Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 1 | /* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_log1pl.c */ |
| 2 | /* |
| 3 | * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 | * |
| 5 | * Permission to use, copy, modify, and distribute this software for any |
| 6 | * purpose with or without fee is hereby granted, provided that the above |
| 7 | * copyright notice and this permission notice appear in all copies. |
| 8 | * |
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 | */ |
| 17 | /* |
| 18 | * Relative error logarithm |
| 19 | * Natural logarithm of 1+x, long double precision |
| 20 | * |
| 21 | * |
| 22 | * SYNOPSIS: |
| 23 | * |
| 24 | * long double x, y, log1pl(); |
| 25 | * |
| 26 | * y = log1pl( x ); |
| 27 | * |
| 28 | * |
| 29 | * DESCRIPTION: |
| 30 | * |
| 31 | * Returns the base e (2.718...) logarithm of 1+x. |
| 32 | * |
| 33 | * The argument 1+x is separated into its exponent and fractional |
| 34 | * parts. If the exponent is between -1 and +1, the logarithm |
| 35 | * of the fraction is approximated by |
| 36 | * |
| 37 | * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). |
| 38 | * |
| 39 | * Otherwise, setting z = 2(x-1)/x+1), |
| 40 | * |
| 41 | * log(x) = z + z^3 P(z)/Q(z). |
| 42 | * |
| 43 | * |
| 44 | * ACCURACY: |
| 45 | * |
| 46 | * Relative error: |
| 47 | * arithmetic domain # trials peak rms |
| 48 | * IEEE -1.0, 9.0 100000 8.2e-20 2.5e-20 |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 49 | */ |
| 50 | |
| 51 | #include "libm.h" |
| 52 | |
| 53 | #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 54 | long double log1pl(long double x) |
| 55 | { |
| 56 | return log1p(x); |
| 57 | } |
| 58 | #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| 59 | /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) |
| 60 | * 1/sqrt(2) <= x < sqrt(2) |
| 61 | * Theoretical peak relative error = 2.32e-20 |
| 62 | */ |
Rich Felker | 9e2a895 | 2012-03-18 01:58:28 -0400 | [diff] [blame] | 63 | static const long double P[] = { |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 64 | 4.5270000862445199635215E-5L, |
| 65 | 4.9854102823193375972212E-1L, |
| 66 | 6.5787325942061044846969E0L, |
| 67 | 2.9911919328553073277375E1L, |
| 68 | 6.0949667980987787057556E1L, |
| 69 | 5.7112963590585538103336E1L, |
| 70 | 2.0039553499201281259648E1L, |
| 71 | }; |
Rich Felker | 9e2a895 | 2012-03-18 01:58:28 -0400 | [diff] [blame] | 72 | static const long double Q[] = { |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 73 | /* 1.0000000000000000000000E0,*/ |
| 74 | 1.5062909083469192043167E1L, |
| 75 | 8.3047565967967209469434E1L, |
| 76 | 2.2176239823732856465394E2L, |
| 77 | 3.0909872225312059774938E2L, |
| 78 | 2.1642788614495947685003E2L, |
| 79 | 6.0118660497603843919306E1L, |
| 80 | }; |
| 81 | |
| 82 | /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
| 83 | * where z = 2(x-1)/(x+1) |
| 84 | * 1/sqrt(2) <= x < sqrt(2) |
| 85 | * Theoretical peak relative error = 6.16e-22 |
| 86 | */ |
Rich Felker | 9e2a895 | 2012-03-18 01:58:28 -0400 | [diff] [blame] | 87 | static const long double R[4] = { |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 88 | 1.9757429581415468984296E-3L, |
| 89 | -7.1990767473014147232598E-1L, |
| 90 | 1.0777257190312272158094E1L, |
| 91 | -3.5717684488096787370998E1L, |
| 92 | }; |
Rich Felker | 9e2a895 | 2012-03-18 01:58:28 -0400 | [diff] [blame] | 93 | static const long double S[4] = { |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 94 | /* 1.00000000000000000000E0L,*/ |
| 95 | -2.6201045551331104417768E1L, |
| 96 | 1.9361891836232102174846E2L, |
| 97 | -4.2861221385716144629696E2L, |
| 98 | }; |
| 99 | static const long double C1 = 6.9314575195312500000000E-1L; |
| 100 | static const long double C2 = 1.4286068203094172321215E-6L; |
| 101 | |
| 102 | #define SQRTH 0.70710678118654752440L |
| 103 | |
| 104 | long double log1pl(long double xm1) |
| 105 | { |
| 106 | long double x, y, z; |
| 107 | int e; |
| 108 | |
| 109 | if (isnan(xm1)) |
| 110 | return xm1; |
| 111 | if (xm1 == INFINITY) |
| 112 | return xm1; |
| 113 | if (xm1 == 0.0) |
| 114 | return xm1; |
| 115 | |
nsz | 0cbb654 | 2012-03-19 23:41:19 +0100 | [diff] [blame] | 116 | x = xm1 + 1.0; |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 117 | |
| 118 | /* Test for domain errors. */ |
nsz | 0cbb654 | 2012-03-19 23:41:19 +0100 | [diff] [blame] | 119 | if (x <= 0.0) { |
| 120 | if (x == 0.0) |
Szabolcs Nagy | 04ccbdc | 2012-11-13 00:21:09 +0100 | [diff] [blame^] | 121 | return -1/x; /* -inf with divbyzero */ |
| 122 | return 0/0.0f; /* nan with invalid */ |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 123 | } |
| 124 | |
| 125 | /* Separate mantissa from exponent. |
| 126 | Use frexp so that denormal numbers will be handled properly. */ |
| 127 | x = frexpl(x, &e); |
| 128 | |
| 129 | /* logarithm using log(x) = z + z^3 P(z)/Q(z), |
| 130 | where z = 2(x-1)/x+1) */ |
| 131 | if (e > 2 || e < -2) { |
| 132 | if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
| 133 | e -= 1; |
nsz | 0cbb654 | 2012-03-19 23:41:19 +0100 | [diff] [blame] | 134 | z = x - 0.5; |
| 135 | y = 0.5 * z + 0.5; |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 136 | } else { /* 2 (x-1)/(x+1) */ |
nsz | 0cbb654 | 2012-03-19 23:41:19 +0100 | [diff] [blame] | 137 | z = x - 0.5; |
| 138 | z -= 0.5; |
| 139 | y = 0.5 * x + 0.5; |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 140 | } |
| 141 | x = z / y; |
| 142 | z = x*x; |
| 143 | z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
| 144 | z = z + e * C2; |
| 145 | z = z + x; |
| 146 | z = z + e * C1; |
| 147 | return z; |
| 148 | } |
| 149 | |
| 150 | /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
| 151 | if (x < SQRTH) { |
| 152 | e -= 1; |
| 153 | if (e != 0) |
nsz | 0cbb654 | 2012-03-19 23:41:19 +0100 | [diff] [blame] | 154 | x = 2.0 * x - 1.0; |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 155 | else |
| 156 | x = xm1; |
| 157 | } else { |
| 158 | if (e != 0) |
nsz | 0cbb654 | 2012-03-19 23:41:19 +0100 | [diff] [blame] | 159 | x = x - 1.0; |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 160 | else |
| 161 | x = xm1; |
| 162 | } |
| 163 | z = x*x; |
| 164 | y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6)); |
| 165 | y = y + e * C2; |
| 166 | z = y - 0.5 * z; |
| 167 | z = z + x; |
| 168 | z = z + e * C1; |
| 169 | return z; |
| 170 | } |
| 171 | #endif |