Damien Miller | e45796f | 2007-06-11 14:01:42 +1000 | [diff] [blame] | 1 | /* $OpenBSD: umac.c,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */ |
| 2 | /* ----------------------------------------------------------------------- |
| 3 | * |
| 4 | * umac.c -- C Implementation UMAC Message Authentication |
| 5 | * |
| 6 | * Version 0.93b of rfc4418.txt -- 2006 July 18 |
| 7 | * |
| 8 | * For a full description of UMAC message authentication see the UMAC |
| 9 | * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac |
| 10 | * Please report bugs and suggestions to the UMAC webpage. |
| 11 | * |
| 12 | * Copyright (c) 1999-2006 Ted Krovetz |
| 13 | * |
| 14 | * Permission to use, copy, modify, and distribute this software and |
| 15 | * its documentation for any purpose and with or without fee, is hereby |
| 16 | * granted provided that the above copyright notice appears in all copies |
| 17 | * and in supporting documentation, and that the name of the copyright |
| 18 | * holder not be used in advertising or publicity pertaining to |
| 19 | * distribution of the software without specific, written prior permission. |
| 20 | * |
| 21 | * Comments should be directed to Ted Krovetz (tdk@acm.org) |
| 22 | * |
| 23 | * ---------------------------------------------------------------------- */ |
| 24 | |
| 25 | /* ////////////////////// IMPORTANT NOTES ///////////////////////////////// |
| 26 | * |
| 27 | * 1) This version does not work properly on messages larger than 16MB |
| 28 | * |
| 29 | * 2) If you set the switch to use SSE2, then all data must be 16-byte |
| 30 | * aligned |
| 31 | * |
| 32 | * 3) When calling the function umac(), it is assumed that msg is in |
| 33 | * a writable buffer of length divisible by 32 bytes. The message itself |
| 34 | * does not have to fill the entire buffer, but bytes beyond msg may be |
| 35 | * zeroed. |
| 36 | * |
| 37 | * 4) Three free AES implementations are supported by this implementation of |
| 38 | * UMAC. Paulo Barreto's version is in the public domain and can be found |
| 39 | * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for |
| 40 | * "Barreto"). The only two files needed are rijndael-alg-fst.c and |
| 41 | * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU |
| 42 | * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It |
| 43 | * includes a fast IA-32 assembly version. The OpenSSL crypo library is |
| 44 | * the third. |
| 45 | * |
| 46 | * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes |
| 47 | * produced under gcc with optimizations set -O3 or higher. Dunno why. |
| 48 | * |
| 49 | /////////////////////////////////////////////////////////////////////// */ |
| 50 | |
| 51 | /* ---------------------------------------------------------------------- */ |
| 52 | /* --- User Switches ---------------------------------------------------- */ |
| 53 | /* ---------------------------------------------------------------------- */ |
| 54 | |
| 55 | #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */ |
| 56 | /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */ |
| 57 | /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */ |
| 58 | /* #define SSE2 0 Is SSE2 is available? */ |
| 59 | /* #define RUN_TESTS 0 Run basic correctness/speed tests */ |
| 60 | /* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */ |
| 61 | |
| 62 | /* ---------------------------------------------------------------------- */ |
| 63 | /* -- Global Includes --------------------------------------------------- */ |
| 64 | /* ---------------------------------------------------------------------- */ |
| 65 | |
| 66 | #include "includes.h" |
| 67 | #include <sys/types.h> |
| 68 | |
| 69 | #include "umac.h" |
| 70 | #include <string.h> |
| 71 | #include <stdlib.h> |
| 72 | #include <stddef.h> |
| 73 | |
