20001210
 - (bal) OpenBSD CVS updates
   - markus@cvs.openbsd.org 2000/12/09 13:41:51
     [cipher.c cipher.h rijndael.c rijndael.h rijndael_boxes.h]
     undo rijndael changes
   - markus@cvs.openbsd.org 2000/12/09 13:48:31
     [rijndael.c]
     fix byte order bug w/o introducing new implementation
   - markus@cvs.openbsd.org 2000/12/09 14:08:27
     [sftp-server.c]
     "" -> "." for realpath; from vinschen@redhat.com
   - markus@cvs.openbsd.org 2000/12/09 14:06:54
     [ssh-agent.c]
     extern int optind; from stevesk@sweden.hp.com
diff --git a/rijndael.c b/rijndael.c
index 92a3976..10c779b 100644
--- a/rijndael.c
+++ b/rijndael.c
@@ -1,311 +1,412 @@
-/*
- * rijndael-alg-fst.c   v2.4   April '2000
- * rijndael-alg-api.c   v2.4   April '2000
- *
- * Optimised ANSI C code
- *
- * authors: v1.0: Antoon Bosselaers
- *          v2.0: Vincent Rijmen, K.U.Leuven
- *          v2.3: Paulo Barreto
- *          v2.4: Vincent Rijmen, K.U.Leuven
- *
- * This code is placed in the public domain.
- */
+/*	$OpenBSD: rijndael.c,v 1.6 2000/12/09 13:48:31 markus Exp $	*/
 
-#include <stdio.h>
-#include <stdlib.h>
-#include <assert.h>
+/* This is an independent implementation of the encryption algorithm:   */
+/*                                                                      */
+/*         RIJNDAEL by Joan Daemen and Vincent Rijmen                   */
+/*                                                                      */
+/* which is a candidate algorithm in the Advanced Encryption Standard   */
+/* programme of the US National Institute of Standards and Technology.  */
+/*                                                                      */
+/* Copyright in this implementation is held by Dr B R Gladman but I     */
+/* hereby give permission for its free direct or derivative use subject */
+/* to acknowledgment of its origin and compliance with any conditions   */
+/* that the originators of the algorithm place on its exploitation.     */
+/*                                                                      */
+/* Dr Brian Gladman (gladman@seven77.demon.co.uk) 14th January 1999     */
+
+/* Timing data for Rijndael (rijndael.c)
+
+Algorithm: rijndael (rijndael.c)
+
+128 bit key:
+Key Setup:    305/1389 cycles (encrypt/decrypt)
+Encrypt:       374 cycles =    68.4 mbits/sec
+Decrypt:       352 cycles =    72.7 mbits/sec
+Mean:          363 cycles =    70.5 mbits/sec
+
+192 bit key:
+Key Setup:    277/1595 cycles (encrypt/decrypt)
+Encrypt:       439 cycles =    58.3 mbits/sec
+Decrypt:       425 cycles =    60.2 mbits/sec
+Mean:          432 cycles =    59.3 mbits/sec
+
+256 bit key:
+Key Setup:    374/1960 cycles (encrypt/decrypt)
+Encrypt:       502 cycles =    51.0 mbits/sec
+Decrypt:       498 cycles =    51.4 mbits/sec
+Mean:          500 cycles =    51.2 mbits/sec
+
+*/
 
 #include "config.h"
 #include "rijndael.h"
-#include "rijndael_boxes.h"
 
