Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */ |
| 2 | /* |
| 3 | * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
| 4 | */ |
| 5 | /* |
| 6 | * ==================================================== |
| 7 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 8 | * |
| 9 | * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 10 | * Permission to use, copy, modify, and distribute this |
| 11 | * software is freely granted, provided that this notice |
| 12 | * is preserved. |
| 13 | * ==================================================== |
| 14 | */ |
| 15 | |
| 16 | #include "libm.h" |
| 17 | |
| 18 | static float ponef(float), qonef(float); |
| 19 | |
| 20 | static const float |
| 21 | huge = 1e30, |
| 22 | one = 1.0, |
| 23 | invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */ |
| 24 | tpi = 6.3661974669e-01, /* 0x3f22f983 */ |
| 25 | /* R0/S0 on [0,2] */ |
| 26 | r00 = -6.2500000000e-02, /* 0xbd800000 */ |
| 27 | r01 = 1.4070566976e-03, /* 0x3ab86cfd */ |
| 28 | r02 = -1.5995563444e-05, /* 0xb7862e36 */ |
| 29 | r03 = 4.9672799207e-08, /* 0x335557d2 */ |
| 30 | s01 = 1.9153760746e-02, /* 0x3c9ce859 */ |
| 31 | s02 = 1.8594678841e-04, /* 0x3942fab6 */ |
| 32 | s03 = 1.1771846857e-06, /* 0x359dffc2 */ |
| 33 | s04 = 5.0463624390e-09, /* 0x31ad6446 */ |
| 34 | s05 = 1.2354227016e-11; /* 0x2d59567e */ |
| 35 | |
| 36 | static const float zero = 0.0; |
| 37 | |
| 38 | float j1f(float x) |
| 39 | { |
| 40 | float z,s,c,ss,cc,r,u,v,y; |
| 41 | int32_t hx,ix; |
| 42 | |
| 43 | GET_FLOAT_WORD(hx, x); |
| 44 | ix = hx & 0x7fffffff; |
| 45 | if (ix >= 0x7f800000) |
| 46 | return one/x; |
| 47 | y = fabsf(x); |
| 48 | if (ix >= 0x40000000) { /* |x| >= 2.0 */ |
| 49 | s = sinf(y); |
| 50 | c = cosf(y); |
| 51 | ss = -s-c; |
| 52 | cc = s-c; |
| 53 | if (ix < 0x7f000000) { /* make sure y+y not overflow */ |
| 54 | z = cosf(y+y); |
| 55 | if (s*c > zero) |
| 56 | cc = z/ss; |
| 57 | else |
| 58 | ss = z/cc; |
| 59 | } |
| 60 | /* |
| 61 | * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x) |
| 62 | * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x) |
| 63 | */ |
| 64 | if (ix > 0x80000000) |
| 65 | z = (invsqrtpi*cc)/sqrtf(y); |
| 66 | else { |
| 67 | u = ponef(y); |
| 68 | v = qonef(y); |
| 69 | z = invsqrtpi*(u*cc-v*ss)/sqrtf(y); |
| 70 | } |
| 71 | if (hx < 0) |
| 72 | return -z; |
| 73 | return z; |
| 74 | } |
| 75 | if (ix < 0x32000000) { /* |x| < 2**-27 */ |
| 76 | /* raise inexact if x!=0 */ |
| 77 | if (huge+x > one) |
nsz | 8d0a6f7 | 2012-03-13 20:24:23 +0100 | [diff] [blame^] | 78 | return 0.5f*x; |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 79 | } |
| 80 | z = x*x; |
| 81 | r = z*(r00+z*(r01+z*(r02+z*r03))); |
| 82 | s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05)))); |
| 83 | r *= x; |
nsz | 8d0a6f7 | 2012-03-13 20:24:23 +0100 | [diff] [blame^] | 84 | return 0.5f*x + r/s; |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 85 | } |
| 86 | |
| 87 | static const float U0[5] = { |
| 88 | -1.9605709612e-01, /* 0xbe48c331 */ |
| 89 | 5.0443872809e-02, /* 0x3d4e9e3c */ |
| 90 | -1.9125689287e-03, /* 0xbafaaf2a */ |
| 91 | 2.3525259166e-05, /* 0x37c5581c */ |
