blob: 92a39762fe399824df8d2fdec85395428480612d [file] [log] [blame]
/*
* rijndael-alg-fst.c v2.4 April '2000
* rijndael-alg-api.c v2.4 April '2000
*
* Optimised ANSI C code
*
* authors: v1.0: Antoon Bosselaers
* v2.0: Vincent Rijmen, K.U.Leuven
* v2.3: Paulo Barreto
* v2.4: Vincent Rijmen, K.U.Leuven
*
* This code is placed in the public domain.
*/
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "config.h"
#include "rijndael.h"
#include "rijndael_boxes.h"
int
rijndael_keysched(u_int8_t k[RIJNDAEL_MAXKC][4],
u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
{
/* Calculate the necessary round keys
* The number of calculations depends on keyBits and blockBits
*/
int j, r, t, rconpointer = 0;
u_int8_t tk[RIJNDAEL_MAXKC][4];
int KC = ROUNDS - 6;
for (j = KC-1; j >= 0; j--) {
*((u_int32_t*)tk[j]) = *((u_int32_t*)k[j]);
}
r = 0;
t = 0;
/* copy values into round key array */
for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
for (; (j < KC) && (t < 4); j++, t++) {
*((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
}
if (t == 4) {
r++;
t = 0;
}
}
while (r < ROUNDS + 1) { /* while not enough round key material calculated */
/* calculate new values */
tk[0][0] ^= S[tk[KC-1][1]];
tk[0][1] ^= S[tk[KC-1][2]];
tk[0][2] ^= S[tk[KC-1][3]];
tk[0][3] ^= S[tk[KC-1][0]];
tk[0][0] ^= rcon[rconpointer++];
if (KC != 8) {
for (j = 1; j < KC; j++) {
*((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
}
} else {
for (j = 1; j < KC/2; j++) {
*((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
}
tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
for (j = KC/2 + 1; j < KC; j++) {
*((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
}
}
/* copy values into round key array */
for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
for (; (j < KC) && (t < 4); j++, t++) {
*((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
}
if (t == 4) {
r++;
t = 0;
}
}
}
return 0;
}
int
rijndael_key_enc_to_dec(u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
{
int r;
u_int8_t *w;
for (r = 1; r < ROUNDS; r++) {
w = W[r][0];
*((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
^ *((u_int32_t*)U2[w[1]])
^ *((u_int32_t*)U3[w[2]])
^ *((u_int32_t*)U4[w[3]]);
w = W[r][1];
*((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
^ *((u_int32_t*)U2[w[1]])
^ *((u_int32_t*)U3[w[2]])
^ *((u_int32_t*)U4[w[3]]);
w = W[r][2];
*((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
^ *((u_int32_t*)U2[w[1]])
^ *((u_int32_t*)U3[w[2]])
^ *((u_int32_t*)U4[w[3]]);
w = W[r][3];
*((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
^ *((u_int32_t*)U2[w[1]])
^ *((u_int32_t*)U3[w[2]])
^ *((u_int32_t*)U4[w[3]]);
}
return 0;
}
/**
* Encrypt a single block.
*/
int
rijndael_encrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
{
u_int8_t (*rk)[4][4] = key->keySched;
int ROUNDS = key->ROUNDS;
int r;
u_int8_t temp[4][4];
*((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[0][0]);
*((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[0][1]);
*((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[0][2]);
*((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[0][3]);
*((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]])
^ *((u_int32_t*)T2[temp[1][1]])
^ *((u_int32_t*)T3[temp[2][2]])
^ *((u_int32_t*)T4[temp[3][3]]);
*((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
^ *((u_int32_t*)T2[temp[2][1]])
^ *((u_int32_t*)T3[temp[3][2]])
^ *((u_int32_t*)T4[temp[0][3]]);
*((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
^ *((u_int32_t*)T2[temp[3][1]])
^ *((u_int32_t*)T3[temp[0][2]])
^ *((u_int32_t*)T4[temp[1][3]]);
*((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
^ *((u_int32_t*)T2[temp[0][1]])
^ *((u_int32_t*)T3[temp[1][2]])
^ *((u_int32_t*)T4[temp[2][3]]);
for (r = 1; r < ROUNDS-1; r++) {
*((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]);
*((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
*((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
*((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
*((u_int32_t*)(b )) = *((u_int32_t*)T1[temp[0][0]])
^ *((u_int32_t*)T2[temp[1][1]])
^ *((u_int32_t*)T3[temp[2][2]])
^ *((u_int32_t*)T4[temp[3][3]]);
*((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
^ *((u_int32_t*)T2[temp[2][1]])
^ *((u_int32_t*)T3[temp[3][2]])
^ *((u_int32_t*)T4[temp[0][3]]);
*((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
^ *((u_int32_t*)T2[temp[3][1]])
^ *((u_int32_t*)T3[temp[0][2]])
^ *((u_int32_t*)T4[temp[1][3]]);
*((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
^ *((u_int32_t*)T2[temp[0][1]])
^ *((u_int32_t*)T3[temp[1][2]])
^ *((u_int32_t*)T4[temp[2][3]]);
}
/* last round is special */
*((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[ROUNDS-1][0]);
*((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[ROUNDS-1][1]);
*((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[ROUNDS-1][2]);
*((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[ROUNDS-1][3]);
b[ 0] = T1[temp[0][0]][1];
b[ 1] = T1[temp[1][1]][1];
b[ 2] = T1[temp[2][2]][1];
b[ 3] = T1[temp[3][3]][1];
b[ 4] = T1[temp[1][0]][1];
b[ 5] = T1[temp[2][1]][1];
b[ 6] = T1[temp[3][2]][1];
b[ 7] = T1[temp[0][3]][1];
b[ 8] = T1[temp[2][0]][1];
b[ 9] = T1[temp[3][1]][1];
b[10] = T1[temp[0][2]][1];
b[11] = T1[temp[1][3]][1];
b[12] = T1[temp[3][0]][1];
b[13] = T1[temp[0][1]][1];
b[14] = T1[temp[1][2]][1];
b[15] = T1[temp[2][3]][1];
*((u_int32_t*)(b )) ^= *((u_int32_t*)rk[ROUNDS][0]);
*((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[ROUNDS][1]);
*((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[ROUNDS][2]);
*((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[ROUNDS][3]);
return 0;
}
/**
* Decrypt a single block.
