| /* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */ |
| /* ----------------------------------------------------------------------- |
| * |
| * umac.c -- C Implementation UMAC Message Authentication |
| * |
| * Version 0.93b of rfc4418.txt -- 2006 July 18 |
| * |
| * For a full description of UMAC message authentication see the UMAC |
| * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac |
| * Please report bugs and suggestions to the UMAC webpage. |
| * |
| * Copyright (c) 1999-2006 Ted Krovetz |
| * |
| * Permission to use, copy, modify, and distribute this software and |
| * its documentation for any purpose and with or without fee, is hereby |
| * granted provided that the above copyright notice appears in all copies |
| * and in supporting documentation, and that the name of the copyright |
| * holder not be used in advertising or publicity pertaining to |
| * distribution of the software without specific, written prior permission. |
| * |
| * Comments should be directed to Ted Krovetz (tdk@acm.org) |
| * |
| * ---------------------------------------------------------------------- */ |
| |
| /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// |
| * |
| * 1) This version does not work properly on messages larger than 16MB |
| * |
| * 2) If you set the switch to use SSE2, then all data must be 16-byte |
| * aligned |
| * |
| * 3) When calling the function umac(), it is assumed that msg is in |
| * a writable buffer of length divisible by 32 bytes. The message itself |
| * does not have to fill the entire buffer, but bytes beyond msg may be |
| * zeroed. |
| * |
| * 4) Three free AES implementations are supported by this implementation of |
| * UMAC. Paulo Barreto's version is in the public domain and can be found |
| * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for |
| * "Barreto"). The only two files needed are rijndael-alg-fst.c and |
| * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU |
| * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It |
| * includes a fast IA-32 assembly version. The OpenSSL crypo library is |
| * the third. |
| * |
| * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes |
| * produced under gcc with optimizations set -O3 or higher. Dunno why. |
| * |
| /////////////////////////////////////////////////////////////////////// */ |
| |
| /* ---------------------------------------------------------------------- */ |
| /* --- User Switches ---------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ |
| /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ |
| /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ |
| /* #define SSE2 0 Is SSE2 is available? */ |
| /* #define RUN_TESTS 0 Run basic correctness/speed tests */ |
| /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ |
| |
| /* ---------------------------------------------------------------------- */ |
| /* -- Global Includes --------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| #include "includes.h" |
| #include <sys/types.h> |
| |
| #include "xmalloc.h" |
| #include "umac.h" |
| #include <string.h> |
| #include <stdlib.h> |
| #include <stddef.h> |
| |
| /* ---------------------------------------------------------------------- */ |
| /* --- Primitive Data Types --- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| /* The following assumptions may need change on your system */ |
| typedef u_int8_t UINT8; /* 1 byte */ |
| typedef u_int16_t UINT16; /* 2 byte */ |
| typedef u_int32_t UINT32; /* 4 byte */ |
| typedef u_int64_t UINT64; /* 8 bytes */ |
| typedef unsigned int UWORD; /* Register */ |
| |
| /* ---------------------------------------------------------------------- */ |
| /* --- Constants -------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ |
| |
| /* Message "words" are read from memory in an endian-specific manner. */ |
| /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ |
| /* be set true if the host computer is little-endian. */ |
| |
| #if BYTE_ORDER == LITTLE_ENDIAN |
| #define __LITTLE_ENDIAN__ 1 |
| #else |
| #define __LITTLE_ENDIAN__ 0 |
| #endif |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ----- Architecture Specific ------------------------------------------ */ |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ----- Primitive Routines --------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| |
| /* ---------------------------------------------------------------------- */ |
| /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ |
| /* ---------------------------------------------------------------------- */ |
| |
| #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) |
| |
| /* ---------------------------------------------------------------------- */ |
| /* --- Endian Conversion --- Forcing assembly on some platforms */ |
| /* ---------------------------------------------------------------------- */ |
| |
| #if HAVE_SWAP32 |
| #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p))) |
| #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v)) |
| #else /* HAVE_SWAP32 */ |
| |
| static UINT32 LOAD_UINT32_REVERSED(void *ptr) |
| { |
| UINT32 temp = *(UINT32 *)ptr; |
| temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 ) |
| | ((temp & 0x0000FF00) << 8 ) | (temp << 24); |
| return (UINT32)temp; |
| } |
| |
| static void STORE_UINT32_REVERSED(void *ptr, UINT32 x) |
| { |
| UINT32 i = (UINT32)x; |
| *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 ) |
| | ((i & 0x0000FF00) << 8 ) | (i << 24); |
| } |
| #endif /* HAVE_SWAP32 */ |
| |
| /* The following definitions use the above reversal-primitives to do the right |
| * thing on endian specific load and stores. |
| */ |
| |
| #if (__LITTLE_ENDIAN__) |
| #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr)) |
| #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x) |
| #else |
| #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr) |
| #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x)) |
| #endif |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ----- Begin KDF & PDF Section ---------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| /* UMAC uses AES with 16 byte block and key lengths */ |
| #define AES_BLOCK_LEN 16 |
| |
| /* OpenSSL's AES */ |
| #include "openbsd-compat/openssl-compat.h" |
| #ifndef USE_BUILTIN_RIJNDAEL |
| # include <openssl/aes.h> |
| #endif |
| typedef AES_KEY aes_int_key[1]; |
| #define aes_encryption(in,out,int_key) \ |
| AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) |
| #define aes_key_setup(key,int_key) \ |
| AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key) |
| |
| /* The user-supplied UMAC key is stretched using AES in a counter |
| * mode to supply all random bits needed by UMAC. The kdf function takes |
| * an AES internal key representation 'key' and writes a stream of |
| * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct |
| * 'ndx' causes a distinct byte stream. |
| */ |
| static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) |
| { |
| UINT8 in_buf[AES_BLOCK_LEN] = {0}; |
| UINT8 out_buf[AES_BLOCK_LEN]; |
| UINT8 *dst_buf = (UINT8 *)buffer_ptr; |
| int i; |
| |
| /* Setup the initial value */ |
| in_buf[AES_BLOCK_LEN-9] = ndx; |
| in_buf[AES_BLOCK_LEN-1] = i = 1; |
| |
| while (nbytes >= AES_BLOCK_LEN) { |
| aes_encryption(in_buf, out_buf, key); |
| memcpy(dst_buf,out_buf,AES_BLOCK_LEN); |
| in_buf[AES_BLOCK_LEN-1] = ++i; |
| nbytes -= AES_BLOCK_LEN; |
| dst_buf += AES_BLOCK_LEN; |
| } |
| if (nbytes) { |
| aes_encryption(in_buf, out_buf, key); |
| memcpy(dst_buf,out_buf,nbytes); |
| } |
| } |
| |
| /* The final UHASH result is XOR'd with the output of a pseudorandom |
| * function. Here, we use AES to generate random output and |
| * xor the appropriate bytes depending on the last bits of nonce. |
| * This scheme is optimized for sequential, increasing big-endian nonces. |
| */ |
| |
| typedef struct { |
| UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ |
| UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ |
| aes_int_key prf_key; /* Expanded AES key for PDF */ |
| } pdf_ctx; |
| |
| static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) |
| { |
| UINT8 buf[UMAC_KEY_LEN]; |
| |
| kdf(buf, prf_key, 0, UMAC_KEY_LEN); |
| aes_key_setup(buf, pc->prf_key); |
| |
| /* Initialize pdf and cache */ |
| memset(pc->nonce, 0, sizeof(pc->nonce)); |
| aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
| } |
| |
| static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8]) |
| { |
| /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes |
| * of the AES output. If last time around we returned the ndx-1st |
| * element, then we may have the result in the cache already. |
| */ |
| |
| #if (UMAC_OUTPUT_LEN == 4) |
| #define LOW_BIT_MASK 3 |
| #elif (UMAC_OUTPUT_LEN == 8) |
| #define LOW_BIT_MASK 1 |
| #elif (UMAC_OUTPUT_LEN > 8) |
| #define LOW_BIT_MASK 0 |
| #endif |
| |
| UINT8 tmp_nonce_lo[4]; |
| #if LOW_BIT_MASK != 0 |
| int ndx = nonce[7] & LOW_BIT_MASK; |
| #endif |
| *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1]; |
| tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ |
| |
| if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || |
| (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) |
| { |
| ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0]; |
| ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0]; |
| aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
| } |
| |
| #if (UMAC_OUTPUT_LEN == 4) |
| *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; |
| #elif (UMAC_OUTPUT_LEN == 8) |
| *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; |
| #elif (UMAC_OUTPUT_LEN == 12) |
| ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
| ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; |
| #elif (UMAC_OUTPUT_LEN == 16) |
| ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
| ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; |
| #endif |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ----- Begin NH Hash Section ------------------------------------------ */ |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| /* The NH-based hash functions used in UMAC are described in the UMAC paper |
| * and specification, both of which can be found at the UMAC website. |
| * The interface to this implementation has two |
