blob: 2f368ebe6c86e03a2e61814ca1a47e03f504cb62 [file] [log] [blame]
Damien Miller8a56dc22013-12-18 17:48:11 +11001/* $OpenBSD: fe25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */
Damien Miller5be9d9e2013-12-07 11:24:01 +11002
Damien Miller8a56dc22013-12-18 17:48:11 +11003/*
4 * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange,
5 * Peter Schwabe, Bo-Yin Yang.
6 * Copied from supercop-20130419/crypto_sign/ed25519/ref/fe25519.c
7 */
Damien Miller5be9d9e2013-12-07 11:24:01 +11008
9#define WINDOWSIZE 1 /* Should be 1,2, or 4 */
10#define WINDOWMASK ((1<<WINDOWSIZE)-1)
11
12#include "fe25519.h"
13
14static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
15{
16 crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */
17 x -= 1; /* 4294967295: yes; 0..65534: no */
18 x >>= 31; /* 1: yes; 0: no */
19 return x;
20}
21
22static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
23{
24 unsigned int x = a;
25 x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */
26 x >>= 31; /* 0: yes; 1: no */
27 x ^= 1; /* 1: yes; 0: no */
28 return x;
29}
30
31static crypto_uint32 times19(crypto_uint32 a)
32{
33 return (a << 4) + (a << 1) + a;
34}
35
36static crypto_uint32 times38(crypto_uint32 a)
37{
38 return (a << 5) + (a << 2) + (a << 1);
39}
40
41static void reduce_add_sub(fe25519 *r)
42{
43 crypto_uint32 t;
44 int i,rep;
45
46 for(rep=0;rep<4;rep++)
47 {
48 t = r->v[31] >> 7;
49 r->v[31] &= 127;
50 t = times19(t);
51 r->v[0] += t;
52 for(i=0;i<31;i++)
53 {
54 t = r->v[i] >> 8;
55 r->v[i+1] += t;
56 r->v[i] &= 255;
57 }
58 }
59}
60
61static void reduce_mul(fe25519 *r)
62{
63 crypto_uint32 t;
64 int i,rep;
65
66 for(rep=0;rep<2;rep++)
67 {
68 t = r->v[31] >> 7;
69 r->v[31] &= 127;
70 t = times19(t);
71 r->v[0] += t;
72 for(i=0;i<31;i++)
73 {
74 t = r->v[i] >> 8;
75 r->v[i+1] += t;
76 r->v[i] &= 255;
77 }
78 }
79}
80
81/* reduction modulo 2^255-19 */
82void fe25519_freeze(fe25519 *r)
83{
84 int i;
85 crypto_uint32 m = equal(r->v[31],127);
86 for(i=30;i>0;i--)
87 m &= equal(r->v[i],255);
88 m &= ge(r->v[0],237);
89
90 m = -m;
91
92 r->v[31] -= m&127;
93 for(i=30;i>0;i--)
94 r->v[i] -= m&255;
95 r->v[0] -= m&237;
96}
97
98void fe25519_unpack(fe25519 *r, const unsigned char x[32])
99{
100 int i;
101 for(i=0;i<32;i++) r->v[i] = x[i];
102 r->v[31] &= 127;
103}
104
105/* Assumes input x being reduced below 2^255 */
106void fe25519_pack(unsigned char r[32], const fe25519 *x)
107{
108 int i;
109 fe25519 y = *x;
110 fe25519_freeze(&y);
111 for(i=0;i<32;i++)
112 r[i] = y.v[i];
113}
114
115int fe25519_iszero(const fe25519 *x)
116{
117 int i;
118 int r;
119 fe25519 t = *x;
120 fe25519_freeze(&t);
121 r = equal(t.v[0],0);
122 for(i=1;i<32;i++)
123 r &= equal(t.v[i],0);
124 return r;
125}
126
127int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y)
128{
129 int i;
130 fe25519 t1 = *x;
131 fe25519 t2 = *y;
132 fe25519_freeze(&t1);
133 fe25519_freeze(&t2);
134 for(i=0;i<32;i++)
135 if(t1.v[i] != t2.v[i]) return 0;
136 return 1;
137}
138
139void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
140{
141 int i;
142 crypto_uint32 mask = b;
143 mask = -mask;
144 for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]);
145}
146
147unsigned char fe25519_getparity(const fe25519 *x)
148{
149 fe25519 t = *x;
150 fe25519_freeze(&t);
151 return t.v[0] & 1;
152}
153
154void fe25519_setone(fe25519 *r)
155{
156 int i;
157 r->v[0] = 1;
158 for(i=1;i<32;i++) r->v[i]=0;
159}
160
161void fe25519_setzero(fe25519 *r)
162{
163 int i;
164 for(i=0;i<32;i++) r->v[i]=0;
165}
166
167void fe25519_neg(fe25519 *r, const fe25519 *x)
168{
169 fe25519 t;
170 int i;
171 for(i=0;i<32;i++) t.v[i]=x->v[i];
172 fe25519_setzero(r);
173 fe25519_sub(r, r, &t);
174}
175
176void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
177{
178 int i;
179 for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
180 reduce_add_sub(r);
181}
182
183void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
184{
185 int i;
186 crypto_uint32 t[32];
187 t[0] = x->v[0] + 0x1da;
188 t[31] = x->v[31] + 0xfe;
189 for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
190 for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
191 reduce_add_sub(r);
192}
193
194void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
195{
196 int i,j;
197 crypto_uint32 t[63];
198 for(i=0;i<63;i++)t[i] = 0;
199
200 for(i=0;i<32;i++)
201 for(j=0;j<32;j++)
202 t[i+j] += x->v[i] * y->v[j];
203
204 for(i=32;i<63;i++)
205 r->v[i-32] = t[i-32] + times38(t[i]);
206 r->v[31] = t[31]; /* result now in r[0]...r[31] */
207
208 reduce_mul(r);
209}
210
211void fe25519_square(fe25519 *r, const fe25519 *x)
212{
213 fe25519_mul(r, x, x);
214}
215
