darcy | 32db449 | 2009-01-26 19:49:26 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2003 Sun Microsystems, Inc. All Rights Reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
| 20 | * CA 95054 USA or visit www.sun.com if you need additional information or |
| 21 | * have any questions. |
| 22 | */ |
| 23 | |
| 24 | /* |
| 25 | * @test |
| 26 | * @bug 4851638 4939441 |
| 27 | * @summary Tests for {Math, StrictMath}.hypot |
| 28 | * @author Joseph D. Darcy |
| 29 | */ |
| 30 | |
| 31 | import sun.misc.DoubleConsts; |
| 32 | import sun.misc.FpUtils; |
| 33 | |
| 34 | public class HypotTests { |
| 35 | private HypotTests(){} |
| 36 | |
| 37 | static final double infinityD = Double.POSITIVE_INFINITY; |
| 38 | static final double NaNd = Double.NaN; |
| 39 | |
| 40 | /** |
| 41 | * Given integers m and n, assuming m < n, the triple (n^2 - m^2, |
| 42 | * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 = |
| 43 | * c^2. This methods returns a long array holding the Pythagorean |
| 44 | * triple corresponding to the inputs. |
| 45 | */ |
| 46 | static long [] pythagoreanTriple(int m, int n) { |
| 47 | long M = m; |
| 48 | long N = n; |
| 49 | long result[] = new long[3]; |
| 50 | |
| 51 | |
| 52 | result[0] = Math.abs(M*M - N*N); |
| 53 | result[1] = Math.abs(2*M*N); |
| 54 | result[2] = Math.abs(M*M + N*N); |
| 55 | |
| 56 | return result; |
| 57 | } |
| 58 | |
| 59 | static int testHypot() { |
| 60 | int failures = 0; |
| 61 | |
| 62 | double [][] testCases = { |
| 63 | // Special cases |
| 64 | {infinityD, infinityD, infinityD}, |
| 65 | {infinityD, 0.0, infinityD}, |
| 66 | {infinityD, 1.0, infinityD}, |
| 67 | {infinityD, NaNd, infinityD}, |
| 68 | {NaNd, NaNd, NaNd}, |
| 69 | {0.0, NaNd, NaNd}, |
| 70 | {1.0, NaNd, NaNd}, |
| 71 | {Double.longBitsToDouble(0x7FF0000000000001L), 1.0, NaNd}, |
| 72 | {Double.longBitsToDouble(0xFFF0000000000001L), 1.0, NaNd}, |
| 73 | {Double.longBitsToDouble(0x7FF8555555555555L), 1.0, NaNd}, |
| 74 | {Double.longBitsToDouble(0xFFF8555555555555L), 1.0, NaNd}, |
| 75 | {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), 1.0, NaNd}, |
| 76 | {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), 1.0, NaNd}, |
| 77 | {Double.longBitsToDouble(0x7FFDeadBeef00000L), 1.0, NaNd}, |
| 78 | {Double.longBitsToDouble(0xFFFDeadBeef00000L), 1.0, NaNd}, |
| 79 | {Double.longBitsToDouble(0x7FFCafeBabe00000L), 1.0, NaNd}, |
| 80 | {Double.longBitsToDouble(0xFFFCafeBabe00000L), 1.0, NaNd}, |
| 81 | }; |
| 82 | |
| 83 | for(int i = 0; i < testCases.length; i++) { |
| 84 | failures += testHypotCase(testCases[i][0], testCases[i][1], |
| 85 | testCases[i][2]); |
| 86 | } |
| 87 | |
| 88 | // Verify hypot(x, 0.0) is close to x over the entire exponent |
| 89 | // range. |
| 90 | for(int i = DoubleConsts.MIN_SUB_EXPONENT; |
| 91 | i <= DoubleConsts.MAX_EXPONENT; |
| 92 | i++) { |
| 93 | double input = FpUtils.scalb(2, i); |
| 94 | failures += testHypotCase(input, 0.0, input); |
| 95 | } |
| 96 | |
| 97 | |
| 98 | // Test Pythagorean triples |
| 99 | |
| 100 | // Small ones |
| 101 | for(int m = 1; m < 10; m++) { |
| 102 | for(int n = m+1; n < 11; n++) { |
| 103 | long [] result = pythagoreanTriple(m, n); |
| 104 | failures += testHypotCase(result[0], result[1], result[2]); |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | // Big ones |
| 109 | for(int m = 100000; m < 100100; m++) { |
| 110 | for(int n = m+100000; n < 200200; n++) { |
| 111 | long [] result = pythagoreanTriple(m, n); |
| 112 | failures += testHypotCase(result[0], result[1], result[2]); |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | // Approaching overflow tests |
| 117 | |
| 118 | /* |
| 119 | * Create a random value r with an large-ish exponent. The |
| 120 | * result of hypot(3*r, 4*r) should be approximately 5*r. (The |
| 121 | * computation of 4*r is exact since it just changes the |
| 122 | * exponent). While the exponent of r is less than or equal |
| 123 | * to (MAX_EXPONENT - 3), the computation should not overflow. |
| 124 | */ |
| 125 | java.util.Random rand = new java.util.Random(); |
| 126 | for(int i = 0; i < 1000; i++) { |
| 127 | double d = rand.nextDouble(); |