| * versions, one expects the entire message being hashed to be passed |
| * in a single buffer and returns the hash result immediately. The second |
| * allows the message to be passed in a sequence of buffers. In the |
| * muliple-buffer interface, the client calls the routine nh_update() as |
| * many times as necessary. When there is no more data to be fed to the |
| * hash, the client calls nh_final() which calculates the hash output. |
| * Before beginning another hash calculation the nh_reset() routine |
| * must be called. The single-buffer routine, nh(), is equivalent to |
| * the sequence of calls nh_update() and nh_final(); however it is |
| * optimized and should be prefered whenever the multiple-buffer interface |
| * is not necessary. When using either interface, it is the client's |
| * responsability to pass no more than L1_KEY_LEN bytes per hash result. |
| * |
| * The routine nh_init() initializes the nh_ctx data structure and |
| * must be called once, before any other PDF routine. |
| */ |
| |
| /* The "nh_aux" routines do the actual NH hashing work. They |
| * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines |
| * produce output for all STREAMS NH iterations in one call, |
| * allowing the parallel implementation of the streams. |
| */ |
| |
| #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ |
| #define L1_KEY_LEN 1024 /* Internal key bytes */ |
| #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ |
| #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ |
| #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ |
| #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ |
| |
| typedef struct { |
| UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ |
| UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */ |
| int next_data_empty; /* Bookeeping variable for data buffer. */ |
| int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ |
| UINT64 state[STREAMS]; /* on-line state */ |
| } nh_ctx; |
| |
| |
| #if (UMAC_OUTPUT_LEN == 4) |
| |
| static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) |
| /* NH hashing primitive. Previous (partial) hash result is loaded and |
| * then stored via hp pointer. The length of the data pointed at by "dp", |
| * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key |
| * is expected to be endian compensated in memory at key setup. |
| */ |
| { |
| UINT64 h; |
| UWORD c = dlen / 32; |
| UINT32 *k = (UINT32 *)kp; |
| UINT32 *d = (UINT32 *)dp; |
| UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
| UINT32 k0,k1,k2,k3,k4,k5,k6,k7; |
| |
| h = *((UINT64 *)hp); |
| do { |
| d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
| d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
| d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
| d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
| k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
| k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
| h += MUL64((k0 + d0), (k4 + d4)); |
| h += MUL64((k1 + d1), (k5 + d5)); |
| h += MUL64((k2 + d2), (k6 + d6)); |
| h += MUL64((k3 + d3), (k7 + d7)); |
| |
| d += 8; |
| k += 8; |
| } while (--c); |
| *((UINT64 *)hp) = h; |
| } |
| |
| #elif (UMAC_OUTPUT_LEN == 8) |
| |
| static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) |
| /* Same as previous nh_aux, but two streams are handled in one pass, |
| * reading and writing 16 bytes of hash-state per call. |
| */ |
| { |
| UINT64 h1,h2; |
| UWORD c = dlen / 32; |
| UINT32 *k = (UINT32 *)kp; |
| UINT32 *d = (UINT32 *)dp; |
| UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
| UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
| k8,k9,k10,k11; |
| |
| h1 = *((UINT64 *)hp); |
| h2 = *((UINT64 *)hp + 1); |
| k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
| do { |
| d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
| d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
| d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
| d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
| k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
| k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
| |
| h1 += MUL64((k0 + d0), (k4 + d4)); |
| h2 += MUL64((k4 + d0), (k8 + d4)); |
| |
| h1 += MUL64((k1 + d1), (k5 + d5)); |
| h2 += MUL64((k5 + d1), (k9 + d5)); |
| |
| h1 += MUL64((k2 + d2), (k6 + d6)); |
| h2 += MUL64((k6 + d2), (k10 + d6)); |
| |
| h1 += MUL64((k3 + d3), (k7 + d7)); |
| h2 += MUL64((k7 + d3), (k11 + d7)); |
| |
| k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
| |
| d += 8; |
| k += 8; |
| } while (--c); |
| ((UINT64 *)hp)[0] = h1; |
| ((UINT64 *)hp)[1] = h2; |
| } |
| |
| #elif (UMAC_OUTPUT_LEN == 12) |
| |
| static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) |
| /* Same as previous nh_aux, but two streams are handled in one pass, |
| * reading and writing 24 bytes of hash-state per call. |
| */ |
| { |
| UINT64 h1,h2,h3; |
| UWORD c = dlen / 32; |
| UINT32 *k = (UINT32 *)kp; |
| UINT32 *d = (UINT32 *)dp; |
| UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
| UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
| k8,k9,k10,k11,k12,k13,k14,k15; |
| |
