| /* $OpenBSD: xmss_fast.c,v 1.3 2018/03/22 07:06:11 markus Exp $ */ |
| /* |
| xmss_fast.c version 20160722 |
| Andreas Hülsing |
| Joost Rijneveld |
| Public domain. |
| */ |
| |
| #include "includes.h" |
| #ifdef WITH_XMSS |
| |
| #include <stdlib.h> |
| #include <string.h> |
| #ifdef HAVE_STDINT_H |
| # include <stdint.h> |
| #endif |
| |
| #include "xmss_fast.h" |
| #include "crypto_api.h" |
| #include "xmss_wots.h" |
| #include "xmss_hash.h" |
| |
| #include "xmss_commons.h" |
| #include "xmss_hash_address.h" |
| // For testing |
| #include "stdio.h" |
| |
| |
| |
| /** |
| * Used for pseudorandom keygeneration, |
| * generates the seed for the WOTS keypair at address addr |
| * |
| * takes n byte sk_seed and returns n byte seed using 32 byte address addr. |
| */ |
| static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8]) |
| { |
| unsigned char bytes[32]; |
| // Make sure that chain addr, hash addr, and key bit are 0! |
| setChainADRS(addr,0); |
| setHashADRS(addr,0); |
| setKeyAndMask(addr,0); |
| // Generate pseudorandom value |
| addr_to_byte(bytes, addr); |
| prf(seed, bytes, sk_seed, n); |
| } |
| |
| /** |
| * Initialize xmss params struct |
| * parameter names are the same as in the draft |
| * parameter k is K as used in the BDS algorithm |
| */ |
| int xmss_set_params(xmss_params *params, int n, int h, int w, int k) |
| { |
| if (k >= h || k < 2 || (h - k) % 2) { |
| fprintf(stderr, "For BDS traversal, H - K must be even, with H > K >= 2!\n"); |
| return 1; |
| } |
| params->h = h; |
| params->n = n; |
| params->k = k; |
| wots_params wots_par; |
| wots_set_params(&wots_par, n, w); |
| params->wots_par = wots_par; |
| return 0; |
| } |
| |
| /** |
| * Initialize BDS state struct |
| * parameter names are the same as used in the description of the BDS traversal |
| */ |
| void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf) |
| { |
| state->stack = stack; |
| state->stackoffset = stackoffset; |
| state->stacklevels = stacklevels; |
| state->auth = auth; |
| state->keep = keep; |
| state->treehash = treehash; |
| state->retain = retain; |
| state->next_leaf = next_leaf; |
| } |
| |
| /** |
| * Initialize xmssmt_params struct |
| * parameter names are the same as in the draft |
| * |
| * Especially h is the total tree height, i.e. the XMSS trees have height h/d |
| */ |
| int xmssmt_set_params(xmssmt_params *params, int n, int h, int d, int w, int k) |
| { |
| if (h % d) { |
| fprintf(stderr, "d must divide h without remainder!\n"); |
| return 1; |
| } |
| params->h = h; |
| params->d = d; |
| params->n = n; |
| params->index_len = (h + 7) / 8; |
| xmss_params xmss_par; |
| if (xmss_set_params(&xmss_par, n, (h/d), w, k)) { |
| return 1; |
| } |
| params->xmss_par = xmss_par; |
| return 0; |
| } |
| |
| /** |
| * Computes a leaf from a WOTS public key using an L-tree. |
| */ |
| static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8]) |
| { |
| unsigned int l = params->wots_par.len; |
| unsigned int n = params->n; |
| uint32_t i = 0; |
| uint32_t height = 0; |
| uint32_t bound; |
| |
| //ADRS.setTreeHeight(0); |
| setTreeHeight(addr, height); |
| |
| while (l > 1) { |
| bound = l >> 1; //floor(l / 2); |
| for (i = 0; i < bound; i++) { |
| //ADRS.setTreeIndex(i); |
| setTreeIndex(addr, i); |
| //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); |
| hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n); |
| } |
| //if ( l % 2 == 1 ) { |
| if (l & 1) { |
| //pk[floor(l / 2) + 1] = pk[l]; |
| memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n); |
| //l = ceil(l / 2); |
| l=(l>>1)+1; |
| } |
| else { |
| //l = ceil(l / 2); |
| l=(l>>1); |
| } |
| //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); |
| height++; |
| setTreeHeight(addr, height); |
| } |
| //return pk[0]; |
| memcpy(leaf, wots_pk, n); |
| } |
| |
| /** |
| * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. |
| */ |
| static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) |
| { |
| unsigned char seed[params->n]; |
