la * lb; |
| return (ret); |
| } |
| |
| /* |
| * Fused multiply-add: Compute x * y + z with a single rounding error. |
| * |
| * We use scaling to avoid overflow/underflow, along with the |
| * canonical precision-doubling technique adapted from: |
| * |
| * Dekker, T. A Floating-Point Technique for Extending the |
| * Available Precision. Numer. Math. 18, 224-242 (1971). |
| */ |
| long double fmal(long double x, long double y, long double z) |
| { |
| #pragma STDC FENV_ACCESS ON |
| long double xs, ys, zs, adj; |
| struct dd xy, r; |
| int oround; |
| int ex, ey, ez; |
| int spread; |
| |
| /* |
| * Handle special cases. The order of operations and the particular |
| * return values here are crucial in handling special cases involving |
| * infinities, NaNs, overflows, and signed zeroes correctly. |
| */ |
| if (!isfinite(x) || !isfinite(y)) |
| return (x * y + z); |
| if (!isfinite(z)) |
| return (z); |
| if (x == 0.0 || y == 0.0) |
| return (x * y + z); |
| if (z == 0.0) |
| return (x * y); |
| |
| xs = frexpl(x, &ex); |
| ys = frexpl(y, &ey); |
| zs = frexpl(z, &ez); |
| oround = fegetround(); |
| spread = ex + ey - ez; |
| |
| /* |
| * If x * y and z are many orders of magnitude apart, the scaling |
| * will overflow, so we handle these cases specially. Rounding |
| * modes other than FE_TONEAREST are painful. |
| */ |
| if (spread < -LDBL_MANT_DIG) { |
| #ifdef FE_INEXACT |
| feraiseexcept(FE_INEXACT); |
| #endif |
| #ifdef FE_UNDERFLOW |
| if (!isnormal(z)) |
| feraiseexcept(FE_UNDERFLOW); |
| #endif |
| switch (oround) { |
| default: /* FE_TONEAREST */ |
| return (z); |
| #ifdef FE_TOWARDZERO |
| case FE_TOWARDZERO: |
| if (x > 0.0 ^ y < 0.0 ^ z < 0.0) |
| return (z); |
| else |
| return (nextafterl(z, 0)); |
| #endif |
| #ifdef FE_DOWNWARD |
| case FE_DOWNWARD: |
| if (x > 0.0 ^ y < 0.0) |
| return (z); |
| else |
| return (nextafterl(z, -INFINITY)); |
| #endif |
| #ifdef FE_UPWARD |
| case FE_UPWARD: |
| if (x > 0.0 ^ y < 0.0) |
| return (nextafterl(z, INFINITY)); |
| else |
| return (z); |
| #endif |
| } |
| } |
| if (spread <= LDBL_MANT_DIG * 2) |
| zs = scalbnl(zs, -spread); |
| else |
| zs = copysignl(LDBL_MIN, zs); |
| |
| fesetround(FE_TONEAREST); |
| |
| /* |
| * Basic approach for round-to-nearest: |
| * |
| * (xy.hi, xy.lo) = x * y (exact) |
| * (r.hi, r.lo) = xy.hi + z (exact) |
| * adj = xy.lo + r.lo (inexact; low bit is sticky) |
| * result = r.hi + adj (correctly rounded) |
| */ |
| xy = dd_mul(xs, ys); |
| r = dd_add(xy.hi, zs); |
| |
| spread = ex + ey; |
| |
| if (r.hi == 0.0) { |
| /* |
| * When the addends cancel to 0, ensure that the result has |
| * the correct sign. |
| */ |
| fesetround(oround); |
| volatile long double vzs = zs; /* XXX gcc CSE bug workaround */ |
| return xy.hi + vzs + scalbnl(xy.lo, spread); |
| } |
| |
| if (oround != FE_TONEAREST) { |
| /* |
| * There is no need to worry about double rounding in directed |
| * rounding modes. |
| * But underflow may not be raised correctly, example in downward rounding: |
| * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L) |
| */ |
| long double ret; |
| #if defined(FE_INEXACT) && defined(FE_UNDERFLOW) |
| int e = fetestexcept(FE_INEXACT); |
| feclearexcept(FE_INEXACT); |
| #endif |
| fesetround(oround); |
| adj = r.lo + xy.lo; |
| ret = scalbnl(r.hi + adj, spread); |
| #if defined(FE_INEXACT) && defined(FE_UNDERFLOW) |
| if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT)) |
| feraiseexcept(FE_UNDERFLOW); |
| else if (e) |
| feraiseexcept(FE_INEXACT); |
| #endif |
| return ret; |
| } |
| |
| adj = add_adjusted(r.lo, xy.lo); |
| if (spread + ilogbl(r.hi) > -16383) |
| return scalbnl(r.hi + adj, spread); |
| else |
| return add_and_denormalize(r.hi, adj, spread); |
| } |
| #endif |