| h1 = *((UINT64 *)hp); |
| h2 = *((UINT64 *)hp + 1); |
| h3 = *((UINT64 *)hp + 2); |
| k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
| k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
| do { |
| d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
| d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
| d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
| d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
| k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
| k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
| |
| h1 += MUL64((k0 + d0), (k4 + d4)); |
| h2 += MUL64((k4 + d0), (k8 + d4)); |
| h3 += MUL64((k8 + d0), (k12 + d4)); |
| |
| h1 += MUL64((k1 + d1), (k5 + d5)); |
| h2 += MUL64((k5 + d1), (k9 + d5)); |
| h3 += MUL64((k9 + d1), (k13 + d5)); |
| |
| h1 += MUL64((k2 + d2), (k6 + d6)); |
| h2 += MUL64((k6 + d2), (k10 + d6)); |
| h3 += MUL64((k10 + d2), (k14 + d6)); |
| |
| h1 += MUL64((k3 + d3), (k7 + d7)); |
| h2 += MUL64((k7 + d3), (k11 + d7)); |
| h3 += MUL64((k11 + d3), (k15 + d7)); |
| |
| k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
| k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
| |
| d += 8; |
| k += 8; |
| } while (--c); |
| ((UINT64 *)hp)[0] = h1; |
| ((UINT64 *)hp)[1] = h2; |
| ((UINT64 *)hp)[2] = h3; |
| } |
| |
| #elif (UMAC_OUTPUT_LEN == 16) |
| |
| static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) |
| /* Same as previous nh_aux, but two streams are handled in one pass, |
| * reading and writing 24 bytes of hash-state per call. |
| */ |
| { |
| UINT64 h1,h2,h3,h4; |
| UWORD c = dlen / 32; |
| UINT32 *k = (UINT32 *)kp; |
| UINT32 *d = (UINT32 *)dp; |
| UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
| UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
| k8,k9,k10,k11,k12,k13,k14,k15, |
| k16,k17,k18,k19; |
| |
| h1 = *((UINT64 *)hp); |
| h2 = *((UINT64 *)hp + 1); |
| h3 = *((UINT64 *)hp + 2); |
| h4 = *((UINT64 *)hp + 3); |
| k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
| k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
| do { |
| d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
| d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
| d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
| d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
| k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
| k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
| k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); |
| |
| h1 += MUL64((k0 + d0), (k4 + d4)); |
| h2 += MUL64((k4 + d0), (k8 + d4)); |
| h3 += MUL64((k8 + d0), (k12 + d4)); |
| h4 += MUL64((k12 + d0), (k16 + d4)); |
| |
| h1 += MUL64((k1 + d1), (k5 + d5)); |
| h2 += MUL64((k5 + d1), (k9 + d5)); |
| h3 += MUL64((k9 + d1), (k13 + d5)); |
| h4 += MUL64((k13 + d1), (k17 + d5)); |
| |
| h1 += MUL64((k2 + d2), (k6 + d6)); |
| h2 += MUL64((k6 + d2), (k10 + d6)); |
| h3 += MUL64((k10 + d2), (k14 + d6)); |
| h4 += MUL64((k14 + d2), (k18 + d6)); |
| |
| h1 += MUL64((k3 + d3), (k7 + d7)); |
| h2 += MUL64((k7 + d3), (k11 + d7)); |
| h3 += MUL64((k11 + d3), (k15 + d7)); |
| h4 += MUL64((k15 + d3), (k19 + d7)); |
| |
| k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
| k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
| k8 = k16; k9 = k17; k10 = k18; k11 = k19; |
| |
| d += 8; |
| k += 8; |
| } while (--c); |
| ((UINT64 *)hp)[0] = h1; |
| ((UINT64 *)hp)[1] = h2; |
| ((UINT64 *)hp)[2] = h3; |
| ((UINT64 *)hp)[3] = h4; |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| #endif /* UMAC_OUTPUT_LENGTH */ |
| /* ---------------------------------------------------------------------- */ |
| |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes) |
| /* This function is a wrapper for the primitive NH hash functions. It takes |
| * as argument "hc" the current hash context and a buffer which must be a |
| * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset |
| * appropriately according to how much message has been hashed already. |
| */ |
| { |
| UINT8 *key; |
| |
| key = hc->nh_key + hc->bytes_hashed; |
| nh_aux(key, buf, hc->state, nbytes); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) |
| /* We endian convert the keys on little-endian computers to */ |
| /* compensate for the lack of big-endian memory reads during hashing. */ |
| { |
| UWORD iters = num_bytes / bpw; |
| if (bpw == 4) { |
| UINT32 *p = (UINT32 *)buf; |
| do { |
| *p = LOAD_UINT32_REVERSED(p); |
| p++; |
| } while (--iters); |
| } else if (bpw == 8) { |
| UINT32 *p = (UINT32 *)buf; |
| UINT32 t; |
| do { |
| t = LOAD_UINT32_REVERSED(p+1); |
| p[1] = LOAD_UINT32_REVERSED(p); |
| p[0] = t; |
| p += 2; |
| } while (--iters); |
| } |
| } |
| #if (__LITTLE_ENDIAN__) |
| #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) |
| #else |
| #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ |
| #endif |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static void nh_reset(nh_ctx *hc) |
| /* Reset nh_ctx to ready for hashing of new data */ |
| { |
| hc->bytes_hashed = 0; |
| hc->next_data_empty = 0; |
| hc->state[0] = 0; |
| #if (UMAC_OUTPUT_LEN >= 8) |
| hc->state[1] = 0; |
| #endif |
| #if (UMAC_OUTPUT_LEN >= 12) |