| unsigned char pk[params->wots_par.keysize]; |
| |
| get_seed(seed, sk_seed, params->n, ots_addr); |
| wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr); |
| |
| l_tree(leaf, pk, params, pub_seed, ltree_addr); |
| } |
| |
| static int treehash_minheight_on_stack(bds_state* state, const xmss_params *params, const treehash_inst *treehash) { |
| unsigned int r = params->h, i; |
| for (i = 0; i < treehash->stackusage; i++) { |
| if (state->stacklevels[state->stackoffset - i - 1] < r) { |
| r = state->stacklevels[state->stackoffset - i - 1]; |
| } |
| } |
| return r; |
| } |
| |
| /** |
| * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. |
| * Currently only used for key generation. |
| * |
| */ |
| static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) |
| { |
| unsigned int idx = index; |
| unsigned int n = params->n; |
| unsigned int h = params->h; |
| unsigned int k = params->k; |
| // use three different addresses because at this point we use all three formats in parallel |
| uint32_t ots_addr[8]; |
| uint32_t ltree_addr[8]; |
| uint32_t node_addr[8]; |
| // only copy layer and tree address parts |
| memcpy(ots_addr, addr, 12); |
| // type = ots |
| setType(ots_addr, 0); |
| memcpy(ltree_addr, addr, 12); |
| setType(ltree_addr, 1); |
| memcpy(node_addr, addr, 12); |
| setType(node_addr, 2); |
| |
| uint32_t lastnode, i; |
| unsigned char stack[(height+1)*n]; |
| unsigned int stacklevels[height+1]; |
| unsigned int stackoffset=0; |
| unsigned int nodeh; |
| |
| lastnode = idx+(1<<height); |
| |
| for (i = 0; i < h-k; i++) { |
| state->treehash[i].h = i; |
| state->treehash[i].completed = 1; |
| state->treehash[i].stackusage = 0; |
| } |
| |
| i = 0; |
| for (; idx < lastnode; idx++) { |
| setLtreeADRS(ltree_addr, idx); |
| setOTSADRS(ots_addr, idx); |
| gen_leaf_wots(stack+stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); |
| stacklevels[stackoffset] = 0; |
| stackoffset++; |
| if (h - k > 0 && i == 3) { |
| memcpy(state->treehash[0].node, stack+stackoffset*n, n); |
| } |
| while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) |
| { |
| nodeh = stacklevels[stackoffset-1]; |
| if (i >> nodeh == 1) { |
| memcpy(state->auth + nodeh*n, stack+(stackoffset-1)*n, n); |
| } |
| else { |
| if (nodeh < h - k && i >> nodeh == 3) { |
| memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*n, n); |
| } |
| else if (nodeh >= h - k) { |
| memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((i >> nodeh) - 3) >> 1)) * n, stack+(stackoffset-1)*n, n); |
| } |
| } |
| setTreeHeight(node_addr, stacklevels[stackoffset-1]); |
| setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); |
| hash_h(stack+(stackoffset-2)*n, stack+(stackoffset-2)*n, pub_seed, |
| node_addr, n); |
| stacklevels[stackoffset-2]++; |
| stackoffset--; |
| } |
| i++; |
| } |
| |
| for (i = 0; i < n; i++) |
| node[i] = stack[i]; |
| } |
| |
| static void treehash_update(treehash_inst *treehash, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) { |
| int n = params->n; |
| |
| uint32_t ots_addr[8]; |
| uint32_t ltree_addr[8]; |
| uint32_t node_addr[8]; |
| // only copy layer and tree address parts |
| memcpy(ots_addr, addr, 12); |
| // type = ots |
| setType(ots_addr, 0); |
| memcpy(ltree_addr, addr, 12); |
| setType(ltree_addr, 1); |
| memcpy(node_addr, addr, 12); |
| setType(node_addr, 2); |
| |
| setLtreeADRS(ltree_addr, treehash->next_idx); |
| setOTSADRS(ots_addr, treehash->next_idx); |
| |
| unsigned char nodebuffer[2 * n]; |
| unsigned int nodeheight = 0; |
| gen_leaf_wots(nodebuffer, sk_seed, params, pub_seed, ltree_addr, ots_addr); |
| while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) { |
| memcpy(nodebuffer + n, nodebuffer, n); |
| memcpy(nodebuffer, state->stack + (state->stackoffset-1)*n, n); |
| setTreeHeight(node_addr, nodeheight); |
| setTreeIndex(node_addr, (treehash->next_idx >> (nodeheight+1))); |
| hash_h(nodebuffer, nodebuffer, pub_seed, node_addr, n); |
| nodeheight++; |
| treehash->stackusage--; |
