blob: b0a26ff5a3bedd0031ac5c692c9bac0098bd654d [file] [log] [blame]
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Test FlowGraph
*/
#include "stdio.h"
#include <iostream>
#include <gtest/gtest.h>
#include <oboe/Oboe.h>
#include "flowgraph/ClipToRange.h"
#include "flowgraph/MonoToMultiConverter.h"
#include "flowgraph/SourceFloat.h"
#include "flowgraph/RampLinear.h"
#include "flowgraph/LinearResampler.h"
#include "flowgraph/SampleRateConverter.h"
#include "flowgraph/SinkFloat.h"
#include "flowgraph/SinkI16.h"
#include "flowgraph/SinkI24.h"
#include "flowgraph/SourceI16.h"
#include "flowgraph/SourceI24.h"
using namespace flowgraph;
constexpr int kBytesPerI24Packed = 3;
TEST(test_flowgraph, module_sinki16) {
static const float input[] = {1.0f, 0.5f, -0.25f, -1.0f, 0.0f, 53.9f, -87.2f};
static const int16_t expected[] = {32767, 16384, -8192, -32768, 0, 32767, -32768};
int16_t output[20];
SourceFloat sourceFloat{1};
SinkI16 sinkI16{1};
int numInputFrames = sizeof(input) / sizeof(input[0]);
sourceFloat.setData(input, numInputFrames);
sourceFloat.output.connect(&sinkI16.input);
int numOutputFrames = sizeof(output) / sizeof(int16_t);
int32_t numRead = sinkI16.read(0 /* framePosition */, output, numOutputFrames);
ASSERT_EQ(numInputFrames, numRead);
for (int i = 0; i < numRead; i++) {
EXPECT_EQ(expected[i], output[i]);
}
}
TEST(test_flowgraph, module_mono_to_stereo) {
static const float input[] = {1.0f, 2.0f, 3.0f};
float output[100] = {};
SourceFloat sourceFloat{1};
MonoToMultiConverter monoToStereo{2};
SinkFloat sinkFloat{2};
sourceFloat.setData(input, 3);
sourceFloat.output.connect(&monoToStereo.input);
monoToStereo.output.connect(&sinkFloat.input);
int32_t numRead = sinkFloat.read(0 /* framePosition */, output, 8);
ASSERT_EQ(3, numRead);
EXPECT_EQ(input[0], output[0]);
EXPECT_EQ(input[0], output[1]);
EXPECT_EQ(input[1], output[2]);
EXPECT_EQ(input[1], output[3]);
}
TEST(test_flowgraph, module_ramp_linear) {
constexpr int rampSize = 5;
constexpr int numOutput = 100;
constexpr float value = 1.0f;
constexpr float target = 100.0f;
float output[numOutput] = {};
RampLinear rampLinear{1};
SinkFloat sinkFloat{1};
rampLinear.input.setValue(value);
rampLinear.setLengthInFrames(rampSize);
rampLinear.setTarget(target);
rampLinear.forceCurrent(0.0f);
rampLinear.output.connect(&sinkFloat.input);
int32_t numRead = sinkFloat.read(0 /* framePosition */, output, numOutput);
ASSERT_EQ(numOutput, numRead);
constexpr float tolerance = 0.0001f; // arbitrary
int i = 0;
for (; i < rampSize; i++) {
float expected = i * value * target / rampSize;
EXPECT_NEAR(expected, output[i], tolerance);
}
for (; i < numOutput; i++) {
float expected = value * target;
EXPECT_NEAR(expected, output[i], tolerance);
}
}
// It is easiest to represent packed 24-bit data as a byte array.
// This test will read from input, convert to float, then write
// back to output as bytes.