| 92 | -9.1909917899e-08, /* 0xb3c56003 */ |
| 93 | }; |
| 94 | static const float V0[5] = { |
| 95 | 1.9916731864e-02, /* 0x3ca3286a */ |
| 96 | 2.0255257550e-04, /* 0x3954644b */ |
| 97 | 1.3560879779e-06, /* 0x35b602d4 */ |
| 98 | 6.2274145840e-09, /* 0x31d5f8eb */ |
| 99 | 1.6655924903e-11, /* 0x2d9281cf */ |
| 100 | }; |
| 101 | |
| 102 | float y1f(float x) |
| 103 | { |
| 104 | float z,s,c,ss,cc,u,v; |
| 105 | int32_t hx,ix; |
| 106 | |
| 107 | GET_FLOAT_WORD(hx, x); |
| 108 | ix = 0x7fffffff & hx; |
| 109 | /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */ |
| 110 | if (ix >= 0x7f800000) |
| 111 | return one/(x+x*x); |
| 112 | if (ix == 0) |
| 113 | return -one/zero; |
| 114 | if (hx < 0) |
| 115 | return zero/zero; |
| 116 | if (ix >= 0x40000000) { /* |x| >= 2.0 */ |
| 117 | s = sinf(x); |
| 118 | c = cosf(x); |
| 119 | ss = -s-c; |
| 120 | cc = s-c; |
| 121 | if (ix < 0x7f000000) { /* make sure x+x not overflow */ |
| 122 | z = cosf(x+x); |
| 123 | if (s*c > zero) |
| 124 | cc = z/ss; |
| 125 | else |
| 126 | ss = z/cc; |
| 127 | } |
| 128 | /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0)) |
| 129 | * where x0 = x-3pi/4 |
| 130 | * Better formula: |
| 131 | * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4) |
| 132 | * = 1/sqrt(2) * (sin(x) - cos(x)) |
| 133 | * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4) |
| 134 | * = -1/sqrt(2) * (cos(x) + sin(x)) |
| 135 | * To avoid cancellation, use |
| 136 | * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x)) |
| 137 | * to compute the worse one. |
| 138 | */ |
| 139 | if (ix > 0x48000000) |
| 140 | z = (invsqrtpi*ss)/sqrtf(x); |
| 141 | else { |
| 142 | u = ponef(x); |
| 143 | v = qonef(x); |
| 144 | z = invsqrtpi*(u*ss+v*cc)/sqrtf(x); |
| 145 | } |
| 146 | return z; |
| 147 | } |
| 148 | if (ix <= 0x24800000) /* x < 2**-54 */ |
| 149 | return -tpi/x; |
| 150 | z = x*x; |
| 151 | u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4]))); |
| 152 | v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4])))); |
| 153 | return x*(u/v) + tpi*(j1f(x)*logf(x)-one/x); |
| 154 | } |
| 155 | |
| 156 | /* For x >= 8, the asymptotic expansions of pone is |
| 157 | * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x. |
| 158 | * We approximate pone by |
| 159 | * pone(x) = 1 + (R/S) |
| 160 | * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10 |
| 161 | * S = 1 + ps0*s^2 + ... + ps4*s^10 |
| 162 | * and |
| 163 | * | pone(x)-1-R/S | <= 2 ** ( -60.06) |
| 164 | */ |
| 165 | |
| 166 | static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
| 167 | 0.0000000000e+00, /* 0x00000000 */ |
| 168 | 1.1718750000e-01, /* 0x3df00000 */ |
| 169 | 1.3239480972e+01, /* 0x4153d4ea */ |
| 170 | 4.1205184937e+02, /* 0x43ce06a3 */ |
| 171 | 3.8747453613e+03, /* 0x45722bed */ |
| 172 | 7.9144794922e+03, /* 0x45f753d6 */ |
| 173 | }; |
| 174 | static const float ps8[5] = { |
| 175 | 1.1420736694e+02, /* 0x42e46a2c */ |
| 176 | 3.6509309082e+03, /* 0x45642ee5 */ |
| 177 | 3.6956207031e+04, /* 0x47105c35 */ |
| 178 | 9.7602796875e+04, /* 0x47bea166 */ |
| 179 | 3.0804271484e+04, /* 0x46f0a88b */ |
| 180 | }; |
| 181 | |
| 182 | static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