| state->stackoffset--; |
| } |
| if (nodeheight == treehash->h) { // this also implies stackusage == 0 |
| memcpy(treehash->node, nodebuffer, n); |
| treehash->completed = 1; |
| } |
| else { |
| memcpy(state->stack + state->stackoffset*n, nodebuffer, n); |
| treehash->stackusage++; |
| state->stacklevels[state->stackoffset] = nodeheight; |
| state->stackoffset++; |
| treehash->next_idx++; |
| } |
| } |
| |
| /** |
| * Computes a root node given a leaf and an authapth |
| */ |
| static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8]) |
| { |
| unsigned int n = params->n; |
| |
| uint32_t i, j; |
| unsigned char buffer[2*n]; |
| |
| // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. |
| // Otherwise, it is the other way around |
| if (leafidx & 1) { |
| for (j = 0; j < n; j++) |
| buffer[n+j] = leaf[j]; |
| for (j = 0; j < n; j++) |
| buffer[j] = authpath[j]; |
| } |
| else { |
| for (j = 0; j < n; j++) |
| buffer[j] = leaf[j]; |
| for (j = 0; j < n; j++) |
| buffer[n+j] = authpath[j]; |
| } |
| authpath += n; |
| |
| for (i=0; i < params->h-1; i++) { |
| setTreeHeight(addr, i); |
| leafidx >>= 1; |
| setTreeIndex(addr, leafidx); |
| if (leafidx&1) { |
| hash_h(buffer+n, buffer, pub_seed, addr, n); |
| for (j = 0; j < n; j++) |
| buffer[j] = authpath[j]; |
| } |
| else { |
| hash_h(buffer, buffer, pub_seed, addr, n); |
| for (j = 0; j < n; j++) |
| buffer[j+n] = authpath[j]; |
| } |
| authpath += n; |
| } |
| setTreeHeight(addr, (params->h-1)); |
| leafidx >>= 1; |
| setTreeIndex(addr, leafidx); |
| hash_h(root, buffer, pub_seed, addr, n); |
| } |
| |
| /** |
| * Performs one treehash update on the instance that needs it the most. |
| * Returns 1 if such an instance was not found |
| **/ |
| static char bds_treehash_update(bds_state *state, unsigned int updates, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { |
| uint32_t i, j; |
| unsigned int level, l_min, low; |
| unsigned int h = params->h; |
| unsigned int k = params->k; |
| unsigned int used = 0; |
| |
| for (j = 0; j < updates; j++) { |
| l_min = h; |
| level = h - k; |
| for (i = 0; i < h - k; i++) { |
| if (state->treehash[i].completed) { |
| low = h; |
| } |
| else if (state->treehash[i].stackusage == 0) { |
| low = i; |
| } |
| else { |
| low = treehash_minheight_on_stack(state, params, &(state->treehash[i])); |
| } |
| if (low < l_min) { |
| level = i; |
| l_min = low; |
| } |
| } |
| if (level == h - k) { |
| break; |
| } |
| treehash_update(&(state->treehash[level]), state, sk_seed, params, pub_seed, addr); |
| used++; |
| } |
| return updates - used; |
| } |
| |
| /** |
| * Updates the state (typically NEXT_i) by adding a leaf and updating the stack |
| * Returns 1 if all leaf nodes have already been processed |
| **/ |
| static char bds_state_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { |
| uint32_t ltree_addr[8]; |
| uint32_t node_addr[8]; |
| uint32_t ots_addr[8]; |
| |
| int n = params->n; |
| int h = params->h; |
| int k = params->k; |
| |
| int nodeh; |
| int idx = state->next_leaf; |
| if (idx == 1 << h) { |
| return 1; |
| } |
| |
| // only copy layer and tree address parts |
| memcpy(ots_addr, addr, 12); |
| // type = ots |
| setType(ots_addr, 0); |
| memcpy(ltree_addr, addr, 12); |
| setType(ltree_addr, 1); |
| memcpy(node_addr, addr, 12); |
| setType(node_addr, 2); |
| |
| setOTSADRS(ots_addr, idx); |
| setLtreeADRS(ltree_addr, idx); |
| |
| gen_leaf_wots(state->stack+state->stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); |
| |
| state->stacklevels[state->stackoffset] = 0; |
| state->stackoffset++; |
| if (h - k > 0 && idx == 3) { |
| memcpy(state->treehash[0].node, state->stack+state->stackoffset*n, n); |
| } |
| while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) { |
| nodeh = state->stacklevels[state->stackoffset-1]; |
| if (idx >> nodeh == 1) { |
| memcpy(state->auth + nodeh*n, state->stack+(state->stackoffset-1)*n, n); |
| } |
| else { |
| if (nodeh < h - k && idx >> nodeh == 3) { |
| memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*n, n); |
| } |
| else if (nodeh >= h - k) { |
| memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((idx >> nodeh) - 3) >> 1)) * n, state->stack+(state->stackoffset-1)*n, n); |
| } |
| } |
| setTreeHeight(node_addr, state->stacklevels[state->stackoffset-1]); |
| setTreeIndex(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1))); |
| hash_h(state->stack+(state->stackoffset-2)*n, state->stack+(state->stackoffset-2)*n, pub_seed, node_addr, n); |
| |
| state->stacklevels[state->stackoffset-2]++; |
| state->stackoffset--; |
| } |
| state->next_leaf++; |
| return 0; |
| } |
| |
| /** |
| * Returns the auth path for node leaf_idx and computes the auth path for the |
| * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo |
| * in "Post Quantum Cryptography", Springer 2009. |
| */ |
| static void bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, uint32_t addr[8]) |
| { |
| unsigned int i; |
| unsigned int n = params->n; |
| unsigned int h = params->h; |
| unsigned int k = params->k; |
| |
| unsigned int tau = h; |
| unsigned int startidx; |
| unsigned int offset, rowidx; |
| unsigned char buf[2 * n]; |
| |
| uint32_t ots_addr[8]; |
| uint32_t ltree_addr[8]; |
| uint32_t node_addr[8]; |
| // only copy layer and tree address parts |
| memcpy(ots_addr, addr, 12); |
| // type = ots |
| setType(ots_addr, 0); |
| memcpy(ltree_addr, addr, 12); |
| setType(ltree_addr, 1); |
| memcpy(node_addr, addr, 12); |
| setType(node_addr, 2); |
| |
| for (i = 0; i < h; i++) { |
| if (! ((leaf_idx >> i) & 1)) { |
| tau = i; |
| break; |
| } |
| } |
| |
| if (tau > 0) { |
| memcpy(buf, state->auth + (tau-1) * n, n); |
| // we need to do this before refreshing state->keep to prevent overwriting |
| memcpy(buf + n, state->keep + ((tau-1) >> 1) * n, n); |
| } |
| if (!((leaf_idx >> (tau + 1)) & 1) && (tau < h - 1)) { |
| memcpy(state->keep + (tau >> 1)*n, state->auth + tau*n, n); |
| } |
| if (tau == 0) { |
| setLtreeADRS(ltree_addr, leaf_idx); |
| setOTSADRS(ots_addr, leaf_idx); |
| gen_leaf_wots(state->auth, sk_seed, params, pub_seed, ltree_addr, ots_addr); |
| } |
| else { |
| setTreeHeight(node_addr, (tau-1)); |
| setTreeIndex(node_addr, leaf_idx >> tau); |
| hash_h(state->auth + tau * n, buf, pub_seed, node_addr, n); |
| for (i = 0; i < tau; i++) { |
| if (i < h - k) { |
| memcpy(state->auth + i * n, state->treehash[i].node, n); |
| } |
| else { |
| offset = (1 << (h - 1 - i)) + i - h; |
| rowidx = ((leaf_idx >> i) - 1) >> 1; |
| memcpy(state->auth + i * n, state->retain + (offset + rowidx) * n, n); |
| } |
| } |
| |
| for (i = 0; i < ((tau < h - k) ? tau : (h - k)); i++) { |
| startidx = leaf_idx + 1 + 3 * (1 << i); |
| if (startidx < 1U << h) { |
| state->treehash[i].h = i; |
| state->treehash[i].next_idx = startidx; |
| state->treehash[i].completed = 0; |
| state->treehash[i].stackusage = 0; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Generates a XMSS key pair for a given parameter set. |
| * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] |
| * Format pk: [root || PUB_SEED] omitting algo oid. |
| */ |
| int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state, xmss_params *params) |
| { |
| unsigned int n = params->n; |
| // Set idx = 0 |
| sk[0] = 0; |
| sk[1] = 0; |
| sk[2] = 0; |
| sk[3] = 0; |
| // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) |
| randombytes(sk+4, 3*n); |
| // Copy PUB_SEED to public key |
| memcpy(pk+n, sk+4+2*n, n); |
| |
| uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| |
| // Compute root |
| treehash_setup(pk, params->h, 0, state, sk+4, params, sk+4+2*n, addr); |
| // copy root to sk |
| memcpy(sk+4+3*n, pk, n); |
| return 0; |
| } |
| |
| /** |
| * Signs a message. |
| * Returns |
| * 1. an array containing the signature followed by the message AND |
| * 2. an updated secret key! |
| * |
| */ |
| int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params) |
| { |
| unsigned int h = params->h; |
| unsigned int n = params->n; |