216void fe25519_invert(fe25519 *r, const fe25519 *x)
217{
218 fe25519 z2;
219 fe25519 z9;
220 fe25519 z11;
221 fe25519 z2_5_0;
222 fe25519 z2_10_0;
223 fe25519 z2_20_0;
224 fe25519 z2_50_0;
225 fe25519 z2_100_0;
226 fe25519 t0;
227 fe25519 t1;
228 int i;
229
230 /* 2 */ fe25519_square(&z2,x);
231 /* 4 */ fe25519_square(&t1,&z2);
232 /* 8 */ fe25519_square(&t0,&t1);
233 /* 9 */ fe25519_mul(&z9,&t0,x);
234 /* 11 */ fe25519_mul(&z11,&z9,&z2);
235 /* 22 */ fe25519_square(&t0,&z11);
236 /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
237
238 /* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
239 /* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
240 /* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
241 /* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
242 /* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
243 /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
244
245 /* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
246 /* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
247 /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
248 /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
249
250 /* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
251 /* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
252 /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
253 /* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
254
255 /* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
256 /* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
257 /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
258 /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
259
260 /* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
261 /* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
262 /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
263 /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
264
265 /* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
266 /* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
267 /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
268 /* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
269
270 /* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
271 /* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
272 /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
273 /* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
274
275 /* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
276 /* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
277 /* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
278 /* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
279 /* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
280 /* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);
281}
282
283void fe25519_pow2523(fe25519 *r, const fe25519 *x)
284{
285 fe25519 z2;
286 fe25519 z9;
287 fe25519 z11;
288 fe25519 z2_5_0;
289 fe25519 z2_10_0;
290 fe25519 z2_20_0;
291 fe25519 z2_50_0;
292 fe25519 z2_100_0;
293 fe25519 t;
294 int i;
295
296 /* 2 */ fe25519_square(&z2,x);
297 /* 4 */ fe25519_square(&t,&z2);
298 /* 8 */ fe25519_square(&t,&t);
299 /* 9 */ fe25519_mul(&z9,&t,x);
300 /* 11 */ fe25519_mul(&z11,&z9,&z2);
301 /* 22 */ fe25519_square(&t,&z11);
302 /* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9);
303
304 /* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
305 /* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
306 /* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
307
308 /* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
309 /* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
310 /* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
311
312 /* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
313 /* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
314 /* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);
315
316 /* 2^41 - 2^1 */ fe25519_square(&t,&t);
317 /* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
318 /* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
319
320 /* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
321 /* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
322 /* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
323
324 /* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
325 /* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
326 /* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
327
328 /* 2^201 - 2^1 */ fe25519_square(&t,&t);
329 /* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
330 /* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
331
332 /* 2^251 - 2^1 */ fe25519_square(&t,&t);
333 /* 2^252 - 2^2 */ fe25519_square(&t,&t);
334 /* 2^252 - 3 */ fe25519_mul(r,&t,x);
335}