blob: c7ff242be1e381c17ebecd8c6ad9cc1f3afaa7af [file] [log] [blame]
darcy32db4492009-01-26 19:49:26 -08001/*
katlemand08780c2012-12-20 16:24:50 -08002 * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
darcy32db4492009-01-26 19:49:26 -08003 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
ohair2283b9d2010-05-25 15:58:33 -070019 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
darcy32db4492009-01-26 19:49:26 -080022 */
23
24/*
25 * @test
26 * @bug 4074599 4939441
27 * @summary Tests for {Math, StrictMath}.log10
28 * @author Joseph D. Darcy
29 */
30
darcy32db4492009-01-26 19:49:26 -080031import sun.misc.DoubleConsts;
32
33public class Log10Tests {
34 private Log10Tests(){}
35
36 static final double infinityD = Double.POSITIVE_INFINITY;
37 static final double NaNd = Double.NaN;
38 static final double LN_10 = StrictMath.log(10.0);
39
40 // Initialize shared random number generator
41 static java.util.Random rand = new java.util.Random(0L);
42
43 static int testLog10Case(double input, double expected) {
44 int failures=0;
45
46 failures+=Tests.test("Math.log10(double)", input,
47 Math.log10(input), expected);
48
49 failures+=Tests.test("StrictMath.log10(double)", input,
50 StrictMath.log10(input), expected);
51
52 return failures;
53 }
54
55 static int testLog10() {
56 int failures = 0;
57
58 double [][] testCases = {
59 {Double.NaN, NaNd},
60 {Double.longBitsToDouble(0x7FF0000000000001L), NaNd},
61 {Double.longBitsToDouble(0xFFF0000000000001L), NaNd},
62 {Double.longBitsToDouble(0x7FF8555555555555L), NaNd},
63 {Double.longBitsToDouble(0xFFF8555555555555L), NaNd},
64 {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL), NaNd},
65 {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL), NaNd},
66 {Double.longBitsToDouble(0x7FFDeadBeef00000L), NaNd},
67 {Double.longBitsToDouble(0xFFFDeadBeef00000L), NaNd},
68 {Double.longBitsToDouble(0x7FFCafeBabe00000L), NaNd},
69 {Double.longBitsToDouble(0xFFFCafeBabe00000L), NaNd},
70 {Double.NEGATIVE_INFINITY, NaNd},
71 {-8.0, NaNd},
72 {-1.0, NaNd},
73 {-DoubleConsts.MIN_NORMAL, NaNd},
74 {-Double.MIN_VALUE, NaNd},
75 {-0.0, -infinityD},
76 {+0.0, -infinityD},
77 {+1.0, 0.0},
78 {Double.POSITIVE_INFINITY, infinityD},
79 };
80
81 // Test special cases
82 for(int i = 0; i < testCases.length; i++) {
83 failures += testLog10Case(testCases[i][0],
84 testCases[i][1]);
85 }
86
87 // Test log10(10^n) == n for integer n; 10^n, n < 0 is not
88 // exactly representable as a floating-point value -- up to
89 // 10^22 can be represented exactly
90 double testCase = 1.0;
91 for(int i = 0; i < 23; i++) {
92 failures += testLog10Case(testCase, i);
93 testCase *= 10.0;
94 }
95
96 // Test for gross inaccuracy by comparing to log; should be
97 // within a few ulps of log(x)/log(10)
98 for(int i = 0; i < 10000; i++) {
99 double input = Double.longBitsToDouble(rand.nextLong());
darcy53d6f982011-09-21 23:22:11 -0700100 if(! Double.isFinite(input))
darcy32db4492009-01-26 19:49:26 -0800101 continue; // avoid testing NaN and infinite values
102 else {
103 input = Math.abs(input);
104
105 double expected = StrictMath.log(input)/LN_10;
darcy53d6f982011-09-21 23:22:11 -0700106 if( ! Double.isFinite(expected))
darcy32db4492009-01-26 19:49:26 -0800107 continue; // if log(input) overflowed, try again
108 else {
109 double result;
110
111 if( Math.abs(((result=Math.log10(input)) - expected)/Math.ulp(expected)) > 3) {
112 failures++;
113 System.err.println("For input " + input +
114 ", Math.log10 was more than 3 ulps different from " +
115 "log(input)/log(10): log10(input) = " + result +
116 "\tlog(input)/log(10) = " + expected);
117 }
118
119 if( Math.abs(((result=StrictMath.log10(input)) - expected)/Math.ulp(expected)) > 3) {
120 failures++;
121 System.err.println("For input " + input +
122 ", StrictMath.log10 was more than 3 ulps different from " +
123 "log(input)/log(10): log10(input) = " + result +
124 "\tlog(input)/log(10) = " + expected);
125 }
126
127
128 }
129 }
130 }
131
132 // Test for accuracy and monotonicity near log10(1.0). From
133 // the Taylor expansion of log,
134 // log10(1+z) ~= (z -(z^2)/2)/LN_10;
135 {
136 double neighbors[] = new double[40];
137 double neighborsStrict[] = new double[40];
138 double z = Double.NaN;
139
140 // Test inputs greater than 1.0.