-int
-rijndael_keysched(u_int8_t k[RIJNDAEL_MAXKC][4],
-    u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
+void gen_tabs	__P((void));
+
+/* 3. Basic macros for speeding up generic operations               */
+
+/* Circular rotate of 32 bit values                                 */
+
+#define rotr(x,n)   (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
+#define rotl(x,n)   (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
+
+/* Invert byte order in a 32 bit variable                           */
+
+#define bswap(x)    ((rotl(x, 8) & 0x00ff00ff) | (rotr(x, 8) & 0xff00ff00))
+
+/* Extract byte from a 32 bit quantity (little endian notation)     */ 
+
+#define byte(x,n)   ((u1byte)((x) >> (8 * n)))
+
+#if BYTE_ORDER != LITTLE_ENDIAN
+#define BYTE_SWAP
+#endif
+
+#ifdef  BYTE_SWAP
+#define io_swap(x)  bswap(x)
+#else
+#define io_swap(x)  (x)
+#endif
+
+#define LARGE_TABLES
+
+u1byte  pow_tab[256];
+u1byte  log_tab[256];
+u1byte  sbx_tab[256];
+u1byte  isb_tab[256];
+u4byte  rco_tab[ 10];
+u4byte  ft_tab[4][256];
+u4byte  it_tab[4][256];
+
+#ifdef  LARGE_TABLES
+  u4byte  fl_tab[4][256];
+  u4byte  il_tab[4][256];
+#endif
+
+u4byte  tab_gen = 0;
+
+#define ff_mult(a,b)    (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
+
+#define f_rn(bo, bi, n, k)                          \
+    bo[n] =  ft_tab[0][byte(bi[n],0)] ^             \
+             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
+             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
+             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+
+#define i_rn(bo, bi, n, k)                          \
+    bo[n] =  it_tab[0][byte(bi[n],0)] ^             \
+             it_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
+             it_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
+             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
+
+#ifdef LARGE_TABLES
+
+#define ls_box(x)                \
+    ( fl_tab[0][byte(x, 0)] ^    \
+      fl_tab[1][byte(x, 1)] ^    \
+      fl_tab[2][byte(x, 2)] ^    \
+      fl_tab[3][byte(x, 3)] )
+
+#define f_rl(bo, bi, n, k)                          \
+    bo[n] =  fl_tab[0][byte(bi[n],0)] ^             \
+             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^   \
+             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
+             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
+
+#define i_rl(bo, bi, n, k)                          \
+    bo[n] =  il_tab[0][byte(bi[n],0)] ^             \
+             il_tab[1][byte(bi[(n + 3) & 3],1)] ^   \
+             il_tab[2][byte(bi[(n + 2) & 3],2)] ^   \
+             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
+
+#else
+
+#define ls_box(x)                            \
+    ((u4byte)sbx_tab[byte(x, 0)] <<  0) ^    \
+    ((u4byte)sbx_tab[byte(x, 1)] <<  8) ^    \
+    ((u4byte)sbx_tab[byte(x, 2)] << 16) ^    \
+    ((u4byte)sbx_tab[byte(x, 3)] << 24)
+
+#define f_rl(bo, bi, n, k)                                      \
+    bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^                    \
+        rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]),  8) ^  \
+        rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
+        rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
+
+#define i_rl(bo, bi, n, k)                                      \
+    bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^                    \
+        rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]),  8) ^  \
+        rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^  \
+        rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
+
+#endif
+
+void
+gen_tabs(void)
 {
-	/* Calculate the necessary round keys
-	 * The number of calculations depends on keyBits and blockBits
-	 */ 
-	int j, r, t, rconpointer = 0;
-	u_int8_t tk[RIJNDAEL_MAXKC][4];
-	int KC = ROUNDS - 6;
+	u4byte  i, t;
+	u1byte  p, q;
 
-	for (j = KC-1; j >= 0; j--) {
-		*((u_int32_t*)tk[j]) = *((u_int32_t*)k[j]);
-	}
-	r = 0;
-	t = 0;
-	/* copy values into round key array */
-	for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
-		for (; (j < KC) && (t < 4); j++, t++) {
-			*((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
-		}
-		if (t == 4) {
-			r++;
-			t = 0;
-		}
-	}
-		
-	while (r < ROUNDS + 1) { /* while not enough round key material calculated */
-		/* calculate new values */
-		tk[0][0] ^= S[tk[KC-1][1]];
-		tk[0][1] ^= S[tk[KC-1][2]];
-		tk[0][2] ^= S[tk[KC-1][3]];
-		tk[0][3] ^= S[tk[KC-1][0]];
-		tk[0][0] ^= rcon[rconpointer++];
+	/* log and power tables for GF(2**8) finite field with  */
+	/* 0x11b as modular polynomial - the simplest prmitive  */
+	/* root is 0x11, used here to generate the tables       */
 