| hc->state[2] = 0; |
| #endif |
| #if (UMAC_OUTPUT_LEN == 16) |
| hc->state[3] = 0; |
| #endif |
| |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static void nh_init(nh_ctx *hc, aes_int_key prf_key) |
| /* Generate nh_key, endian convert and reset to be ready for hashing. */ |
| { |
| kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); |
| endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); |
| nh_reset(hc); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes) |
| /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ |
| /* even multiple of HASH_BUF_BYTES. */ |
| { |
| UINT32 i,j; |
| |
| j = hc->next_data_empty; |
| if ((j + nbytes) >= HASH_BUF_BYTES) { |
| if (j) { |
| i = HASH_BUF_BYTES - j; |
| memcpy(hc->data+j, buf, i); |
| nh_transform(hc,hc->data,HASH_BUF_BYTES); |
| nbytes -= i; |
| buf += i; |
| hc->bytes_hashed += HASH_BUF_BYTES; |
| } |
| if (nbytes >= HASH_BUF_BYTES) { |
| i = nbytes & ~(HASH_BUF_BYTES - 1); |
| nh_transform(hc, buf, i); |
| nbytes -= i; |
| buf += i; |
| hc->bytes_hashed += i; |
| } |
| j = 0; |
| } |
| memcpy(hc->data + j, buf, nbytes); |
| hc->next_data_empty = j + nbytes; |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static void zero_pad(UINT8 *p, int nbytes) |
| { |
| /* Write "nbytes" of zeroes, beginning at "p" */ |
| if (nbytes >= (int)sizeof(UWORD)) { |
| while ((ptrdiff_t)p % sizeof(UWORD)) { |
| *p = 0; |
| nbytes--; |
| p++; |
| } |
| while (nbytes >= (int)sizeof(UWORD)) { |
| *(UWORD *)p = 0; |
| nbytes -= sizeof(UWORD); |
| p += sizeof(UWORD); |
| } |
| } |
| while (nbytes) { |
| *p = 0; |
| nbytes--; |
| p++; |
| } |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static void nh_final(nh_ctx *hc, UINT8 *result) |
| /* After passing some number of data buffers to nh_update() for integration |
| * into an NH context, nh_final is called to produce a hash result. If any |
| * bytes are in the buffer hc->data, incorporate them into the |
| * NH context. Finally, add into the NH accumulation "state" the total number |
| * of bits hashed. The resulting numbers are written to the buffer "result". |
| * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. |
| */ |
| { |
| int nh_len, nbits; |
| |
| if (hc->next_data_empty != 0) { |
| nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & |
| ~(L1_PAD_BOUNDARY - 1)); |
| zero_pad(hc->data + hc->next_data_empty, |
| nh_len - hc->next_data_empty); |
| nh_transform(hc, hc->data, nh_len); |
| hc->bytes_hashed += hc->next_data_empty; |
| } else if (hc->bytes_hashed == 0) { |
| nh_len = L1_PAD_BOUNDARY; |
| zero_pad(hc->data, L1_PAD_BOUNDARY); |
| nh_transform(hc, hc->data, nh_len); |
| } |
| |
| nbits = (hc->bytes_hashed << 3); |
| ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; |
| #if (UMAC_OUTPUT_LEN >= 8) |
| ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; |
| #endif |
| #if (UMAC_OUTPUT_LEN >= 12) |
| ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; |
| #endif |
| #if (UMAC_OUTPUT_LEN == 16) |
| ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; |
| #endif |
| nh_reset(hc); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len, |
| UINT32 unpadded_len, UINT8 *result) |
| /* All-in-one nh_update() and nh_final() equivalent. |
| * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is |
| * well aligned |
| */ |
| { |
| UINT32 nbits; |
| |
| /* Initialize the hash state */ |
| nbits = (unpadded_len << 3); |
| |
| ((UINT64 *)result)[0] = nbits; |
| #if (UMAC_OUTPUT_LEN >= 8) |
| ((UINT64 *)result)[1] = nbits; |
| #endif |
| #if (UMAC_OUTPUT_LEN >= 12) |
| ((UINT64 *)result)[2] = nbits; |
| #endif |
| #if (UMAC_OUTPUT_LEN == 16) |
| ((UINT64 *)result)[3] = nbits; |
| #endif |
| |
| nh_aux(hc->nh_key, buf, result, padded_len); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ----- Begin UHASH Section -------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| /* UHASH is a multi-layered algorithm. Data presented to UHASH is first |
| * hashed by NH. The NH output is then hashed by a polynomial-hash layer |
| * unless the initial data to be hashed is short. After the polynomial- |
| * layer, an inner-product hash is used to produce the final UHASH output. |
| * |
| * UHASH provides two interfaces, one all-at-once and another where data |
| * buffers are presented sequentially. In the sequential interface, the |
| * UHASH client calls the routine uhash_update() as many times as necessary. |
| * When there is no more data to be fed to UHASH, the client calls |
| * uhash_final() which |
| * calculates the UHASH output. Before beginning another UHASH calculation |
| * the uhash_reset() routine must be called. The all-at-once UHASH routine, |
| * uhash(), is equivalent to the sequence of calls uhash_update() and |
| * uhash_final(); however it is optimized and should be |
| * used whenever the sequential interface is not necessary. |
| * |
| * The routine uhash_init() initializes the uhash_ctx data structure and |
| * must be called once, before any other UHASH routine. |