TEST(test_flowgraph, module_packed_24) {
static const uint8_t input[] = {0x01, 0x23, 0x45,
0x67, 0x89, 0xAB,
0xCD, 0xEF, 0x5A};
uint8_t output[99] = {};
SourceI24 sourceI24{1};
SinkI24 sinkI24{1};
int numInputFrames = sizeof(input) / kBytesPerI24Packed;
sourceI24.setData(input, numInputFrames);
sourceI24.output.connect(&sinkI24.input);
int32_t numRead = sinkI24.read(0 /* framePosition */, output, sizeof(output) / kBytesPerI24Packed);
ASSERT_EQ(numInputFrames, numRead);
for (size_t i = 0; i < sizeof(input); i++) {
EXPECT_EQ(input[i], output[i]);
}
}
TEST(test_flowgraph, module_clip_to_range) {
constexpr float myMin = -2.0f;
constexpr float myMax = 1.5f;
static const float input[] = {-9.7, 0.5f, -0.25, 1.0f, 12.3};
static const float expected[] = {myMin, 0.5f, -0.25, 1.0f, myMax};
float output[100];
SourceFloat sourceFloat{1};
ClipToRange clipper{1};
SinkFloat sinkFloat{1};
int numInputFrames = sizeof(input) / sizeof(input[0]);
sourceFloat.setData(input, numInputFrames);
clipper.setMinimum(myMin);
clipper.setMaximum(myMax);
sourceFloat.output.connect(&clipper.input);
clipper.output.connect(&sinkFloat.input);
int numOutputFrames = sizeof(output) / sizeof(output[0]);
int32_t numRead = sinkFloat.read(0 /* framePosition */, output, numOutputFrames);
ASSERT_EQ(numInputFrames, numRead);
constexpr float tolerance = 0.000001f; // arbitrary
for (int i = 0; i < numRead; i++) {
EXPECT_NEAR(expected[i], output[i], tolerance);
}
}
TEST(test_flowgraph, module_sample_rate_converter) {
//void foo() {
static const double rateScaler = 0.5;
static const float input[] = {0.0, 1.0, 2.0};
static const float expected[] = {0.0, 0.0, 0.0, 0.5, 1.0, 1.5};
float output[100];
SourceFloat sourceFloat{1};
LinearResampler linear{1};
SampleRateConverter rateConverter{1, linear};
SinkFloat sinkFloat{1};
// printf("test_flowgraph::module_sample_rate_converter ===========================\n");
rateConverter.setPhaseIncrement(rateScaler);
int numInputFrames = sizeof(input) / sizeof(input[0]);
sourceFloat.setData(input, numInputFrames);
sourceFloat.output.connect(&rateConverter.input);
rateConverter.output.connect(&sinkFloat.input);
int numExpectedFrames = sizeof(expected) / sizeof(expected[0]);
int numOutputFrames = sizeof(output) / sizeof(output[0]);
// printf("test_flowgraph::module_sample_rate_converter first read -------------\n");
int32_t numRead = sinkFloat.read(0 /* framePosition */, output, numOutputFrames);
EXPECT_EQ(numExpectedFrames, numRead);
constexpr float tolerance = 0.000001f; // arbitrary
for (int i = 0; i < numRead; i++) {
EXPECT_NEAR(expected[i], output[i], tolerance);
// printf("test_flowgraph::module_sample_rate_converter output = %f\n", output[i]);
}
// printf("test_flowgraph::module_sample_rate_converter second read -------------\n");
numRead = sinkFloat.read(numRead /* framePosition */, output, numOutputFrames);
EXPECT_EQ(0, numRead);
}
TEST(test_flowgraph, module_sinc_resampler) {
//void foo() {
static const float zeroFrame[] = {0.0};
static const float oneFrame[] = {0.0};
float output = 0.0f;
SincResampler sincResampler{1};
printf("test_flowgraph::module_sinc_resampler ===========================\n");
fflush(stdout);
for (int i = 0; i <= (sincResampler.getSpread()*2*10); i++) {
float phase = i / 10.0;
float sinc = sincResampler.calculateWindowedSinc(phase);
printf("test_flowgraph::calculateWindowedSinc(%f) => %f\n", phase , sinc);
fflush(stdout);
}
for (int i = 0; i < 20; i++) {
printf("test_flowgraph: writeFrame %d\n", i);
fflush(stdout);
sincResampler.writeFrame(zeroFrame);
}
sincResampler.writeFrame(oneFrame); // write an impulse
for (int i = 0; i < 20; i++) {
sincResampler.writeFrame(zeroFrame);
printf("test_flowgraph: readFrame %d\n", i);
fflush(stdout);
sincResampler.readFrame(&output, 0.0);
printf("test_flowgraph::module_sinc_resampler output = %f\n", output);
}
}