blob: 2d617b67d235f5060fa00f65cbfa1f768b623efd [file] [log] [blame]
Rich Felkerb69f6952012-03-13 01:17:53 -04001/* origin: FreeBSD /usr/src/lib/msun/src/e_j1f.c */
2/*
3 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4 */
5/*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16#include "libm.h"
17
18static float ponef(float), qonef(float);
19
20static const float
21huge = 1e30,
22one = 1.0,
23invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
24tpi = 6.3661974669e-01, /* 0x3f22f983 */
25/* R0/S0 on [0,2] */
26r00 = -6.2500000000e-02, /* 0xbd800000 */
27r01 = 1.4070566976e-03, /* 0x3ab86cfd */
28r02 = -1.5995563444e-05, /* 0xb7862e36 */
29r03 = 4.9672799207e-08, /* 0x335557d2 */
30s01 = 1.9153760746e-02, /* 0x3c9ce859 */
31s02 = 1.8594678841e-04, /* 0x3942fab6 */
32s03 = 1.1771846857e-06, /* 0x359dffc2 */
33s04 = 5.0463624390e-09, /* 0x31ad6446 */
34s05 = 1.2354227016e-11; /* 0x2d59567e */
35
36static const float zero = 0.0;
37
38float j1f(float x)
39{
40 float z,s,c,ss,cc,r,u,v,y;
41 int32_t hx,ix;
42
43 GET_FLOAT_WORD(hx, x);
44 ix = hx & 0x7fffffff;
45 if (ix >= 0x7f800000)
46 return one/x;
47 y = fabsf(x);
48 if (ix >= 0x40000000) { /* |x| >= 2.0 */
49 s = sinf(y);
50 c = cosf(y);
51 ss = -s-c;
52 cc = s-c;
53 if (ix < 0x7f000000) { /* make sure y+y not overflow */
54 z = cosf(y+y);
55 if (s*c > zero)
56 cc = z/ss;
57 else
58 ss = z/cc;
59 }
60 /*
61 * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
62 * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
63 */
64 if (ix > 0x80000000)
65 z = (invsqrtpi*cc)/sqrtf(y);
66 else {
67 u = ponef(y);
68 v = qonef(y);
69 z = invsqrtpi*(u*cc-v*ss)/sqrtf(y);
70 }
71 if (hx < 0)
72 return -z;
73 return z;
74 }
75 if (ix < 0x32000000) { /* |x| < 2**-27 */
76 /* raise inexact if x!=0 */
77 if (huge+x > one)
nsz8d0a6f72012-03-13 20:24:23 +010078 return 0.5f*x;
Rich Felkerb69f6952012-03-13 01:17:53 -040079 }
80 z = x*x;
81 r = z*(r00+z*(r01+z*(r02+z*r03)));
82 s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
83 r *= x;
nsz8d0a6f72012-03-13 20:24:23 +010084 return 0.5f*x + r/s;
Rich Felkerb69f6952012-03-13 01:17:53 -040085}
86
87static const float U0[5] = {
88 -1.9605709612e-01, /* 0xbe48c331 */
89 5.0443872809e-02, /* 0x3d4e9e3c */
90 -1.9125689287e-03, /* 0xbafaaf2a */
91 2.3525259166e-05, /* 0x37c5581c */
92 -9.1909917899e-08, /* 0xb3c56003 */
93};
94static const float V0[5] = {
95 1.9916731864e-02, /* 0x3ca3286a */
96 2.0255257550e-04, /* 0x3954644b */
97 1.3560879779e-06, /* 0x35b602d4 */
98 6.2274145840e-09, /* 0x31d5f8eb */
99 1.6655924903e-11, /* 0x2d9281cf */
100};
101
102float y1f(float x)
103{
104 float z,s,c,ss,cc,u,v;
105 int32_t hx,ix;
106
107 GET_FLOAT_WORD(hx, x);
108 ix = 0x7fffffff & hx;
109 /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
110 if (ix >= 0x7f800000)
111 return one/(x+x*x);
112 if (ix == 0)
113 return -one/zero;
114 if (hx < 0)
115 return zero/zero;
116 if (ix >= 0x40000000) { /* |x| >= 2.0 */
117 s = sinf(x);
118 c = cosf(x);
119 ss = -s-c;
120 cc = s-c;
121 if (ix < 0x7f000000) { /* make sure x+x not overflow */
122 z = cosf(x+x);
123 if (s*c > zero)
124 cc = z/ss;
125 else
126 ss = z/cc;
127 }
128 /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
129 * where x0 = x-3pi/4
130 * Better formula:
131 * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
132 * = 1/sqrt(2) * (sin(x) - cos(x))
133 * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
134 * = -1/sqrt(2) * (cos(x) + sin(x))
135 * To avoid cancellation, use
136 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
137 * to compute the worse one.