| 74 | /* ---------------------------------------------------------------------- */ |
| 75 | /* --- Primitive Data Types --- */ |
| 76 | /* ---------------------------------------------------------------------- */ |
| 77 | |
| 78 | /* The following assumptions may need change on your system */ |
| 79 | typedef u_int8_t UINT8; /* 1 byte */ |
| 80 | typedef u_int16_t UINT16; /* 2 byte */ |
| 81 | typedef u_int32_t UINT32; /* 4 byte */ |
| 82 | typedef u_int64_t UINT64; /* 8 bytes */ |
| 83 | typedef unsigned int UWORD; /* Register */ |
| 84 | |
| 85 | /* ---------------------------------------------------------------------- */ |
| 86 | /* --- Constants -------------------------------------------------------- */ |
| 87 | /* ---------------------------------------------------------------------- */ |
| 88 | |
| 89 | #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */ |
| 90 | |
| 91 | /* Message "words" are read from memory in an endian-specific manner. */ |
| 92 | /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */ |
| 93 | /* be set true if the host computer is little-endian. */ |
| 94 | |
| 95 | #if BYTE_ORDER == LITTLE_ENDIAN |
| 96 | #define __LITTLE_ENDIAN__ 1 |
| 97 | #else |
| 98 | #define __LITTLE_ENDIAN__ 0 |
| 99 | #endif |
| 100 | |
| 101 | /* ---------------------------------------------------------------------- */ |
| 102 | /* ---------------------------------------------------------------------- */ |
| 103 | /* ----- Architecture Specific ------------------------------------------ */ |
| 104 | /* ---------------------------------------------------------------------- */ |
| 105 | /* ---------------------------------------------------------------------- */ |
| 106 | |
| 107 | |
| 108 | /* ---------------------------------------------------------------------- */ |
| 109 | /* ---------------------------------------------------------------------- */ |
| 110 | /* ----- Primitive Routines --------------------------------------------- */ |
| 111 | /* ---------------------------------------------------------------------- */ |
| 112 | /* ---------------------------------------------------------------------- */ |
| 113 | |
| 114 | |
| 115 | /* ---------------------------------------------------------------------- */ |
| 116 | /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */ |
| 117 | /* ---------------------------------------------------------------------- */ |
| 118 | |
| 119 | #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b))) |
| 120 | |
| 121 | /* ---------------------------------------------------------------------- */ |
| 122 | /* --- Endian Conversion --- Forcing assembly on some platforms */ |
| 123 | /* ---------------------------------------------------------------------- */ |
| 124 | |
Damien Miller | 34a1769 | 2007-06-11 14:15:42 +1000 | [diff] [blame] | 125 | #if HAVE_SWAP32 |
| 126 | #define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p))) |
| 127 | #define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v)) |
| 128 | #else /* HAVE_SWAP32 */ |
| 129 | |
Damien Miller | e45796f | 2007-06-11 14:01:42 +1000 | [diff] [blame] | 130 | static UINT32 LOAD_UINT32_REVERSED(void *ptr) |
| 131 | { |
| 132 | UINT32 temp = *(UINT32 *)ptr; |
| 133 | temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 ) |
| 134 | | ((temp & 0x0000FF00) << 8 ) | (temp << 24); |
| 135 | return (UINT32)temp; |
| 136 | } |
| 137 | |
| 138 | static void STORE_UINT32_REVERSED(void *ptr, UINT32 x) |
| 139 | { |
| 140 | UINT32 i = (UINT32)x; |
| 141 | *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 ) |
| 142 | | ((i & 0x0000FF00) << 8 ) | (i << 24); |
| 143 | } |
Damien Miller | 34a1769 | 2007-06-11 14:15:42 +1000 | [diff] [blame] | 144 | #endif /* HAVE_SWAP32 */ |
Damien Miller | e45796f | 2007-06-11 14:01:42 +1000 | [diff] [blame] | 145 | |