| unsigned int k = params->k; |
| uint16_t i = 0; |
| |
| // Extract SK |
| unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; |
| unsigned char sk_seed[n]; |
| memcpy(sk_seed, sk+4, n); |
| unsigned char sk_prf[n]; |
| memcpy(sk_prf, sk+4+n, n); |
| unsigned char pub_seed[n]; |
| memcpy(pub_seed, sk+4+2*n, n); |
| |
| // index as 32 bytes string |
| unsigned char idx_bytes_32[32]; |
| to_byte(idx_bytes_32, idx, 32); |
| |
| unsigned char hash_key[3*n]; |
| |
| // Update SK |
| sk[0] = ((idx + 1) >> 24) & 255; |
| sk[1] = ((idx + 1) >> 16) & 255; |
| sk[2] = ((idx + 1) >> 8) & 255; |
| sk[3] = (idx + 1) & 255; |
| // -- Secret key for this non-forward-secure version is now updated. |
| // -- A productive implementation should use a file handle instead and write the updated secret key at this point! |
| |
| // Init working params |
| unsigned char R[n]; |
| unsigned char msg_h[n]; |
| unsigned char ots_seed[n]; |
| uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| |
| // --------------------------------- |
| // Message Hashing |
| // --------------------------------- |
| |
| // Message Hash: |
| // First compute pseudorandom value |
| prf(R, idx_bytes_32, sk_prf, n); |
| // Generate hash key (R || root || idx) |
| memcpy(hash_key, R, n); |
| memcpy(hash_key+n, sk+4+3*n, n); |
| to_byte(hash_key+2*n, idx, n); |
| // Then use it for message digest |
| h_msg(msg_h, msg, msglen, hash_key, 3*n, n); |
| |
| // Start collecting signature |
| *sig_msg_len = 0; |
| |
| // Copy index to signature |
| sig_msg[0] = (idx >> 24) & 255; |
| sig_msg[1] = (idx >> 16) & 255; |
| sig_msg[2] = (idx >> 8) & 255; |
| sig_msg[3] = idx & 255; |
| |
| sig_msg += 4; |
| *sig_msg_len += 4; |
| |
| // Copy R to signature |
| for (i = 0; i < n; i++) |
| sig_msg[i] = R[i]; |
| |
| sig_msg += n; |
| *sig_msg_len += n; |
| |
| // ---------------------------------- |
| // Now we start to "really sign" |
| // ---------------------------------- |
| |
| // Prepare Address |
| setType(ots_addr, 0); |
| setOTSADRS(ots_addr, idx); |
| |
| // Compute seed for OTS key pair |
| get_seed(ots_seed, sk_seed, n, ots_addr); |
| |
| // Compute WOTS signature |
| wots_sign(sig_msg, msg_h, ots_seed, &(params->wots_par), pub_seed, ots_addr); |
| |
| sig_msg += params->wots_par.keysize; |
| *sig_msg_len += params->wots_par.keysize; |
| |
| // the auth path was already computed during the previous round |
| memcpy(sig_msg, state->auth, h*n); |
| |
| if (idx < (1U << h) - 1) { |
| bds_round(state, idx, sk_seed, params, pub_seed, ots_addr); |
| bds_treehash_update(state, (h - k) >> 1, sk_seed, params, pub_seed, ots_addr); |
| } |
| |
| /* TODO: save key/bds state here! */ |
| |
| sig_msg += params->h*n; |
| *sig_msg_len += params->h*n; |
| |
| //Whipe secret elements? |
| //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); |
| |
| |
| memcpy(sig_msg, msg, msglen); |
| *sig_msg_len += msglen; |
| |
| return 0; |
| } |
| |
| /** |
| * Verifies a given message signature pair under a given public key. |
| */ |
| int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params) |
| { |
| unsigned int n = params->n; |
| |
| unsigned long long i, m_len; |
| unsigned long idx=0; |
| unsigned char wots_pk[params->wots_par.keysize]; |
| unsigned char pkhash[n]; |
| unsigned char root[n]; |
| unsigned char msg_h[n]; |
| unsigned char hash_key[3*n]; |
| |
| unsigned char pub_seed[n]; |
| memcpy(pub_seed, pk+n, n); |
| |
| // Init addresses |
| uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| |
| setType(ots_addr, 0); |
| setType(ltree_addr, 1); |
| setType(node_addr, 2); |
| |
| // Extract index |
| idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; |
| printf("verify:: idx = %lu\n", idx); |
| |
| // Generate hash key (R || root || idx) |
| memcpy(hash_key, sig_msg+4,n); |
| memcpy(hash_key+n, pk, n); |
| to_byte(hash_key+2*n, idx, n); |
| |
| sig_msg += (n+4); |
| sig_msg_len -= (n+4); |
| |
| // hash message |
| unsigned long long tmp_sig_len = params->wots_par.keysize+params->h*n; |