| */ |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ----- Constants and uhash_ctx ---------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ----- Poly hash and Inner-Product hash Constants --------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| /* Primes and masks */ |
| #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ |
| #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ |
| #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ |
| |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| typedef struct uhash_ctx { |
| nh_ctx hash; /* Hash context for L1 NH hash */ |
| UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ |
| UINT64 poly_accum[STREAMS]; /* poly hash result */ |
| UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ |
| UINT32 ip_trans[STREAMS]; /* Inner-product translation */ |
| UINT32 msg_len; /* Total length of data passed */ |
| /* to uhash */ |
| } uhash_ctx; |
| typedef struct uhash_ctx *uhash_ctx_t; |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| |
| /* The polynomial hashes use Horner's rule to evaluate a polynomial one |
| * word at a time. As described in the specification, poly32 and poly64 |
| * require keys from special domains. The following implementations exploit |
| * the special domains to avoid overflow. The results are not guaranteed to |
| * be within Z_p32 and Z_p64, but the Inner-Product hash implementation |
| * patches any errant values. |
| */ |
| |
| static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) |
| { |
| UINT32 key_hi = (UINT32)(key >> 32), |
| key_lo = (UINT32)key, |
| cur_hi = (UINT32)(cur >> 32), |
| cur_lo = (UINT32)cur, |
| x_lo, |
| x_hi; |
| UINT64 X,T,res; |
| |
| X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); |
| x_lo = (UINT32)X; |
| x_hi = (UINT32)(X >> 32); |
| |
| res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); |
| |
| T = ((UINT64)x_lo << 32); |
| res += T; |
| if (res < T) |
| res += 59; |
| |
| res += data; |
| if (res < data) |
| res += 59; |
| |
| return res; |
| } |
| |
| |
| /* Although UMAC is specified to use a ramped polynomial hash scheme, this |
| * implementation does not handle all ramp levels. Because we don't handle |
| * the ramp up to p128 modulus in this implementation, we are limited to |
| * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 |
| * bytes input to UMAC per tag, ie. 16MB). |
| */ |
| static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) |
| { |
| int i; |
| UINT64 *data=(UINT64*)data_in; |
| |
| for (i = 0; i < STREAMS; i++) { |
| if ((UINT32)(data[i] >> 32) == 0xfffffffful) { |
| hc->poly_accum[i] = poly64(hc->poly_accum[i], |
| hc->poly_key_8[i], p64 - 1); |
| hc->poly_accum[i] = poly64(hc->poly_accum[i], |
| hc->poly_key_8[i], (data[i] - 59)); |
| } else { |
| hc->poly_accum[i] = poly64(hc->poly_accum[i], |
| hc->poly_key_8[i], data[i]); |
| } |
| } |
| } |
| |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| |
| /* The final step in UHASH is an inner-product hash. The poly hash |
| * produces a result not neccesarily WORD_LEN bytes long. The inner- |
| * product hash breaks the polyhash output into 16-bit chunks and |
| * multiplies each with a 36 bit key. |
| */ |
| |
| static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) |
| { |
| t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); |
| t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); |
| t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); |
| t = t + ipkp[3] * (UINT64)(UINT16)(data); |
| |
| return t; |
| } |
| |
| static UINT32 ip_reduce_p36(UINT64 t) |
| { |
| /* Divisionless modular reduction */ |
| UINT64 ret; |
| |
| ret = (t & m36) + 5 * (t >> 36); |
| if (ret >= p36) |
| ret -= p36; |
| |
| /* return least significant 32 bits */ |
| return (UINT32)(ret); |
| } |
| |
| |
| /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then |
| * the polyhash stage is skipped and ip_short is applied directly to the |
| * NH output. |
| */ |
| static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) |
| { |
| UINT64 t; |
| UINT64 *nhp = (UINT64 *)nh_res; |
| |
| t = ip_aux(0,ahc->ip_keys, nhp[0]); |
| STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); |
| #if (UMAC_OUTPUT_LEN >= 8) |
| t = ip_aux(0,ahc->ip_keys+4, nhp[1]); |
| STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); |
| #endif |
| #if (UMAC_OUTPUT_LEN >= 12) |
| t = ip_aux(0,ahc->ip_keys+8, nhp[2]); |
| STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); |
| #endif |
| #if (UMAC_OUTPUT_LEN == 16) |
| t = ip_aux(0,ahc->ip_keys+12, nhp[3]); |
| STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); |
| #endif |
| } |
| |
| /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then |
| * the polyhash stage is not skipped and ip_long is applied to the |
| * polyhash output. |
| */ |
| static void ip_long(uhash_ctx_t ahc, u_char *res) |
| { |
| int i; |
| UINT64 t; |
| |
| for (i = 0; i < STREAMS; i++) { |
| /* fix polyhash output not in Z_p64 */ |
| if (ahc->poly_accum[i] >= p64) |
| ahc->poly_accum[i] -= p64; |
| t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); |
| STORE_UINT32_BIG((UINT32 *)res+i, |
| ip_reduce_p36(t) ^ ahc->ip_trans[i]); |
| } |
| } |
| |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| /* Reset uhash context for next hash session */ |