| 146 | /* The following definitions use the above reversal-primitives to do the right |
| 147 | * thing on endian specific load and stores. |
| 148 | */ |
| 149 | |
Damien Miller | e45796f | 2007-06-11 14:01:42 +1000 | [diff] [blame] | 150 | #if (__LITTLE_ENDIAN__) |
| 151 | #define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr)) |
| 152 | #define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x) |
| 153 | #else |
| 154 | #define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr) |
| 155 | #define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x)) |
| 156 | #endif |
| 157 | |
Damien Miller | e45796f | 2007-06-11 14:01:42 +1000 | [diff] [blame] | 158 | /* ---------------------------------------------------------------------- */ |
| 159 | /* ---------------------------------------------------------------------- */ |
| 160 | /* ----- Begin KDF & PDF Section ---------------------------------------- */ |
| 161 | /* ---------------------------------------------------------------------- */ |
| 162 | /* ---------------------------------------------------------------------- */ |
| 163 | |
| 164 | /* UMAC uses AES with 16 byte block and key lengths */ |
| 165 | #define AES_BLOCK_LEN 16 |
| 166 | |
| 167 | /* OpenSSL's AES */ |
Darren Tucker | cb52017 | 2007-06-14 23:21:32 +1000 | [diff] [blame] | 168 | #include "openbsd-compat/openssl-compat.h" |
| 169 | #ifndef USE_BUILTIN_RIJNDAEL |
| 170 | # include <openssl/aes.h> |
| 171 | #endif |
Damien Miller | e45796f | 2007-06-11 14:01:42 +1000 | [diff] [blame] | 172 | typedef AES_KEY aes_int_key[1]; |
| 173 | #define aes_encryption(in,out,int_key) \ |
| 174 | AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key) |
| 175 | #define aes_key_setup(key,int_key) \ |
| 176 | AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key) |
| 177 | |
| 178 | /* The user-supplied UMAC key is stretched using AES in a counter |
| 179 | * mode to supply all random bits needed by UMAC. The kdf function takes |
| 180 | * an AES internal key representation 'key' and writes a stream of |
| 181 | * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct |
| 182 | * 'ndx' causes a distinct byte stream. |
| 183 | */ |
| 184 | static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes) |
| 185 | { |
| 186 | UINT8 in_buf[AES_BLOCK_LEN] = {0}; |
| 187 | UINT8 out_buf[AES_BLOCK_LEN]; |
| 188 | UINT8 *dst_buf = (UINT8 *)buffer_ptr; |
| 189 | int i; |
| 190 | |
| 191 | /* Setup the initial value */ |
| 192 | in_buf[AES_BLOCK_LEN-9] = ndx; |
| 193 | in_buf[AES_BLOCK_LEN-1] = i = 1; |
| 194 | |
| 195 | while (nbytes >= AES_BLOCK_LEN) { |
| 196 | aes_encryption(in_buf, out_buf, key); |
| 197 | memcpy(dst_buf,out_buf,AES_BLOCK_LEN); |
| 198 | in_buf[AES_BLOCK_LEN-1] = ++i; |
| 199 | nbytes -= AES_BLOCK_LEN; |
| 200 | dst_buf += AES_BLOCK_LEN; |
| 201 | } |
| 202 | if (nbytes) { |
| 203 | aes_encryption(in_buf, out_buf, key); |
| 204 | memcpy(dst_buf,out_buf,nbytes); |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | /* The final UHASH result is XOR'd with the output of a pseudorandom |
| 209 | * function. Here, we use AES to generate random output and |
| 210 | * xor the appropriate bytes depending on the last bits of nonce. |
| 211 | * This scheme is optimized for sequential, increasing big-endian nonces. |
| 212 | */ |
| 213 | |
| 214 | typedef struct { |
| 215 | UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */ |
| 216 | UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */ |
| 217 | aes_int_key prf_key; /* Expanded AES key for PDF */ |
| 218 | } pdf_ctx; |
| 219 | |
| 220 | static void pdf_init(pdf_ctx *pc, aes_int_key prf_key) |
| 221 | { |
| 222 | UINT8 buf[UMAC_KEY_LEN]; |
| 223 | |
| 224 | kdf(buf, prf_key, 0, UMAC_KEY_LEN); |
| 225 | aes_key_setup(buf, pc->prf_key); |
| 226 | |
| 227 | /* Initialize pdf and cache */ |
| 228 | memset(pc->nonce, 0, sizeof(pc->nonce)); |