-		if (KC != 8) {
-			for (j = 1; j < KC; j++) {
-				*((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
-			}
-		} else {
-			for (j = 1; j < KC/2; j++) {
-				*((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
-			}
-			tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
-			tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
-			tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
-			tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
-			for (j = KC/2 + 1; j < KC; j++) {
-				*((u_int32_t*)tk[j]) ^= *((u_int32_t*)tk[j-1]);
-			}
-		}
-		/* copy values into round key array */
-		for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
-			for (; (j < KC) && (t < 4); j++, t++) {
-				*((u_int32_t*)W[r][t]) = *((u_int32_t*)tk[j]);
-			}
-			if (t == 4) {
-				r++;
-				t = 0;
-			}
-		}
-	}		
-	return 0;
+	for(i = 0,p = 1; i < 256; ++i) {
+		pow_tab[i] = (u1byte)p; log_tab[p] = (u1byte)i;
+
+		p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
+	}
+
+	log_tab[1] = 0; p = 1;
+
+	for(i = 0; i < 10; ++i) {
+		rco_tab[i] = p; 
+
+		p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
+	}
+
+	/* note that the affine byte transformation matrix in   */
+	/* rijndael specification is in big endian format with  */
+	/* bit 0 as the most significant bit. In the remainder  */
+	/* of the specification the bits are numbered from the  */
+	/* least significant end of a byte.                     */
+
+	for(i = 0; i < 256; ++i) {
+		p = (i ? pow_tab[255 - log_tab[i]] : 0); q = p; 
+		q = (q >> 7) | (q << 1); p ^= q; 
+		q = (q >> 7) | (q << 1); p ^= q; 
+		q = (q >> 7) | (q << 1); p ^= q; 
+		q = (q >> 7) | (q << 1); p ^= q ^ 0x63; 
+		sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
+	}
+
+	for(i = 0; i < 256; ++i) {
+		p = sbx_tab[i]; 
+
+#ifdef  LARGE_TABLES        
+        
+		t = p; fl_tab[0][i] = t;
+		fl_tab[1][i] = rotl(t,  8);
+		fl_tab[2][i] = rotl(t, 16);
+		fl_tab[3][i] = rotl(t, 24);
+#endif
+		t = ((u4byte)ff_mult(2, p)) |
+			((u4byte)p <<  8) |
+			((u4byte)p << 16) |
+			((u4byte)ff_mult(3, p) << 24);
+        
+		ft_tab[0][i] = t;
+		ft_tab[1][i] = rotl(t,  8);
+		ft_tab[2][i] = rotl(t, 16);
+		ft_tab[3][i] = rotl(t, 24);
+
+		p = isb_tab[i]; 
+
+#ifdef  LARGE_TABLES        
+        
+		t = p; il_tab[0][i] = t; 
+		il_tab[1][i] = rotl(t,  8); 
+		il_tab[2][i] = rotl(t, 16); 
+		il_tab[3][i] = rotl(t, 24);
+#endif 
+		t = ((u4byte)ff_mult(14, p)) |
+			((u4byte)ff_mult( 9, p) <<  8) |
+			((u4byte)ff_mult(13, p) << 16) |
+			((u4byte)ff_mult(11, p) << 24);
+        
+		it_tab[0][i] = t; 
+		it_tab[1][i] = rotl(t,  8); 
+		it_tab[2][i] = rotl(t, 16); 
+		it_tab[3][i] = rotl(t, 24); 
+	}
+
+	tab_gen = 1;
 }
 
-int
-rijndael_key_enc_to_dec(u_int8_t W[RIJNDAEL_MAXROUNDS+1][4][4], int ROUNDS)
-{
-	int r;
-	u_int8_t *w;
+#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
 
-	for (r = 1; r < ROUNDS; r++) {
-		w = W[r][0];
-		*((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
-				 ^ *((u_int32_t*)U2[w[1]])
-				 ^ *((u_int32_t*)U3[w[2]])
-				 ^ *((u_int32_t*)U4[w[3]]);
+#define imix_col(y,x)       \
+    u   = star_x(x);        \
+    v   = star_x(u);        \
+    w   = star_x(v);        \
+    t   = w ^ (x);          \
+   (y)  = u ^ v ^ w;        \
+   (y) ^= rotr(u ^ t,  8) ^ \
+          rotr(v ^ t, 16) ^ \
+          rotr(t,24)
 
-		w = W[r][1];
-		*((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
-				 ^ *((u_int32_t*)U2[w[1]])
-				 ^ *((u_int32_t*)U3[w[2]])
-				 ^ *((u_int32_t*)U4[w[3]]);
+/* initialise the key schedule from the user supplied key   */
 