| static int uhash_reset(uhash_ctx_t pc) |
| { |
| nh_reset(&pc->hash); |
| pc->msg_len = 0; |
| pc->poly_accum[0] = 1; |
| #if (UMAC_OUTPUT_LEN >= 8) |
| pc->poly_accum[1] = 1; |
| #endif |
| #if (UMAC_OUTPUT_LEN >= 12) |
| pc->poly_accum[2] = 1; |
| #endif |
| #if (UMAC_OUTPUT_LEN == 16) |
| pc->poly_accum[3] = 1; |
| #endif |
| return 1; |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| /* Given a pointer to the internal key needed by kdf() and a uhash context, |
| * initialize the NH context and generate keys needed for poly and inner- |
| * product hashing. All keys are endian adjusted in memory so that native |
| * loads cause correct keys to be in registers during calculation. |
| */ |
| static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) |
| { |
| int i; |
| UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; |
| |
| /* Zero the entire uhash context */ |
| memset(ahc, 0, sizeof(uhash_ctx)); |
| |
| /* Initialize the L1 hash */ |
| nh_init(&ahc->hash, prf_key); |
| |
| /* Setup L2 hash variables */ |
| kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ |
| for (i = 0; i < STREAMS; i++) { |
| /* Fill keys from the buffer, skipping bytes in the buffer not |
| * used by this implementation. Endian reverse the keys if on a |
| * little-endian computer. |
| */ |
| memcpy(ahc->poly_key_8+i, buf+24*i, 8); |
| endian_convert_if_le(ahc->poly_key_8+i, 8, 8); |
| /* Mask the 64-bit keys to their special domain */ |
| ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; |
| ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ |
| } |
| |
| /* Setup L3-1 hash variables */ |
| kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ |
| for (i = 0; i < STREAMS; i++) |
| memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), |
| 4*sizeof(UINT64)); |
| endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), |
| sizeof(ahc->ip_keys)); |
| for (i = 0; i < STREAMS*4; i++) |
| ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ |
| |
| /* Setup L3-2 hash variables */ |
| /* Fill buffer with index 4 key */ |
| kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); |
| endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), |
| STREAMS * sizeof(UINT32)); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| #if 0 |
| static uhash_ctx_t uhash_alloc(u_char key[]) |
| { |
| /* Allocate memory and force to a 16-byte boundary. */ |
| uhash_ctx_t ctx; |
| u_char bytes_to_add; |
| aes_int_key prf_key; |
| |
| ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); |
| if (ctx) { |
| if (ALLOC_BOUNDARY) { |
| bytes_to_add = ALLOC_BOUNDARY - |
| ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); |
| ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); |
| *((u_char *)ctx - 1) = bytes_to_add; |
| } |
| aes_key_setup(key,prf_key); |
| uhash_init(ctx, prf_key); |
| } |
| return (ctx); |
| } |
| #endif |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| #if 0 |
| static int uhash_free(uhash_ctx_t ctx) |
| { |
| /* Free memory allocated by uhash_alloc */ |
| u_char bytes_to_sub; |
| |
| if (ctx) { |
| if (ALLOC_BOUNDARY) { |
| bytes_to_sub = *((u_char *)ctx - 1); |
| ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); |
| } |
| free(ctx); |
| } |
| return (1); |
| } |
| #endif |
| /* ---------------------------------------------------------------------- */ |
| |
| static int uhash_update(uhash_ctx_t ctx, u_char *input, long len) |
| /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and |
| * hash each one with NH, calling the polyhash on each NH output. |
| */ |
| { |
| UWORD bytes_hashed, bytes_remaining; |
| UINT64 result_buf[STREAMS]; |
| UINT8 *nh_result = (UINT8 *)&result_buf; |
| |
| if (ctx->msg_len + len <= L1_KEY_LEN) { |
| nh_update(&ctx->hash, (UINT8 *)input, len); |
| ctx->msg_len += len; |
| } else { |
| |
| bytes_hashed = ctx->msg_len % L1_KEY_LEN; |
| if (ctx->msg_len == L1_KEY_LEN) |
| bytes_hashed = L1_KEY_LEN; |
| |
| if (bytes_hashed + len >= L1_KEY_LEN) { |
| |
| /* If some bytes have been passed to the hash function */ |
| /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ |
| /* bytes to complete the current nh_block. */ |
| if (bytes_hashed) { |
| bytes_remaining = (L1_KEY_LEN - bytes_hashed); |
| nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining); |
| nh_final(&ctx->hash, nh_result); |
| ctx->msg_len += bytes_remaining; |
| poly_hash(ctx,(UINT32 *)nh_result); |
| len -= bytes_remaining; |
| input += bytes_remaining; |
| } |
| |
| /* Hash directly from input stream if enough bytes */ |
| while (len >= L1_KEY_LEN) { |
| nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN, |
| L1_KEY_LEN, nh_result); |
| ctx->msg_len += L1_KEY_LEN; |
| len -= L1_KEY_LEN; |
| input += L1_KEY_LEN; |
| poly_hash(ctx,(UINT32 *)nh_result); |
| } |
| } |
| |
| /* pass remaining < L1_KEY_LEN bytes of input data to NH */ |
| if (len) { |
| nh_update(&ctx->hash, (UINT8 *)input, len); |
| ctx->msg_len += len; |
| } |
| } |
| |
| return (1); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| static int uhash_final(uhash_ctx_t ctx, u_char *res) |
| /* Incorporate any pending data, pad, and generate tag */ |