| 229 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
| 230 | } |
| 231 | |
| 232 | static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8]) |
| 233 | { |
| 234 | /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes |
| 235 | * of the AES output. If last time around we returned the ndx-1st |
| 236 | * element, then we may have the result in the cache already. |
| 237 | */ |
| 238 | |
| 239 | #if (UMAC_OUTPUT_LEN == 4) |
| 240 | #define LOW_BIT_MASK 3 |
| 241 | #elif (UMAC_OUTPUT_LEN == 8) |
| 242 | #define LOW_BIT_MASK 1 |
| 243 | #elif (UMAC_OUTPUT_LEN > 8) |
| 244 | #define LOW_BIT_MASK 0 |
| 245 | #endif |
| 246 | |
| 247 | UINT8 tmp_nonce_lo[4]; |
| 248 | #if LOW_BIT_MASK != 0 |
| 249 | int ndx = nonce[7] & LOW_BIT_MASK; |
| 250 | #endif |
| 251 | *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1]; |
| 252 | tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */ |
| 253 | |
| 254 | if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) || |
| 255 | (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) ) |
| 256 | { |
| 257 | ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0]; |
| 258 | ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0]; |
| 259 | aes_encryption(pc->nonce, pc->cache, pc->prf_key); |
| 260 | } |
| 261 | |
| 262 | #if (UMAC_OUTPUT_LEN == 4) |
| 263 | *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx]; |
| 264 | #elif (UMAC_OUTPUT_LEN == 8) |
| 265 | *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx]; |
| 266 | #elif (UMAC_OUTPUT_LEN == 12) |
| 267 | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
| 268 | ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2]; |
| 269 | #elif (UMAC_OUTPUT_LEN == 16) |
| 270 | ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0]; |
| 271 | ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1]; |
| 272 | #endif |
| 273 | } |
| 274 | |
| 275 | /* ---------------------------------------------------------------------- */ |
| 276 | /* ---------------------------------------------------------------------- */ |
| 277 | /* ----- Begin NH Hash Section ------------------------------------------ */ |
| 278 | /* ---------------------------------------------------------------------- */ |
| 279 | /* ---------------------------------------------------------------------- */ |
| 280 | |
| 281 | /* The NH-based hash functions used in UMAC are described in the UMAC paper |
| 282 | * and specification, both of which can be found at the UMAC website. |
| 283 | * The interface to this implementation has two |
| 284 | * versions, one expects the entire message being hashed to be passed |
| 285 | * in a single buffer and returns the hash result immediately. The second |
| 286 | * allows the message to be passed in a sequence of buffers. In the |
| 287 | * muliple-buffer interface, the client calls the routine nh_update() as |
| 288 | * many times as necessary. When there is no more data to be fed to the |
| 289 | * hash, the client calls nh_final() which calculates the hash output. |
| 290 | * Before beginning another hash calculation the nh_reset() routine |
| 291 | * must be called. The single-buffer routine, nh(), is equivalent to |
| 292 | * the sequence of calls nh_update() and nh_final(); however it is |
| 293 | * optimized and should be prefered whenever the multiple-buffer interface |
| 294 | * is not necessary. When using either interface, it is the client's |
| 295 | * responsability to pass no more than L1_KEY_LEN bytes per hash result. |
| 296 | * |
| 297 | * The routine nh_init() initializes the nh_ctx data structure and |
| 298 | * must be called once, before any other PDF routine. |
| 299 | */ |
| 300 | |
| 301 | /* The "nh_aux" routines do the actual NH hashing work. They |
| 302 | * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines |
| 303 | * produce output for all STREAMS NH iterations in one call, |
| 304 | * allowing the parallel implementation of the streams. |
| 305 | */ |
| 306 | |
| 307 | #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */ |
| 308 | #define L1_KEY_LEN 1024 /* Internal key bytes */ |
| 309 | #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */ |
| 310 | #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */ |
| 311 | #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */ |
| 312 | #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */ |
| 313 | |
| 314 | typedef struct { |
| 315 | UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */ |
| 316 | UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */ |
| 317 | int next_data_empty; /* Bookeeping variable for data buffer. */ |
| 318 | int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */ |
| 319 | UINT64 state[STREAMS]; /* on-line state */ |
| 320 | } nh_ctx; |
| 321 | |
| 322 | |
| 323 | #if (UMAC_OUTPUT_LEN == 4) |
| 324 | |
| 325 | static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) |
| 326 | /* NH hashing primitive. Previous (partial) hash result is loaded and |
| 327 | * then stored via hp pointer. The length of the data pointed at by "dp", |
| 328 | * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key |
| 329 | * is expected to be endian compensated in memory at key setup. |
| 330 | */ |
| 331 | { |
| 332 | UINT64 h; |
| 333 | UWORD c = dlen / 32; |
| 334 | UINT32 *k = (UINT32 *)kp; |
| 335 | UINT32 *d = (UINT32 *)dp; |
| 336 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
| 337 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7; |
| 338 | |
| 339 | h = *((UINT64 *)hp); |
| 340 | do { |
| 341 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
| 342 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
| 343 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
| 344 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
| 345 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
| 346 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
| 347 | h += MUL64((k0 + d0), (k4 + d4)); |
| 348 | h += MUL64((k1 + d1), (k5 + d5)); |
| 349 | h += MUL64((k2 + d2), (k6 + d6)); |
| 350 | h += MUL64((k3 + d3), (k7 + d7)); |
| 351 | |
| 352 | d += 8; |
| 353 | k += 8; |
| 354 | } while (--c); |
| 355 | *((UINT64 *)hp) = h; |
| 356 | } |
| 357 | |
| 358 | #elif (UMAC_OUTPUT_LEN == 8) |
| 359 | |
| 360 | static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) |
| 361 | /* Same as previous nh_aux, but two streams are handled in one pass, |
| 362 | * reading and writing 16 bytes of hash-state per call. |
| 363 | */ |
| 364 | { |
| 365 | UINT64 h1,h2; |
| 366 | UWORD c = dlen / 32; |
| 367 | UINT32 *k = (UINT32 *)kp; |
| 368 | UINT32 *d = (UINT32 *)dp; |
| 369 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
| 370 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
| 371 | k8,k9,k10,k11; |
| 372 | |
| 373 | h1 = *((UINT64 *)hp); |
| 374 | h2 = *((UINT64 *)hp + 1); |
| 375 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
| 376 | do { |
| 377 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
| 378 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
| 379 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
| 380 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
| 381 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
| 382 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
| 383 | |
| 384 | h1 += MUL64((k0 + d0), (k4 + d4)); |
| 385 | h2 += MUL64((k4 + d0), (k8 + d4)); |
| 386 | |
| 387 | h1 += MUL64((k1 + d1), (k5 + d5)); |
| 388 | h2 += MUL64((k5 + d1), (k9 + d5)); |
| 389 | |
| 390 | h1 += MUL64((k2 + d2), (k6 + d6)); |
| 391 | h2 += MUL64((k6 + d2), (k10 + d6)); |
| 392 | |
| 393 | h1 += MUL64((k3 + d3), (k7 + d7)); |
| 394 | h2 += MUL64((k7 + d3), (k11 + d7)); |
| 395 | |