-		w = W[r][2];
-		*((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
-				 ^ *((u_int32_t*)U2[w[1]])
-				 ^ *((u_int32_t*)U3[w[2]])
-				 ^ *((u_int32_t*)U4[w[3]]);
-
-		w = W[r][3];
-		*((u_int32_t*)w) = *((u_int32_t*)U1[w[0]])
-				 ^ *((u_int32_t*)U2[w[1]])
-				 ^ *((u_int32_t*)U3[w[2]])
-				 ^ *((u_int32_t*)U4[w[3]]);
-	}
-	return 0;
-}	
-
-/**
- * Encrypt a single block. 
- */
-int
-rijndael_encrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
-{
-	u_int8_t (*rk)[4][4] = key->keySched;
-	int ROUNDS = key->ROUNDS;
-	int r;
-	u_int8_t temp[4][4];
-
-	*((u_int32_t*)temp[0]) = *((u_int32_t*)(a   )) ^ *((u_int32_t*)rk[0][0]);
-	*((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[0][1]);
-	*((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[0][2]);
-	*((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[0][3]);
-	*((u_int32_t*)(b    )) = *((u_int32_t*)T1[temp[0][0]])
-			       ^ *((u_int32_t*)T2[temp[1][1]])
-			       ^ *((u_int32_t*)T3[temp[2][2]]) 
-			       ^ *((u_int32_t*)T4[temp[3][3]]);
-	*((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
-			       ^ *((u_int32_t*)T2[temp[2][1]])
-			       ^ *((u_int32_t*)T3[temp[3][2]]) 
-			       ^ *((u_int32_t*)T4[temp[0][3]]);
-	*((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
-			       ^ *((u_int32_t*)T2[temp[3][1]])
-			       ^ *((u_int32_t*)T3[temp[0][2]]) 
-			       ^ *((u_int32_t*)T4[temp[1][3]]);
-	*((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
-			       ^ *((u_int32_t*)T2[temp[0][1]])
-			       ^ *((u_int32_t*)T3[temp[1][2]]) 
-			       ^ *((u_int32_t*)T4[temp[2][3]]);
-	for (r = 1; r < ROUNDS-1; r++) {
-		*((u_int32_t*)temp[0]) = *((u_int32_t*)(b   )) ^ *((u_int32_t*)rk[r][0]);
-		*((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
-		*((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
-		*((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
-
-		*((u_int32_t*)(b    )) = *((u_int32_t*)T1[temp[0][0]])
-				       ^ *((u_int32_t*)T2[temp[1][1]])
-				       ^ *((u_int32_t*)T3[temp[2][2]]) 
-				       ^ *((u_int32_t*)T4[temp[3][3]]);
-		*((u_int32_t*)(b + 4)) = *((u_int32_t*)T1[temp[1][0]])
-				       ^ *((u_int32_t*)T2[temp[2][1]])
-				       ^ *((u_int32_t*)T3[temp[3][2]]) 
-				       ^ *((u_int32_t*)T4[temp[0][3]]);
-		*((u_int32_t*)(b + 8)) = *((u_int32_t*)T1[temp[2][0]])
-				       ^ *((u_int32_t*)T2[temp[3][1]])
-				       ^ *((u_int32_t*)T3[temp[0][2]]) 
-				       ^ *((u_int32_t*)T4[temp[1][3]]);
-		*((u_int32_t*)(b +12)) = *((u_int32_t*)T1[temp[3][0]])
-				       ^ *((u_int32_t*)T2[temp[0][1]])
-				       ^ *((u_int32_t*)T3[temp[1][2]]) 
-				       ^ *((u_int32_t*)T4[temp[2][3]]);
-	}
-	/* last round is special */   
-	*((u_int32_t*)temp[0]) = *((u_int32_t*)(b   )) ^ *((u_int32_t*)rk[ROUNDS-1][0]);
-	*((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[ROUNDS-1][1]);
-	*((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[ROUNDS-1][2]);
-	*((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[ROUNDS-1][3]);
-	b[ 0] = T1[temp[0][0]][1];
-	b[ 1] = T1[temp[1][1]][1];
-	b[ 2] = T1[temp[2][2]][1];
-	b[ 3] = T1[temp[3][3]][1];
-	b[ 4] = T1[temp[1][0]][1];
-	b[ 5] = T1[temp[2][1]][1];
-	b[ 6] = T1[temp[3][2]][1];
-	b[ 7] = T1[temp[0][3]][1];
-	b[ 8] = T1[temp[2][0]][1];
-	b[ 9] = T1[temp[3][1]][1];
-	b[10] = T1[temp[0][2]][1];
-	b[11] = T1[temp[1][3]][1];
-	b[12] = T1[temp[3][0]][1];
-	b[13] = T1[temp[0][1]][1];
-	b[14] = T1[temp[1][2]][1];
-	b[15] = T1[temp[2][3]][1];
-	*((u_int32_t*)(b   )) ^= *((u_int32_t*)rk[ROUNDS][0]);
-	*((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[ROUNDS][1]);
-	*((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[ROUNDS][2]);
-	*((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[ROUNDS][3]);
-
-	return 0;
+#define loop4(i)                                    \
+{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
+    t ^= e_key[4 * i];     e_key[4 * i + 4] = t;    \
+    t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;    \
+    t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;    \
+    t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;    \
 }
 