| 183 | 1.3199052094e-11, /* 0x2d68333f */ |
| 184 | 1.1718749255e-01, /* 0x3defffff */ |
| 185 | 6.8027510643e+00, /* 0x40d9b023 */ |
| 186 | 1.0830818176e+02, /* 0x42d89dca */ |
| 187 | 5.1763616943e+02, /* 0x440168b7 */ |
| 188 | 5.2871520996e+02, /* 0x44042dc6 */ |
| 189 | }; |
| 190 | static const float ps5[5] = { |
| 191 | 5.9280597687e+01, /* 0x426d1f55 */ |
| 192 | 9.9140142822e+02, /* 0x4477d9b1 */ |
| 193 | 5.3532670898e+03, /* 0x45a74a23 */ |
| 194 | 7.8446904297e+03, /* 0x45f52586 */ |
| 195 | 1.5040468750e+03, /* 0x44bc0180 */ |
| 196 | }; |
| 197 | |
| 198 | static const float pr3[6] = { |
| 199 | 3.0250391081e-09, /* 0x314fe10d */ |
| 200 | 1.1718686670e-01, /* 0x3defffab */ |
| 201 | 3.9329774380e+00, /* 0x407bb5e7 */ |
| 202 | 3.5119403839e+01, /* 0x420c7a45 */ |
| 203 | 9.1055007935e+01, /* 0x42b61c2a */ |
| 204 | 4.8559066772e+01, /* 0x42423c7c */ |
| 205 | }; |
| 206 | static const float ps3[5] = { |
| 207 | 3.4791309357e+01, /* 0x420b2a4d */ |
| 208 | 3.3676245117e+02, /* 0x43a86198 */ |
| 209 | 1.0468714600e+03, /* 0x4482dbe3 */ |
| 210 | 8.9081134033e+02, /* 0x445eb3ed */ |
| 211 | 1.0378793335e+02, /* 0x42cf936c */ |
| 212 | }; |
| 213 | |
| 214 | static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
| 215 | 1.0771083225e-07, /* 0x33e74ea8 */ |
| 216 | 1.1717621982e-01, /* 0x3deffa16 */ |
| 217 | 2.3685150146e+00, /* 0x401795c0 */ |
| 218 | 1.2242610931e+01, /* 0x4143e1bc */ |
| 219 | 1.7693971634e+01, /* 0x418d8d41 */ |
| 220 | 5.0735230446e+00, /* 0x40a25a4d */ |
| 221 | }; |
| 222 | static const float ps2[5] = { |
| 223 | 2.1436485291e+01, /* 0x41ab7dec */ |
| 224 | 1.2529022980e+02, /* 0x42fa9499 */ |
| 225 | 2.3227647400e+02, /* 0x436846c7 */ |
| 226 | 1.1767937469e+02, /* 0x42eb5bd7 */ |
| 227 | 8.3646392822e+00, /* 0x4105d590 */ |
| 228 | }; |
| 229 | |
| 230 | static float ponef(float x) |
| 231 | { |
| 232 | const float *p,*q; |
| 233 | float z,r,s; |
| 234 | int32_t ix; |
| 235 | |
| 236 | GET_FLOAT_WORD(ix, x); |
| 237 | ix &= 0x7fffffff; |
| 238 | if (ix >= 0x41000000){p = pr8; q = ps8;} |
| 239 | else if (ix >= 0x40f71c58){p = pr5; q = ps5;} |
| 240 | else if (ix >= 0x4036db68){p = pr3; q = ps3;} |
| 241 | else if (ix >= 0x40000000){p = pr2; q = ps2;} |
| 242 | z = one/(x*x); |
| 243 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
| 244 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4])))); |
| 245 | return one + r/s; |
| 246 | } |
| 247 | |
| 248 | /* For x >= 8, the asymptotic expansions of qone is |
| 249 | * 3/8 s - 105/1024 s^3 - ..., where s = 1/x. |
| 250 | * We approximate pone by |
| 251 | * qone(x) = s*(0.375 + (R/S)) |
| 252 | * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10 |
| 253 | * S = 1 + qs1*s^2 + ... + qs6*s^12 |
| 254 | * and |
| 255 | * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13) |
| 256 | */ |
| 257 | |
| 258 | static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */ |
| 259 | 0.0000000000e+00, /* 0x00000000 */ |
| 260 | -1.0253906250e-01, /* 0xbdd20000 */ |
| 261 | -1.6271753311e+01, /* 0xc1822c8d */ |
| 262 | -7.5960174561e+02, /* 0xc43de683 */ |
| 263 | -1.1849806641e+04, /* 0xc639273a */ |