*/
int
rijndael_decrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
{
u_int8_t (*rk)[4][4] = key->keySched;
int ROUNDS = key->ROUNDS;
int r;
u_int8_t temp[4][4];
*((u_int32_t*)temp[0]) = *((u_int32_t*)(a )) ^ *((u_int32_t*)rk[ROUNDS][0]);
*((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[ROUNDS][1]);
*((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[ROUNDS][2]);
*((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[ROUNDS][3]);
*((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]])
^ *((u_int32_t*)T6[temp[3][1]])
^ *((u_int32_t*)T7[temp[2][2]])
^ *((u_int32_t*)T8[temp[1][3]]);
*((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
^ *((u_int32_t*)T6[temp[0][1]])
^ *((u_int32_t*)T7[temp[3][2]])
^ *((u_int32_t*)T8[temp[2][3]]);
*((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
^ *((u_int32_t*)T6[temp[1][1]])
^ *((u_int32_t*)T7[temp[0][2]])
^ *((u_int32_t*)T8[temp[3][3]]);
*((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
^ *((u_int32_t*)T6[temp[2][1]])
^ *((u_int32_t*)T7[temp[1][2]])
^ *((u_int32_t*)T8[temp[0][3]]);
for (r = ROUNDS-1; r > 1; r--) {
*((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[r][0]);
*((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
*((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
*((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
*((u_int32_t*)(b )) = *((u_int32_t*)T5[temp[0][0]])
^ *((u_int32_t*)T6[temp[3][1]])
^ *((u_int32_t*)T7[temp[2][2]])
^ *((u_int32_t*)T8[temp[1][3]]);
*((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
^ *((u_int32_t*)T6[temp[0][1]])
^ *((u_int32_t*)T7[temp[3][2]])
^ *((u_int32_t*)T8[temp[2][3]]);
*((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
^ *((u_int32_t*)T6[temp[1][1]])
^ *((u_int32_t*)T7[temp[0][2]])
^ *((u_int32_t*)T8[temp[3][3]]);
*((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
^ *((u_int32_t*)T6[temp[2][1]])
^ *((u_int32_t*)T7[temp[1][2]])
^ *((u_int32_t*)T8[temp[0][3]]);
}
/* last round is special */
*((u_int32_t*)temp[0]) = *((u_int32_t*)(b )) ^ *((u_int32_t*)rk[1][0]);
*((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[1][1]);
*((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[1][2]);
*((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[1][3]);
b[ 0] = S5[temp[0][0]];
b[ 1] = S5[temp[3][1]];
b[ 2] = S5[temp[2][2]];
b[ 3] = S5[temp[1][3]];
b[ 4] = S5[temp[1][0]];
b[ 5] = S5[temp[0][1]];
b[ 6] = S5[temp[3][2]];
b[ 7] = S5[temp[2][3]];
b[ 8] = S5[temp[2][0]];
b[ 9] = S5[temp[1][1]];
b[10] = S5[temp[0][2]];
b[11] = S5[temp[3][3]];
b[12] = S5[temp[3][0]];
b[13] = S5[temp[2][1]];
b[14] = S5[temp[1][2]];
b[15] = S5[temp[0][3]];
*((u_int32_t*)(b )) ^= *((u_int32_t*)rk[0][0]);
*((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[0][1]);
*((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[0][2]);
*((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[0][3]);
return 0;
}
int
rijndael_makekey(rijndael_key *key, int direction, int keyLen, u_int8_t *keyMaterial)
{
u_int8_t k[RIJNDAEL_MAXKC][4];
int i;
if (key == NULL)
return -1;
if ((direction != RIJNDAEL_ENCRYPT) && (direction != RIJNDAEL_DECRYPT))
return -1;
if ((keyLen != 128) && (keyLen != 192) && (keyLen != 256))
return -1;
key->ROUNDS = keyLen/32 + 6;
/* initialize key schedule: */
for (i = 0; i < keyLen/8; i++)
k[i >> 2][i & 3] = (u_int8_t)keyMaterial[i];
rijndael_keysched(k, key->keySched, key->ROUNDS);
if (direction == RIJNDAEL_DECRYPT)
rijndael_key_enc_to_dec(key->keySched, key->ROUNDS);
return 0;
}