| m_len = sig_msg_len - tmp_sig_len; |
| h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n); |
| |
| //----------------------- |
| // Verify signature |
| //----------------------- |
| |
| // Prepare Address |
| setOTSADRS(ots_addr, idx); |
| // Check WOTS signature |
| wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr); |
| |
| sig_msg += params->wots_par.keysize; |
| sig_msg_len -= params->wots_par.keysize; |
| |
| // Compute Ltree |
| setLtreeADRS(ltree_addr, idx); |
| l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr); |
| |
| // Compute root |
| validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr); |
| |
| sig_msg += params->h*n; |
| sig_msg_len -= params->h*n; |
| |
| for (i = 0; i < n; i++) |
| if (root[i] != pk[i]) |
| goto fail; |
| |
| *msglen = sig_msg_len; |
| for (i = 0; i < *msglen; i++) |
| msg[i] = sig_msg[i]; |
| |
| return 0; |
| |
| |
| fail: |
| *msglen = sig_msg_len; |
| for (i = 0; i < *msglen; i++) |
| msg[i] = 0; |
| *msglen = -1; |
| return -1; |
| } |
| |
| /* |
| * Generates a XMSSMT key pair for a given parameter set. |
| * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] |
| * Format pk: [root || PUB_SEED] omitting algo oid. |
| */ |
| int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs, xmssmt_params *params) |
| { |
| unsigned int n = params->n; |
| unsigned int i; |
| unsigned char ots_seed[params->n]; |
| // Set idx = 0 |
| for (i = 0; i < params->index_len; i++) { |
| sk[i] = 0; |
| } |
| // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) |
| randombytes(sk+params->index_len, 3*n); |
| // Copy PUB_SEED to public key |
| memcpy(pk+n, sk+params->index_len+2*n, n); |
| |
| // Set address to point on the single tree on layer d-1 |
| uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| setLayerADRS(addr, (params->d-1)); |
| // Set up state and compute wots signatures for all but topmost tree root |
| for (i = 0; i < params->d - 1; i++) { |
| // Compute seed for OTS key pair |
| treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); |
| setLayerADRS(addr, (i+1)); |
| get_seed(ots_seed, sk+params->index_len, n, addr); |
| wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, pk, ots_seed, &(params->xmss_par.wots_par), pk+n, addr); |
| } |
| treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); |
| memcpy(sk+params->index_len+3*n, pk, n); |
| return 0; |
| } |
| |
| /** |
| * Signs a message. |
| * Returns |
| * 1. an array containing the signature followed by the message AND |
| * 2. an updated secret key! |
| * |
| */ |
| int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params) |
| { |
| unsigned int n = params->n; |
| |
| unsigned int tree_h = params->xmss_par.h; |
| unsigned int h = params->h; |
| unsigned int k = params->xmss_par.k; |
| unsigned int idx_len = params->index_len; |
| uint64_t idx_tree; |
| uint32_t idx_leaf; |
| uint64_t i, j; |
| int needswap_upto = -1; |
| unsigned int updates; |
| |
| unsigned char sk_seed[n]; |
| unsigned char sk_prf[n]; |
| unsigned char pub_seed[n]; |
| // Init working params |
| unsigned char R[n]; |
| unsigned char msg_h[n]; |
| unsigned char hash_key[3*n]; |
| unsigned char ots_seed[n]; |
| uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| unsigned char idx_bytes_32[32]; |
| bds_state tmp; |
| |
| // Extract SK |
| unsigned long long idx = 0; |
| for (i = 0; i < idx_len; i++) { |
| idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i); |
| } |
| |
| memcpy(sk_seed, sk+idx_len, n); |
| memcpy(sk_prf, sk+idx_len+n, n); |
| memcpy(pub_seed, sk+idx_len+2*n, n); |
| |
| // Update SK |
| for (i = 0; i < idx_len; i++) { |
| sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255; |
| } |
| // -- Secret key for this non-forward-secure version is now updated. |
| // -- A productive implementation should use a file handle instead and write the updated secret key at this point! |
| |
| |
| // --------------------------------- |
| // Message Hashing |