| 264 | -4.8438511719e+04, /* 0xc73d3683 */ |
| 265 | }; |
| 266 | static const float qs8[6] = { |
| 267 | 1.6139537048e+02, /* 0x43216537 */ |
| 268 | 7.8253862305e+03, /* 0x45f48b17 */ |
| 269 | 1.3387534375e+05, /* 0x4802bcd6 */ |
| 270 | 7.1965775000e+05, /* 0x492fb29c */ |
| 271 | 6.6660125000e+05, /* 0x4922be94 */ |
| 272 | -2.9449025000e+05, /* 0xc88fcb48 */ |
| 273 | }; |
| 274 | |
| 275 | static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */ |
| 276 | -2.0897993405e-11, /* 0xadb7d219 */ |
| 277 | -1.0253904760e-01, /* 0xbdd1fffe */ |
| 278 | -8.0564479828e+00, /* 0xc100e736 */ |
| 279 | -1.8366960144e+02, /* 0xc337ab6b */ |
| 280 | -1.3731937256e+03, /* 0xc4aba633 */ |
| 281 | -2.6124443359e+03, /* 0xc523471c */ |
| 282 | }; |
| 283 | static const float qs5[6] = { |
| 284 | 8.1276550293e+01, /* 0x42a28d98 */ |
| 285 | 1.9917987061e+03, /* 0x44f8f98f */ |
| 286 | 1.7468484375e+04, /* 0x468878f8 */ |
| 287 | 4.9851425781e+04, /* 0x4742bb6d */ |
| 288 | 2.7948074219e+04, /* 0x46da5826 */ |
| 289 | -4.7191835938e+03, /* 0xc5937978 */ |
| 290 | }; |
| 291 | |
| 292 | static const float qr3[6] = { |
| 293 | -5.0783124372e-09, /* 0xb1ae7d4f */ |
| 294 | -1.0253783315e-01, /* 0xbdd1ff5b */ |
| 295 | -4.6101160049e+00, /* 0xc0938612 */ |
| 296 | -5.7847221375e+01, /* 0xc267638e */ |
| 297 | -2.2824453735e+02, /* 0xc3643e9a */ |
| 298 | -2.1921012878e+02, /* 0xc35b35cb */ |
| 299 | }; |
| 300 | static const float qs3[6] = { |
| 301 | 4.7665153503e+01, /* 0x423ea91e */ |
| 302 | 6.7386511230e+02, /* 0x4428775e */ |
| 303 | 3.3801528320e+03, /* 0x45534272 */ |
| 304 | 5.5477290039e+03, /* 0x45ad5dd5 */ |
| 305 | 1.9031191406e+03, /* 0x44ede3d0 */ |
| 306 | -1.3520118713e+02, /* 0xc3073381 */ |
| 307 | }; |
| 308 | |
| 309 | static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */ |
| 310 | -1.7838172539e-07, /* 0xb43f8932 */ |
| 311 | -1.0251704603e-01, /* 0xbdd1f475 */ |
| 312 | -2.7522056103e+00, /* 0xc0302423 */ |
| 313 | -1.9663616180e+01, /* 0xc19d4f16 */ |
| 314 | -4.2325313568e+01, /* 0xc2294d1f */ |
| 315 | -2.1371921539e+01, /* 0xc1aaf9b2 */ |
| 316 | }; |
| 317 | static const float qs2[6] = { |
| 318 | 2.9533363342e+01, /* 0x41ec4454 */ |
| 319 | 2.5298155212e+02, /* 0x437cfb47 */ |
| 320 | 7.5750280762e+02, /* 0x443d602e */ |
| 321 | 7.3939318848e+02, /* 0x4438d92a */ |
| 322 | 1.5594900513e+02, /* 0x431bf2f2 */ |
| 323 | -4.9594988823e+00, /* 0xc09eb437 */ |
| 324 | }; |
| 325 | |
| 326 | static float qonef(float x) |
| 327 | { |
| 328 | const float *p,*q; |
| 329 | float s,r,z; |
| 330 | int32_t ix; |
| 331 | |
| 332 | GET_FLOAT_WORD(ix, x); |
| 333 | ix &= 0x7fffffff; |
| 334 | if (ix >= 0x40200000){p = qr8; q = qs8;} |
| 335 | else if (ix >= 0x40f71c58){p = qr5; q = qs5;} |
| 336 | else if (ix >= 0x4036db68){p = qr3; q = qs3;} |
| 337 | else if (ix >= 0x40000000){p = qr2; q = qs2;} |
| 338 | z = one/(x*x); |
| 339 | r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5])))); |
| 340 | s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5]))))); |
nsz | 8d0a6f7 | 2012-03-13 20:24:23 +0100 | [diff] [blame^] | 341 | return (.375f + r/s)/x; |
Rich Felker | b69f695 | 2012-03-13 01:17:53 -0400 | [diff] [blame] | 342 | } |