-/**
- * Decrypt a single block.
- */
-int
-rijndael_decrypt(rijndael_key *key, u_int8_t a[16], u_int8_t b[16])
-{
-	u_int8_t (*rk)[4][4] = key->keySched;
-	int ROUNDS = key->ROUNDS;
-	int r;
-	u_int8_t temp[4][4];
+#define loop6(i)                                    \
+{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
+    t ^= e_key[6 * i];     e_key[6 * i + 6] = t;    \
+    t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t;    \
+    t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t;    \
+    t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t;    \
+    t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t;   \
+    t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t;   \
+}
+
+#define loop8(i)                                    \
+{   t = ls_box(rotr(t,  8)) ^ rco_tab[i];           \
+    t ^= e_key[8 * i];     e_key[8 * i + 8] = t;    \
+    t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t;    \
+    t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t;   \
+    t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t;   \
+    t  = e_key[8 * i + 4] ^ ls_box(t);              \
+    e_key[8 * i + 12] = t;                          \
+    t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t;   \
+    t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t;   \
+    t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t;   \
+}
+
+rijndael_ctx *
+rijndael_set_key(rijndael_ctx *ctx, const u4byte *in_key, const u4byte key_len,
+		 int encrypt)
+{  
+	u4byte  i, t, u, v, w;
+	u4byte *e_key = ctx->e_key;
+	u4byte *d_key = ctx->d_key;
+
+	ctx->decrypt = !encrypt;
+
+	if(!tab_gen)
+		gen_tabs();
+
+	ctx->k_len = (key_len + 31) / 32;
+
+	e_key[0] = io_swap(in_key[0]); e_key[1] = io_swap(in_key[1]);
+	e_key[2] = io_swap(in_key[2]); e_key[3] = io_swap(in_key[3]);
 	
-	*((u_int32_t*)temp[0]) = *((u_int32_t*)(a   )) ^ *((u_int32_t*)rk[ROUNDS][0]);
-	*((u_int32_t*)temp[1]) = *((u_int32_t*)(a+ 4)) ^ *((u_int32_t*)rk[ROUNDS][1]);
-	*((u_int32_t*)temp[2]) = *((u_int32_t*)(a+ 8)) ^ *((u_int32_t*)rk[ROUNDS][2]);
-	*((u_int32_t*)temp[3]) = *((u_int32_t*)(a+12)) ^ *((u_int32_t*)rk[ROUNDS][3]);
+	switch(ctx->k_len) {
+        case 4: t = e_key[3];
+                for(i = 0; i < 10; ++i) 
+			loop4(i);
+                break;
 