138 */
139 if (ix > 0x48000000)
140 z = (invsqrtpi*ss)/sqrtf(x);
141 else {
142 u = ponef(x);
143 v = qonef(x);
144 z = invsqrtpi*(u*ss+v*cc)/sqrtf(x);
145 }
146 return z;
147 }
148 if (ix <= 0x24800000) /* x < 2**-54 */
149 return -tpi/x;
150 z = x*x;
151 u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
152 v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
153 return x*(u/v) + tpi*(j1f(x)*logf(x)-one/x);
154}
155
156/* For x >= 8, the asymptotic expansions of pone is
157 * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
158 * We approximate pone by
159 * pone(x) = 1 + (R/S)
160 * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
161 * S = 1 + ps0*s^2 + ... + ps4*s^10
162 * and
163 * | pone(x)-1-R/S | <= 2 ** ( -60.06)
164 */
165
166static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
167 0.0000000000e+00, /* 0x00000000 */
168 1.1718750000e-01, /* 0x3df00000 */
169 1.3239480972e+01, /* 0x4153d4ea */
170 4.1205184937e+02, /* 0x43ce06a3 */
171 3.8747453613e+03, /* 0x45722bed */
172 7.9144794922e+03, /* 0x45f753d6 */
173};
174static const float ps8[5] = {
175 1.1420736694e+02, /* 0x42e46a2c */
176 3.6509309082e+03, /* 0x45642ee5 */
177 3.6956207031e+04, /* 0x47105c35 */
178 9.7602796875e+04, /* 0x47bea166 */
179 3.0804271484e+04, /* 0x46f0a88b */
180};
181
182static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
183 1.3199052094e-11, /* 0x2d68333f */
184 1.1718749255e-01, /* 0x3defffff */
185 6.8027510643e+00, /* 0x40d9b023 */
186 1.0830818176e+02, /* 0x42d89dca */
187 5.1763616943e+02, /* 0x440168b7 */
188 5.2871520996e+02, /* 0x44042dc6 */
189};
190static const float ps5[5] = {
191 5.9280597687e+01, /* 0x426d1f55 */
192 9.9140142822e+02, /* 0x4477d9b1 */
193 5.3532670898e+03, /* 0x45a74a23 */
194 7.8446904297e+03, /* 0x45f52586 */
195 1.5040468750e+03, /* 0x44bc0180 */
196};
197
198static const float pr3[6] = {
199 3.0250391081e-09, /* 0x314fe10d */
200 1.1718686670e-01, /* 0x3defffab */
201 3.9329774380e+00, /* 0x407bb5e7 */
202 3.5119403839e+01, /* 0x420c7a45 */
203 9.1055007935e+01, /* 0x42b61c2a */
204 4.8559066772e+01, /* 0x42423c7c */
205};
206static const float ps3[5] = {
207 3.4791309357e+01, /* 0x420b2a4d */
208 3.3676245117e+02, /* 0x43a86198 */
209 1.0468714600e+03, /* 0x4482dbe3 */
210 8.9081134033e+02, /* 0x445eb3ed */
211 1.0378793335e+02, /* 0x42cf936c */
212};
213
214static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
215 1.0771083225e-07, /* 0x33e74ea8 */
216 1.1717621982e-01, /* 0x3deffa16 */
217 2.3685150146e+00, /* 0x401795c0 */
218 1.2242610931e+01, /* 0x4143e1bc */
219 1.7693971634e+01, /* 0x418d8d41 */
220 5.0735230446e+00, /* 0x40a25a4d */
221};
222static const float ps2[5] = {
223 2.1436485291e+01, /* 0x41ab7dec */
224 1.2529022980e+02, /* 0x42fa9499 */
225 2.3227647400e+02, /* 0x436846c7 */
226 1.1767937469e+02, /* 0x42eb5bd7 */
227 8.3646392822e+00, /* 0x4105d590 */
228};
229
230static float ponef(float x)
231{
232 const float *p,*q;
233 float z,r,s;
234 int32_t ix;
235
236 GET_FLOAT_WORD(ix, x);
237 ix &= 0x7fffffff;
238 if (ix >= 0x41000000){p = pr8; q = ps8;}
239 else if (ix >= 0x40f71c58){p = pr5; q = ps5;}
240 else if (ix >= 0x4036db68){p = pr3; q = ps3;}
241 else if (ix >= 0x40000000){p = pr2; q = ps2;}
242 z = one/(x*x);
243 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
