| /* $OpenBSD: md5.c,v 1.9 2014/01/08 06:14:57 tedu Exp $ */ |
| |
| /* |
| * This code implements the MD5 message-digest algorithm. |
| * The algorithm is due to Ron Rivest. This code was |
| * written by Colin Plumb in 1993, no copyright is claimed. |
| * This code is in the public domain; do with it what you wish. |
| * |
| * Equivalent code is available from RSA Data Security, Inc. |
| * This code has been tested against that, and is equivalent, |
| * except that you don't need to include two pages of legalese |
| * with every copy. |
| * |
| * To compute the message digest of a chunk of bytes, declare an |
| * MD5Context structure, pass it to MD5Init, call MD5Update as |
| * needed on buffers full of bytes, and then call MD5Final, which |
| * will fill a supplied 16-byte array with the digest. |
| */ |
| |
| #include "includes.h" |
| |
| #ifndef WITH_OPENSSL |
| |
| #include <sys/types.h> |
| #include <string.h> |
| #include "md5.h" |
| |
| #define PUT_64BIT_LE(cp, value) do { \ |
| (cp)[7] = (value) >> 56; \ |
| (cp)[6] = (value) >> 48; \ |
| (cp)[5] = (value) >> 40; \ |
| (cp)[4] = (value) >> 32; \ |
| (cp)[3] = (value) >> 24; \ |
| (cp)[2] = (value) >> 16; \ |
| (cp)[1] = (value) >> 8; \ |
| (cp)[0] = (value); } while (0) |
| |
| #define PUT_32BIT_LE(cp, value) do { \ |
| (cp)[3] = (value) >> 24; \ |
| (cp)[2] = (value) >> 16; \ |
| (cp)[1] = (value) >> 8; \ |
| (cp)[0] = (value); } while (0) |
| |
| static u_int8_t PADDING[MD5_BLOCK_LENGTH] = { |
| 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |
| }; |
| |
| /* |
| * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
| * initialization constants. |
| */ |
| void |
| MD5Init(MD5_CTX *ctx) |
| { |
| ctx->count = 0; |
| ctx->state[0] = 0x67452301; |
| ctx->state[1] = 0xefcdab89; |
| ctx->state[2] = 0x98badcfe; |
| ctx->state[3] = 0x10325476; |
| } |
| |
| /* |
| * Update context to reflect the concatenation of another buffer full |
| * of bytes. |
| */ |
| void |
| MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len) |
| { |
| size_t have, need; |
| |
| /* Check how many bytes we already have and how many more we need. */ |
| have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1)); |
| need = MD5_BLOCK_LENGTH - have; |
| |
| /* Update bitcount */ |
| ctx->count += (u_int64_t)len << 3; |
| |
| if (len >= need) { |
| if (have != 0) { |
| memcpy(ctx->buffer + have, input, need); |
| MD5Transform(ctx->state, ctx->buffer); |
| input += need; |
| len -= need; |
| have = 0; |
| } |
| |
| /* Process data in MD5_BLOCK_LENGTH-byte chunks. */ |
| while (len >= MD5_BLOCK_LENGTH) { |
| MD5Transform(ctx->state, input); |
| input += MD5_BLOCK_LENGTH; |
| len -= MD5_BLOCK_LENGTH; |
| } |
| } |
| |
| /* Handle any remaining bytes of data. */ |
| if (len != 0) |
| memcpy(ctx->buffer + have, input, len); |
| } |
| |
| /* |
| * Pad pad to 64-byte boundary with the bit pattern |
| * 1 0* (64-bit count of bits processed, MSB-first) |
| */ |
| void |
| MD5Pad(MD5_CTX *ctx) |
| { |
| u_int8_t count[8]; |
| size_t padlen; |
| |
| /* Convert count to 8 bytes in little endian order. */ |
| PUT_64BIT_LE(count, ctx->count); |
| |
| /* Pad out to 56 mod 64. */ |
| padlen = MD5_BLOCK_LENGTH - |
| ((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1)); |
| if (padlen < 1 + 8) |
| padlen += MD5_BLOCK_LENGTH; |
| MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */ |
| MD5Update(ctx, count, 8); |
| } |
| |
| /* |
| * Final wrapup--call MD5Pad, fill in digest and zero out ctx. |
| */ |
| void |
| MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx) |
| { |
| int i; |
| |
| MD5Pad(ctx); |
| for (i = 0; i < 4; i++) |
| PUT_32BIT_LE(digest + i * 4, ctx->state[i]); |
| memset(ctx, 0, sizeof(*ctx)); |
| } |
| |
| |
| /* The four core functions - F1 is optimized somewhat */ |
| |
| /* #define F1(x, y, z) (x & y | ~x & z) */ |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define F2(x, y, z) F1(z, x, y) |
| #define F3(x, y, z) (x ^ y ^ z) |
| #define F4(x, y, z) (y ^ (x | ~z)) |
| |
| /* This is the central step in the MD5 algorithm. */ |
| #define MD5STEP(f, w, x, y, z, data, s) \ |
| ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x ) |
| |
| /* |
| * The core of the MD5 algorithm, this alters an existing MD5 hash to |
| * reflect the addition of 16 longwords of new data. MD5Update blocks |
| * the data and converts bytes into longwords for this routine. |
| */ |
| void |
| MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH]) |
| { |
| u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4]; |
| |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| memcpy(in, block, sizeof(in)); |
| #else |
| for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) { |
| in[a] = (u_int32_t)( |
| (u_int32_t)(block[a * 4 + 0]) | |
| (u_int32_t)(block[a * 4 + 1]) << 8 | |
| (u_int32_t)(block[a * 4 + 2]) << 16 | |
| (u_int32_t)(block[a * 4 + 3]) << 24); |
| } |
| #endif |
| |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| |
| MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7); |
| MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12); |
| MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17); |
| MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22); |
| MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7); |
| MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12); |
| MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17); |
| MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22); |
| MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7); |
| MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12); |
| MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); |
| MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); |
| MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); |
| MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); |
| MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); |
| MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); |
| |
| MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5); |
| MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9); |
| MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); |
| MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20); |
| MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5); |
| MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); |
| MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); |
| MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20); |
| MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5); |
| MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); |
| MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14); |
| MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20); |
| MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); |
| MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9); |
| MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14); |
| MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); |
| |
| MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4); |
| MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11); |
| MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); |
| MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); |
| MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4); |
| MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11); |
| MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16); |
| MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); |
| MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); |
| MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11); |
| MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16); |
| MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23); |
| MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4); |
| MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); |
| MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); |
| MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23); |
| |
| MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6); |
| MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10); |
| MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); |
| MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21); |
| MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); |
| MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10); |
| MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); |
| MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21); |
| MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6); |
| MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); |
| MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15); |
| MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); |
| MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6); |
| MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); |
| MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15); |
| MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21); |
| |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| } |
| #endif /* !WITH_OPENSSL */ |