-	*((u_int32_t*)(b   )) = *((u_int32_t*)T5[temp[0][0]])
-			      ^ *((u_int32_t*)T6[temp[3][1]])
-			      ^ *((u_int32_t*)T7[temp[2][2]]) 
-			      ^ *((u_int32_t*)T8[temp[1][3]]);
-	*((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
-			      ^ *((u_int32_t*)T6[temp[0][1]])
-			      ^ *((u_int32_t*)T7[temp[3][2]]) 
-			      ^ *((u_int32_t*)T8[temp[2][3]]);
-	*((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
-			      ^ *((u_int32_t*)T6[temp[1][1]])
-			      ^ *((u_int32_t*)T7[temp[0][2]]) 
-			      ^ *((u_int32_t*)T8[temp[3][3]]);
-	*((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
-			      ^ *((u_int32_t*)T6[temp[2][1]])
-			      ^ *((u_int32_t*)T7[temp[1][2]]) 
-			      ^ *((u_int32_t*)T8[temp[0][3]]);
-	for (r = ROUNDS-1; r > 1; r--) {
-		*((u_int32_t*)temp[0]) = *((u_int32_t*)(b   )) ^ *((u_int32_t*)rk[r][0]);
-		*((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[r][1]);
-		*((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[r][2]);
-		*((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[r][3]);
-		*((u_int32_t*)(b   )) = *((u_int32_t*)T5[temp[0][0]])
-				      ^ *((u_int32_t*)T6[temp[3][1]])
-				      ^ *((u_int32_t*)T7[temp[2][2]]) 
-				      ^ *((u_int32_t*)T8[temp[1][3]]);
-		*((u_int32_t*)(b+ 4)) = *((u_int32_t*)T5[temp[1][0]])
-				      ^ *((u_int32_t*)T6[temp[0][1]])
-				      ^ *((u_int32_t*)T7[temp[3][2]]) 
-				      ^ *((u_int32_t*)T8[temp[2][3]]);
-		*((u_int32_t*)(b+ 8)) = *((u_int32_t*)T5[temp[2][0]])
-				      ^ *((u_int32_t*)T6[temp[1][1]])
-				      ^ *((u_int32_t*)T7[temp[0][2]]) 
-				      ^ *((u_int32_t*)T8[temp[3][3]]);
-		*((u_int32_t*)(b+12)) = *((u_int32_t*)T5[temp[3][0]])
-				      ^ *((u_int32_t*)T6[temp[2][1]])
-				      ^ *((u_int32_t*)T7[temp[1][2]]) 
-				      ^ *((u_int32_t*)T8[temp[0][3]]);
+        case 6: e_key[4] = io_swap(in_key[4]); t = e_key[5] = io_swap(in_key[5]);
+                for(i = 0; i < 8; ++i) 
+			loop6(i);
+                break;
+
+        case 8: e_key[4] = io_swap(in_key[4]); e_key[5] = io_swap(in_key[5]);
+                e_key[6] = io_swap(in_key[6]); t = e_key[7] = io_swap(in_key[7]);
+                for(i = 0; i < 7; ++i) 
+			loop8(i);
+                break;
 	}
-	/* last round is special */   
-	*((u_int32_t*)temp[0]) = *((u_int32_t*)(b   )) ^ *((u_int32_t*)rk[1][0]);
-	*((u_int32_t*)temp[1]) = *((u_int32_t*)(b+ 4)) ^ *((u_int32_t*)rk[1][1]);
-	*((u_int32_t*)temp[2]) = *((u_int32_t*)(b+ 8)) ^ *((u_int32_t*)rk[1][2]);
-	*((u_int32_t*)temp[3]) = *((u_int32_t*)(b+12)) ^ *((u_int32_t*)rk[1][3]);
-	b[ 0] = S5[temp[0][0]];
-	b[ 1] = S5[temp[3][1]];
-	b[ 2] = S5[temp[2][2]];
-	b[ 3] = S5[temp[1][3]];
-	b[ 4] = S5[temp[1][0]];
-	b[ 5] = S5[temp[0][1]];
-	b[ 6] = S5[temp[3][2]];
-	b[ 7] = S5[temp[2][3]];
-	b[ 8] = S5[temp[2][0]];
-	b[ 9] = S5[temp[1][1]];
-	b[10] = S5[temp[0][2]];
-	b[11] = S5[temp[3][3]];
-	b[12] = S5[temp[3][0]];
-	b[13] = S5[temp[2][1]];
-	b[14] = S5[temp[1][2]];
-	b[15] = S5[temp[0][3]];
-	*((u_int32_t*)(b   )) ^= *((u_int32_t*)rk[0][0]);
-	*((u_int32_t*)(b+ 4)) ^= *((u_int32_t*)rk[0][1]);
-	*((u_int32_t*)(b+ 8)) ^= *((u_int32_t*)rk[0][2]);
-	*((u_int32_t*)(b+12)) ^= *((u_int32_t*)rk[0][3]);
 
-	return 0;
+	if (!encrypt) {
+		d_key[0] = e_key[0]; d_key[1] = e_key[1];
+		d_key[2] = e_key[2]; d_key[3] = e_key[3];
+
+		for(i = 4; i < 4 * ctx->k_len + 24; ++i) {
+			imix_col(d_key[i], e_key[i]);
+		}
+	}
+
+	return ctx;
 }
 