141 neighbors[0] = Math.log10(1.0);
142 neighborsStrict[0] = StrictMath.log10(1.0);
143
144 double input[] = new double[40];
145 int half = input.length/2;
146
147
148 // Initialize input to the 40 consecutive double values
149 // "centered" at 1.0.
150 double up = Double.NaN;
151 double down = Double.NaN;
152 for(int i = 0; i < half; i++) {
153 if (i == 0) {
154 input[half] = 1.0;
darcya27a0112011-09-18 18:14:07 -0700155 up = Math.nextUp(1.0);
darcy53d6f982011-09-21 23:22:11 -0700156 down = Math.nextDown(1.0);
darcy32db4492009-01-26 19:49:26 -0800157 } else {
158 input[half + i] = up;
159 input[half - i] = down;
darcya27a0112011-09-18 18:14:07 -0700160 up = Math.nextUp(up);
darcy53d6f982011-09-21 23:22:11 -0700161 down = Math.nextDown(down);
darcy32db4492009-01-26 19:49:26 -0800162 }
163 }
darcy53d6f982011-09-21 23:22:11 -0700164 input[0] = Math.nextDown(input[1]);
darcy32db4492009-01-26 19:49:26 -0800165
166 for(int i = 0; i < neighbors.length; i++) {
167 neighbors[i] = Math.log10(input[i]);
168 neighborsStrict[i] = StrictMath.log10(input[i]);
169
170 // Test accuracy.
171 z = input[i] - 1.0;
172 double expected = (z - (z*z)*0.5)/LN_10;
173 if ( Math.abs(neighbors[i] - expected ) > 3*Math.ulp(expected) ) {
174 failures++;
175 System.err.println("For input near 1.0 " + input[i] +
176 ", Math.log10(1+z) was more than 3 ulps different from " +
177 "(z-(z^2)/2)/ln(10): log10(input) = " + neighbors[i] +
178 "\texpected about = " + expected);
179 }
180
181 if ( Math.abs(neighborsStrict[i] - expected ) > 3*Math.ulp(expected) ) {
182 failures++;
183 System.err.println("For input near 1.0 " + input[i] +
184 ", StrictMath.log10(1+z) was more than 3 ulps different from " +
185 "(z-(z^2)/2)/ln(10): log10(input) = " + neighborsStrict[i] +
186 "\texpected about = " + expected);
187 }
188
189 // Test monotonicity
190 if( i > 0) {
191 if( neighbors[i-1] > neighbors[i] ) {
192 failures++;
193 System.err.println("Monotonicity failure for Math.log10 at " + input[i] +
194 " and prior value.");
195 }
196
197 if( neighborsStrict[i-1] > neighborsStrict[i] ) {
198 failures++;
199 System.err.println("Monotonicity failure for StrictMath.log10 at " + input[i] +
200 " and prior value.");
201 }
202 }
203 }
204
205 }
206
207 return failures;
208 }
209
210 public static void main(String argv[]) {
211 int failures = 0;
212
213 failures += testLog10();
214
215 if (failures > 0) {
216 System.err.println("Testing log10 incurred "
217 + failures + " failures.");
218 throw new RuntimeException();
219 }
220 }
221
222}