| // --------------------------------- |
| |
| // Message Hash: |
| // First compute pseudorandom value |
| to_byte(idx_bytes_32, idx, 32); |
| prf(R, idx_bytes_32, sk_prf, n); |
| // Generate hash key (R || root || idx) |
| memcpy(hash_key, R, n); |
| memcpy(hash_key+n, sk+idx_len+3*n, n); |
| to_byte(hash_key+2*n, idx, n); |
| |
| // Then use it for message digest |
| h_msg(msg_h, msg, msglen, hash_key, 3*n, n); |
| |
| // Start collecting signature |
| *sig_msg_len = 0; |
| |
| // Copy index to signature |
| for (i = 0; i < idx_len; i++) { |
| sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255; |
| } |
| |
| sig_msg += idx_len; |
| *sig_msg_len += idx_len; |
| |
| // Copy R to signature |
| for (i = 0; i < n; i++) |
| sig_msg[i] = R[i]; |
| |
| sig_msg += n; |
| *sig_msg_len += n; |
| |
| // ---------------------------------- |
| // Now we start to "really sign" |
| // ---------------------------------- |
| |
| // Handle lowest layer separately as it is slightly different... |
| |
| // Prepare Address |
| setType(ots_addr, 0); |
| idx_tree = idx >> tree_h; |
| idx_leaf = (idx & ((1 << tree_h)-1)); |
| setLayerADRS(ots_addr, 0); |
| setTreeADRS(ots_addr, idx_tree); |
| setOTSADRS(ots_addr, idx_leaf); |
| |
| // Compute seed for OTS key pair |
| get_seed(ots_seed, sk_seed, n, ots_addr); |
| |
| // Compute WOTS signature |
| wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); |
| |
| sig_msg += params->xmss_par.wots_par.keysize; |
| *sig_msg_len += params->xmss_par.wots_par.keysize; |
| |
| memcpy(sig_msg, states[0].auth, tree_h*n); |
| sig_msg += tree_h*n; |
| *sig_msg_len += tree_h*n; |
| |
| // prepare signature of remaining layers |
| for (i = 1; i < params->d; i++) { |
| // put WOTS signature in place |
| memcpy(sig_msg, wots_sigs + (i-1)*params->xmss_par.wots_par.keysize, params->xmss_par.wots_par.keysize); |
| |
| sig_msg += params->xmss_par.wots_par.keysize; |
| *sig_msg_len += params->xmss_par.wots_par.keysize; |
| |
| // put AUTH nodes in place |
| memcpy(sig_msg, states[i].auth, tree_h*n); |
| sig_msg += tree_h*n; |
| *sig_msg_len += tree_h*n; |
| } |
| |
| updates = (tree_h - k) >> 1; |
| |
| setTreeADRS(addr, (idx_tree + 1)); |
| // mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists |
| if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << h)) { |
| bds_state_update(&states[params->d], sk_seed, &(params->xmss_par), pub_seed, addr); |
| } |
| |
| for (i = 0; i < params->d; i++) { |
| // check if we're not at the end of a tree |
| if (! (((idx + 1) & ((1ULL << ((i+1)*tree_h)) - 1)) == 0)) { |
| idx_leaf = (idx >> (tree_h * i)) & ((1 << tree_h)-1); |
| idx_tree = (idx >> (tree_h * (i+1))); |
| setLayerADRS(addr, i); |
| setTreeADRS(addr, idx_tree); |
| if (i == (unsigned int) (needswap_upto + 1)) { |
| bds_round(&states[i], idx_leaf, sk_seed, &(params->xmss_par), pub_seed, addr); |
| } |
| updates = bds_treehash_update(&states[i], updates, sk_seed, &(params->xmss_par), pub_seed, addr); |
| setTreeADRS(addr, (idx_tree + 1)); |
| // if a NEXT-tree exists for this level; |
| if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << (h - tree_h * i))) { |
| if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << h)) { |
| bds_state_update(&states[params->d + i], sk_seed, &(params->xmss_par), pub_seed, addr); |
| updates--; |
| } |
| } |
| } |
| else if (idx < (1ULL << h) - 1) { |
| memcpy(&tmp, states+params->d + i, sizeof(bds_state)); |
| memcpy(states+params->d + i, states + i, sizeof(bds_state)); |
| memcpy(states + i, &tmp, sizeof(bds_state)); |
| |
| setLayerADRS(ots_addr, (i+1)); |
| setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * tree_h))); |
| setOTSADRS(ots_addr, (((idx >> ((i+1) * tree_h)) + 1) & ((1 << tree_h)-1))); |
| |
| get_seed(ots_seed, sk+params->index_len, n, ots_addr); |
| wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, states[i].stack, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); |
| |
| states[params->d + i].stackoffset = 0; |
| states[params->d + i].next_leaf = 0; |