-int
-rijndael_makekey(rijndael_key *key, int direction, int keyLen, u_int8_t *keyMaterial)
-{
-	u_int8_t k[RIJNDAEL_MAXKC][4];
-	int i;
-	
-	if (key == NULL)
-		return -1;
-	if ((direction != RIJNDAEL_ENCRYPT) && (direction != RIJNDAEL_DECRYPT))
-		return -1;
-	if ((keyLen != 128) && (keyLen != 192) && (keyLen != 256))
-		return -1;
+/* encrypt a block of text  */
 
-	key->ROUNDS = keyLen/32 + 6;
+#define f_nround(bo, bi, k) \
+    f_rn(bo, bi, 0, k);     \
+    f_rn(bo, bi, 1, k);     \
+    f_rn(bo, bi, 2, k);     \
+    f_rn(bo, bi, 3, k);     \
+    k += 4
 
-	/* initialize key schedule: */
-	for (i = 0; i < keyLen/8; i++)
-		k[i >> 2][i & 3] = (u_int8_t)keyMaterial[i]; 
+#define f_lround(bo, bi, k) \
+    f_rl(bo, bi, 0, k);     \
+    f_rl(bo, bi, 1, k);     \
+    f_rl(bo, bi, 2, k);     \
+    f_rl(bo, bi, 3, k)
 
-	rijndael_keysched(k, key->keySched, key->ROUNDS);
-	if (direction == RIJNDAEL_DECRYPT)
-		rijndael_key_enc_to_dec(key->keySched, key->ROUNDS);
-	return 0;
+void
+rijndael_encrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
+{   
+	u4byte k_len = ctx->k_len;
+	u4byte *e_key = ctx->e_key;
+	u4byte  b0[4], b1[4], *kp;
+
+	b0[0] = io_swap(in_blk[0]) ^ e_key[0];
+	b0[1] = io_swap(in_blk[1]) ^ e_key[1];
+	b0[2] = io_swap(in_blk[2]) ^ e_key[2];
+	b0[3] = io_swap(in_blk[3]) ^ e_key[3];
+
+	kp = e_key + 4;
+
+	if(k_len > 6) {
+		f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+	}
+
+	if(k_len > 4) {
+		f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+	}
+
+	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+	f_nround(b1, b0, kp); f_nround(b0, b1, kp);
+	f_nround(b1, b0, kp); f_lround(b0, b1, kp);
+
+	out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
+	out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
+}
+
+/* decrypt a block of text  */
+
+#define i_nround(bo, bi, k) \
+    i_rn(bo, bi, 0, k);     \
+    i_rn(bo, bi, 1, k);     \
+    i_rn(bo, bi, 2, k);     \
+    i_rn(bo, bi, 3, k);     \
+    k -= 4
+
+#define i_lround(bo, bi, k) \
+    i_rl(bo, bi, 0, k);     \
+    i_rl(bo, bi, 1, k);     \
+    i_rl(bo, bi, 2, k);     \
+    i_rl(bo, bi, 3, k)
+
+void
+rijndael_decrypt(rijndael_ctx *ctx, const u4byte *in_blk, u4byte *out_blk)
+{  
+	u4byte  b0[4], b1[4], *kp;
+	u4byte k_len = ctx->k_len;
+	u4byte *e_key = ctx->e_key;
+	u4byte *d_key = ctx->d_key;
+
+	b0[0] = io_swap(in_blk[0]) ^ e_key[4 * k_len + 24];
+	b0[1] = io_swap(in_blk[1]) ^ e_key[4 * k_len + 25];
+	b0[2] = io_swap(in_blk[2]) ^ e_key[4 * k_len + 26];
+	b0[3] = io_swap(in_blk[3]) ^ e_key[4 * k_len + 27];
+
+	kp = d_key + 4 * (k_len + 5);
+
+	if(k_len > 6) {
+		i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+	}
+
+	if(k_len > 4) {
+		i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+	}
+
+	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+	i_nround(b1, b0, kp); i_nround(b0, b1, kp);
+	i_nround(b1, b0, kp); i_lround(b0, b1, kp);
+
+	out_blk[0] = io_swap(b0[0]); out_blk[1] = io_swap(b0[1]);
+	out_blk[2] = io_swap(b0[2]); out_blk[3] = io_swap(b0[3]);
 }