244 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
245 return one + r/s;
246}
247
248/* For x >= 8, the asymptotic expansions of qone is
249 * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
250 * We approximate pone by
251 * qone(x) = s*(0.375 + (R/S))
252 * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
253 * S = 1 + qs1*s^2 + ... + qs6*s^12
254 * and
255 * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
256 */
257
258static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
259 0.0000000000e+00, /* 0x00000000 */
260 -1.0253906250e-01, /* 0xbdd20000 */
261 -1.6271753311e+01, /* 0xc1822c8d */
262 -7.5960174561e+02, /* 0xc43de683 */
263 -1.1849806641e+04, /* 0xc639273a */
264 -4.8438511719e+04, /* 0xc73d3683 */
265};
266static const float qs8[6] = {
267 1.6139537048e+02, /* 0x43216537 */
268 7.8253862305e+03, /* 0x45f48b17 */
269 1.3387534375e+05, /* 0x4802bcd6 */
270 7.1965775000e+05, /* 0x492fb29c */
271 6.6660125000e+05, /* 0x4922be94 */
272 -2.9449025000e+05, /* 0xc88fcb48 */
273};
274
275static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
276 -2.0897993405e-11, /* 0xadb7d219 */
277 -1.0253904760e-01, /* 0xbdd1fffe */
278 -8.0564479828e+00, /* 0xc100e736 */
279 -1.8366960144e+02, /* 0xc337ab6b */
280 -1.3731937256e+03, /* 0xc4aba633 */
281 -2.6124443359e+03, /* 0xc523471c */
282};
283static const float qs5[6] = {
284 8.1276550293e+01, /* 0x42a28d98 */
285 1.9917987061e+03, /* 0x44f8f98f */
286 1.7468484375e+04, /* 0x468878f8 */
287 4.9851425781e+04, /* 0x4742bb6d */
288 2.7948074219e+04, /* 0x46da5826 */
289 -4.7191835938e+03, /* 0xc5937978 */
290};
291
292static const float qr3[6] = {
293 -5.0783124372e-09, /* 0xb1ae7d4f */
294 -1.0253783315e-01, /* 0xbdd1ff5b */
295 -4.6101160049e+00, /* 0xc0938612 */
296 -5.7847221375e+01, /* 0xc267638e */
297 -2.2824453735e+02, /* 0xc3643e9a */
298 -2.1921012878e+02, /* 0xc35b35cb */
299};
300static const float qs3[6] = {
301 4.7665153503e+01, /* 0x423ea91e */
302 6.7386511230e+02, /* 0x4428775e */
303 3.3801528320e+03, /* 0x45534272 */
304 5.5477290039e+03, /* 0x45ad5dd5 */
305 1.9031191406e+03, /* 0x44ede3d0 */
306 -1.3520118713e+02, /* 0xc3073381 */
307};
308
309static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
310 -1.7838172539e-07, /* 0xb43f8932 */
311 -1.0251704603e-01, /* 0xbdd1f475 */
312 -2.7522056103e+00, /* 0xc0302423 */
313 -1.9663616180e+01, /* 0xc19d4f16 */
314 -4.2325313568e+01, /* 0xc2294d1f */
315 -2.1371921539e+01, /* 0xc1aaf9b2 */
316};
317static const float qs2[6] = {
318 2.9533363342e+01, /* 0x41ec4454 */
319 2.5298155212e+02, /* 0x437cfb47 */
320 7.5750280762e+02, /* 0x443d602e */
321 7.3939318848e+02, /* 0x4438d92a */
322 1.5594900513e+02, /* 0x431bf2f2 */
323 -4.9594988823e+00, /* 0xc09eb437 */
324};
325
326static float qonef(float x)
327{
328 const float *p,*q;
329 float s,r,z;
330 int32_t ix;
331
332 GET_FLOAT_WORD(ix, x);
333 ix &= 0x7fffffff;
334 if (ix >= 0x40200000){p = qr8; q = qs8;}
335 else if (ix >= 0x40f71c58){p = qr5; q = qs5;}
336 else if (ix >= 0x4036db68){p = qr3; q = qs3;}
337 else if (ix >= 0x40000000){p = qr2; q = qs2;}
338 z = one/(x*x);
339 r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
340 s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
nsz8d0a6f72012-03-13 20:24:23 +0100341 return (.375f + r/s)/x;
Rich Felkerb69f6952012-03-13 01:17:53 -0400342}