blob: 87cd1cdb5f325f01cf12d19594efbcead93472b1 [file] [log] [blame]
Rich Felkerb69f6952012-03-13 01:17:53 -04001#include "libm.h"
2
3#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
4long double atanhl(long double x)
5{
6 return atanh(x);
7}
Szabolcs Nagyf4e46322015-03-10 20:01:20 +00008#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
Szabolcs Nagy482ccd22012-12-11 23:06:20 +01009/* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
Rich Felkerb69f6952012-03-13 01:17:53 -040010long double atanhl(long double x)
11{
Szabolcs Nagyaa0c4a22013-09-04 15:54:02 +000012 union ldshape u = {x};
Szabolcs Nagy482ccd22012-12-11 23:06:20 +010013 unsigned e = u.i.se & 0x7fff;
14 unsigned s = u.i.se >> 15;
Rich Felkerb69f6952012-03-13 01:17:53 -040015
Szabolcs Nagy482ccd22012-12-11 23:06:20 +010016 /* |x| */
17 u.i.se = e;
18 x = u.f;
19
Szabolcs Nagyf4d9bfb2013-09-05 16:57:46 +000020 if (e < 0x3ff - 1) {
21 if (e < 0x3ff - LDBL_MANT_DIG/2) {
22 /* handle underflow */
23 if (e == 0)
24 FORCE_EVAL((float)x);
25 } else {
26 /* |x| < 0.5, up to 1.7ulp error */
27 x = 0.5*log1pl(2*x + 2*x*x/(1-x));
28 }
Szabolcs Nagy482ccd22012-12-11 23:06:20 +010029 } else {
Szabolcs Nagyf4d9bfb2013-09-05 16:57:46 +000030 /* avoid overflow */
31 x = 0.5*log1pl(2*(x/(1-x)));
Szabolcs Nagy482ccd22012-12-11 23:06:20 +010032 }
33 return s ? -x : x;
Rich Felkerb69f6952012-03-13 01:17:53 -040034}
35#endif