| |
| updates--; // WOTS-signing counts as one update |
| needswap_upto = i; |
| for (j = 0; j < tree_h-k; j++) { |
| states[i].treehash[j].completed = 1; |
| } |
| } |
| } |
| |
| //Whipe secret elements? |
| //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); |
| |
| memcpy(sig_msg, msg, msglen); |
| *sig_msg_len += msglen; |
| |
| return 0; |
| } |
| |
| /** |
| * Verifies a given message signature pair under a given public key. |
| */ |
| int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params) |
| { |
| unsigned int n = params->n; |
| |
| unsigned int tree_h = params->xmss_par.h; |
| unsigned int idx_len = params->index_len; |
| uint64_t idx_tree; |
| uint32_t idx_leaf; |
| |
| unsigned long long i, m_len; |
| unsigned long long idx=0; |
| unsigned char wots_pk[params->xmss_par.wots_par.keysize]; |
| unsigned char pkhash[n]; |
| unsigned char root[n]; |
| unsigned char msg_h[n]; |
| unsigned char hash_key[3*n]; |
| |
| unsigned char pub_seed[n]; |
| memcpy(pub_seed, pk+n, n); |
| |
| // Init addresses |
| uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| |
| // Extract index |
| for (i = 0; i < idx_len; i++) { |
| idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i)); |
| } |
| printf("verify:: idx = %llu\n", idx); |
| sig_msg += idx_len; |
| sig_msg_len -= idx_len; |
| |
| // Generate hash key (R || root || idx) |
| memcpy(hash_key, sig_msg,n); |
| memcpy(hash_key+n, pk, n); |
| to_byte(hash_key+2*n, idx, n); |
| |
| sig_msg += n; |
| sig_msg_len -= n; |
| |
| |
| // hash message (recall, R is now on pole position at sig_msg |
| unsigned long long tmp_sig_len = (params->d * params->xmss_par.wots_par.keysize) + (params->h * n); |
| m_len = sig_msg_len - tmp_sig_len; |
| h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n); |
| |
| |
| //----------------------- |
| // Verify signature |
| //----------------------- |
| |
| // Prepare Address |
| idx_tree = idx >> tree_h; |
| idx_leaf = (idx & ((1 << tree_h)-1)); |
| setLayerADRS(ots_addr, 0); |
| setTreeADRS(ots_addr, idx_tree); |
| setType(ots_addr, 0); |
| |
| memcpy(ltree_addr, ots_addr, 12); |
| setType(ltree_addr, 1); |
| |
| memcpy(node_addr, ltree_addr, 12); |
| setType(node_addr, 2); |
| |
| setOTSADRS(ots_addr, idx_leaf); |
| |
| // Check WOTS signature |
| wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr); |
| |
| sig_msg += params->xmss_par.wots_par.keysize; |
| sig_msg_len -= params->xmss_par.wots_par.keysize; |
| |
| // Compute Ltree |
| setLtreeADRS(ltree_addr, idx_leaf); |
| l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); |
| |
| // Compute root |
| validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); |
| |
| sig_msg += tree_h*n; |
| sig_msg_len -= tree_h*n; |
| |
| for (i = 1; i < params->d; i++) { |
| // Prepare Address |
| idx_leaf = (idx_tree & ((1 << tree_h)-1)); |
| idx_tree = idx_tree >> tree_h; |
| |
| setLayerADRS(ots_addr, i); |
| setTreeADRS(ots_addr, idx_tree); |
| setType(ots_addr, 0); |
| |
| memcpy(ltree_addr, ots_addr, 12); |
| setType(ltree_addr, 1); |
| |
| memcpy(node_addr, ltree_addr, 12); |
| setType(node_addr, 2); |
| |
| setOTSADRS(ots_addr, idx_leaf); |
| |
| // Check WOTS signature |
| wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr); |
| |
| sig_msg += params->xmss_par.wots_par.keysize; |
| sig_msg_len -= params->xmss_par.wots_par.keysize; |
| |
| // Compute Ltree |
| setLtreeADRS(ltree_addr, idx_leaf); |
| l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); |
| |
| // Compute root |
| validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); |
| |
| sig_msg += tree_h*n; |
| sig_msg_len -= tree_h*n; |
| |
| } |
| |
| for (i = 0; i < n; i++) |
| if (root[i] != pk[i]) |
| goto fail; |
| |
| *msglen = sig_msg_len; |
| for (i = 0; i < *msglen; i++) |
| msg[i] = sig_msg[i]; |
| |
| return 0; |
| |
| |
| fail: |
| *msglen = sig_msg_len; |
| for (i = 0; i < *msglen; i++) |
| msg[i] = 0; |
| *msglen = -1; |
| return -1; |
| } |
| #endif /* WITH_XMSS */ |