| 128 | // Scale d to have an exponent equal to MAX_EXPONENT -15 |
| 129 | d = FpUtils.scalb(d, DoubleConsts.MAX_EXPONENT |
| 130 | -15 - FpUtils.ilogb(d)); |
| 131 | for(int j = 0; j <= 13; j += 1) { |
| 132 | failures += testHypotCase(3*d, 4*d, 5*d, 2.5); |
| 133 | d *= 2.0; // increase exponent by 1 |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | // Test for monotonicity failures. Fix one argument and test |
| 138 | // two numbers before and two numbers after each chosen value; |
| 139 | // i.e. |
| 140 | // |
| 141 | // pcNeighbors[] = |
| 142 | // {nextDown(nextDown(pc)), |
| 143 | // nextDown(pc), |
| 144 | // pc, |
| 145 | // nextUp(pc), |
| 146 | // nextUp(nextUp(pc))} |
| 147 | // |
| 148 | // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1]) |
| 149 | { |
| 150 | double pcNeighbors[] = new double[5]; |
| 151 | double pcNeighborsHypot[] = new double[5]; |
| 152 | double pcNeighborsStrictHypot[] = new double[5]; |
| 153 | |
| 154 | |
| 155 | for(int i = -18; i <= 18; i++) { |
| 156 | double pc = FpUtils.scalb(1.0, i); |
| 157 | |
| 158 | pcNeighbors[2] = pc; |
| 159 | pcNeighbors[1] = FpUtils.nextDown(pc); |
| 160 | pcNeighbors[0] = FpUtils.nextDown(pcNeighbors[1]); |
| 161 | pcNeighbors[3] = FpUtils.nextUp(pc); |
| 162 | pcNeighbors[4] = FpUtils.nextUp(pcNeighbors[3]); |
| 163 | |
| 164 | for(int j = 0; j < pcNeighbors.length; j++) { |
| 165 | pcNeighborsHypot[j] = Math.hypot(2.0, pcNeighbors[j]); |
| 166 | pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]); |
| 167 | } |
| 168 | |
| 169 | for(int j = 0; j < pcNeighborsHypot.length-1; j++) { |
| 170 | if(pcNeighborsHypot[j] > pcNeighborsHypot[j+1] ) { |
| 171 | failures++; |
| 172 | System.err.println("Monotonicity failure for Math.hypot on " + |
| 173 | pcNeighbors[j] + " and " + |
| 174 | pcNeighbors[j+1] + "\n\treturned " + |
| 175 | pcNeighborsHypot[j] + " and " + |
| 176 | pcNeighborsHypot[j+1] ); |
| 177 | } |
| 178 | |
| 179 | if(pcNeighborsStrictHypot[j] > pcNeighborsStrictHypot[j+1] ) { |
| 180 | failures++; |
| 181 | System.err.println("Monotonicity failure for StrictMath.hypot on " + |
| 182 | pcNeighbors[j] + " and " + |
| 183 | pcNeighbors[j+1] + "\n\treturned " + |
| 184 | pcNeighborsStrictHypot[j] + " and " + |
| 185 | pcNeighborsStrictHypot[j+1] ); |
| 186 | } |
| 187 | |
| 188 | |
| 189 | } |
| 190 | |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | |
| 195 | return failures; |
| 196 | } |
| 197 | |
| 198 | static int testHypotCase(double input1, double input2, double expected) { |
| 199 | return testHypotCase(input1,input2, expected, 1); |
| 200 | } |
| 201 | |
| 202 | static int testHypotCase(double input1, double input2, double expected, |
| 203 | double ulps) { |
| 204 | int failures = 0; |
| 205 | if (expected < 0.0) { |
| 206 | throw new AssertionError("Result of hypot must be greater than " + |
| 207 | "or equal to zero"); |
| 208 | } |
| 209 | |
| 210 | // Test Math and StrictMath methods with no inputs negated, |
| 211 | // each input negated singly, and both inputs negated. Also |
| 212 | // test inputs in reversed order. |
| 213 | |
| 214 | for(int i = -1; i <= 1; i+=2) { |
| 215 | for(int j = -1; j <= 1; j+=2) { |
| 216 | double x = i * input1; |
| 217 | double y = j * input2; |
| 218 | failures += Tests.testUlpDiff("Math.hypot", x, y, |
| 219 | Math.hypot(x, y), expected, ulps); |
| 220 | failures += Tests.testUlpDiff("Math.hypot", y, x, |
| 221 | Math.hypot(y, x ), expected, ulps); |
| 222 | |
| 223 | failures += Tests.testUlpDiff("StrictMath.hypot", x, y, |
| 224 | StrictMath.hypot(x, y), expected, ulps); |
| 225 | failures += Tests.testUlpDiff("StrictMath.hypot", y, x, |
| 226 | StrictMath.hypot(y, x), expected, ulps); |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | return failures; |
| 231 | } |
| 232 | |
| 233 | public static void main(String argv[]) { |
| 234 | int failures = 0; |
| 235 | |
| 236 | failures += testHypot(); |
| 237 | |
| 238 | if (failures > 0) { |
| 239 | System.err.println("Testing the hypot incurred " |
| 240 | + failures + " failures."); |
| 241 | throw new RuntimeException(); |
| 242 | } |
| 243 | } |
| 244 | |
| 245 | } |