| { |
| UINT64 result_buf[STREAMS]; |
| UINT8 *nh_result = (UINT8 *)&result_buf; |
| |
| if (ctx->msg_len > L1_KEY_LEN) { |
| if (ctx->msg_len % L1_KEY_LEN) { |
| nh_final(&ctx->hash, nh_result); |
| poly_hash(ctx,(UINT32 *)nh_result); |
| } |
| ip_long(ctx, res); |
| } else { |
| nh_final(&ctx->hash, nh_result); |
| ip_short(ctx,nh_result, res); |
| } |
| uhash_reset(ctx); |
| return (1); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| #if 0 |
| static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) |
| /* assumes that msg is in a writable buffer of length divisible by */ |
| /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ |
| { |
| UINT8 nh_result[STREAMS*sizeof(UINT64)]; |
| UINT32 nh_len; |
| int extra_zeroes_needed; |
| |
| /* If the message to be hashed is no longer than L1_HASH_LEN, we skip |
| * the polyhash. |
| */ |
| if (len <= L1_KEY_LEN) { |
| if (len == 0) /* If zero length messages will not */ |
| nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ |
| else |
| nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
| extra_zeroes_needed = nh_len - len; |
| zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
| nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
| ip_short(ahc,nh_result, res); |
| } else { |
| /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH |
| * output to poly_hash(). |
| */ |
| do { |
| nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); |
| poly_hash(ahc,(UINT32 *)nh_result); |
| len -= L1_KEY_LEN; |
| msg += L1_KEY_LEN; |
| } while (len >= L1_KEY_LEN); |
| if (len) { |
| nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
| extra_zeroes_needed = nh_len - len; |
| zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
| nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
| poly_hash(ahc,(UINT32 *)nh_result); |
| } |
| |
| ip_long(ahc, res); |
| } |
| |
| uhash_reset(ahc); |
| return 1; |
| } |
| #endif |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ----- Begin UMAC Section --------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| |
| /* The UMAC interface has two interfaces, an all-at-once interface where |
| * the entire message to be authenticated is passed to UMAC in one buffer, |
| * and a sequential interface where the message is presented a little at a |
| * time. The all-at-once is more optimaized than the sequential version and |
| * should be preferred when the sequential interface is not required. |
| */ |
| struct umac_ctx { |
| uhash_ctx hash; /* Hash function for message compression */ |
| pdf_ctx pdf; /* PDF for hashed output */ |
| void *free_ptr; /* Address to free this struct via */ |
| } umac_ctx; |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| #if 0 |
| int umac_reset(struct umac_ctx *ctx) |
| /* Reset the hash function to begin a new authentication. */ |
| { |
| uhash_reset(&ctx->hash); |
| return (1); |
| } |
| #endif |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| int umac_delete(struct umac_ctx *ctx) |
| /* Deallocate the ctx structure */ |
| { |
| if (ctx) { |
| if (ALLOC_BOUNDARY) |
| ctx = (struct umac_ctx *)ctx->free_ptr; |
| xfree(ctx); |
| } |
| return (1); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| struct umac_ctx *umac_new(u_char key[]) |
| /* Dynamically allocate a umac_ctx struct, initialize variables, |
| * generate subkeys from key. Align to 16-byte boundary. |
| */ |
| { |
| struct umac_ctx *ctx, *octx; |
| size_t bytes_to_add; |
| aes_int_key prf_key; |
| |
| octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY); |
| if (ctx) { |
| if (ALLOC_BOUNDARY) { |
| bytes_to_add = ALLOC_BOUNDARY - |
| ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); |
| ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); |
| } |
| ctx->free_ptr = octx; |
| aes_key_setup(key,prf_key); |
| pdf_init(&ctx->pdf, prf_key); |
| uhash_init(&ctx->hash, prf_key); |
| } |
| |
| return (ctx); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8]) |
| /* Incorporate any pending data, pad, and generate tag */ |
| { |
| uhash_final(&ctx->hash, (u_char *)tag); |
| pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
| |
| return (1); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| int umac_update(struct umac_ctx *ctx, u_char *input, long len) |
| /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ |
| /* hash each one, calling the PDF on the hashed output whenever the hash- */ |
| /* output buffer is full. */ |
| { |
| uhash_update(&ctx->hash, input, len); |
| return (1); |
| } |
| |
| /* ---------------------------------------------------------------------- */ |
| |
| #if 0 |
| int umac(struct umac_ctx *ctx, u_char *input, |
| long len, u_char tag[], |
| u_char nonce[8]) |
| /* All-in-one version simply calls umac_update() and umac_final(). */ |
| { |
| uhash(&ctx->hash, input, len, (u_char *)tag); |
| pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
| |
| return (1); |
| } |
| #endif |
| |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ----- End UMAC Section ----------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |
| /* ---------------------------------------------------------------------- */ |