| 396 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
| 397 | |
| 398 | d += 8; |
| 399 | k += 8; |
| 400 | } while (--c); |
| 401 | ((UINT64 *)hp)[0] = h1; |
| 402 | ((UINT64 *)hp)[1] = h2; |
| 403 | } |
| 404 | |
| 405 | #elif (UMAC_OUTPUT_LEN == 12) |
| 406 | |
| 407 | static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) |
| 408 | /* Same as previous nh_aux, but two streams are handled in one pass, |
| 409 | * reading and writing 24 bytes of hash-state per call. |
| 410 | */ |
| 411 | { |
| 412 | UINT64 h1,h2,h3; |
| 413 | UWORD c = dlen / 32; |
| 414 | UINT32 *k = (UINT32 *)kp; |
| 415 | UINT32 *d = (UINT32 *)dp; |
| 416 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
| 417 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
| 418 | k8,k9,k10,k11,k12,k13,k14,k15; |
| 419 | |
| 420 | h1 = *((UINT64 *)hp); |
| 421 | h2 = *((UINT64 *)hp + 1); |
| 422 | h3 = *((UINT64 *)hp + 2); |
| 423 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
| 424 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
| 425 | do { |
| 426 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
| 427 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
| 428 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
| 429 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
| 430 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
| 431 | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
| 432 | |
| 433 | h1 += MUL64((k0 + d0), (k4 + d4)); |
| 434 | h2 += MUL64((k4 + d0), (k8 + d4)); |
| 435 | h3 += MUL64((k8 + d0), (k12 + d4)); |
| 436 | |
| 437 | h1 += MUL64((k1 + d1), (k5 + d5)); |
| 438 | h2 += MUL64((k5 + d1), (k9 + d5)); |
| 439 | h3 += MUL64((k9 + d1), (k13 + d5)); |
| 440 | |
| 441 | h1 += MUL64((k2 + d2), (k6 + d6)); |
| 442 | h2 += MUL64((k6 + d2), (k10 + d6)); |
| 443 | h3 += MUL64((k10 + d2), (k14 + d6)); |
| 444 | |
| 445 | h1 += MUL64((k3 + d3), (k7 + d7)); |
| 446 | h2 += MUL64((k7 + d3), (k11 + d7)); |
| 447 | h3 += MUL64((k11 + d3), (k15 + d7)); |
| 448 | |
| 449 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
| 450 | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
| 451 | |
| 452 | d += 8; |
| 453 | k += 8; |
| 454 | } while (--c); |
| 455 | ((UINT64 *)hp)[0] = h1; |
| 456 | ((UINT64 *)hp)[1] = h2; |
| 457 | ((UINT64 *)hp)[2] = h3; |
| 458 | } |
| 459 | |
| 460 | #elif (UMAC_OUTPUT_LEN == 16) |
| 461 | |
| 462 | static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen) |
| 463 | /* Same as previous nh_aux, but two streams are handled in one pass, |
| 464 | * reading and writing 24 bytes of hash-state per call. |
| 465 | */ |
| 466 | { |
| 467 | UINT64 h1,h2,h3,h4; |
| 468 | UWORD c = dlen / 32; |
| 469 | UINT32 *k = (UINT32 *)kp; |
| 470 | UINT32 *d = (UINT32 *)dp; |
| 471 | UINT32 d0,d1,d2,d3,d4,d5,d6,d7; |
| 472 | UINT32 k0,k1,k2,k3,k4,k5,k6,k7, |
| 473 | k8,k9,k10,k11,k12,k13,k14,k15, |
| 474 | k16,k17,k18,k19; |
| 475 | |
| 476 | h1 = *((UINT64 *)hp); |
| 477 | h2 = *((UINT64 *)hp + 1); |
| 478 | h3 = *((UINT64 *)hp + 2); |
| 479 | h4 = *((UINT64 *)hp + 3); |
| 480 | k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3); |
| 481 | k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7); |
| 482 | do { |
| 483 | d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1); |
| 484 | d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3); |
| 485 | d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5); |
| 486 | d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7); |
| 487 | k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11); |
| 488 | k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15); |
| 489 | k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19); |
| 490 | |
| 491 | h1 += MUL64((k0 + d0), (k4 + d4)); |
| 492 | h2 += MUL64((k4 + d0), (k8 + d4)); |
| 493 | h3 += MUL64((k8 + d0), (k12 + d4)); |
| 494 | h4 += MUL64((k12 + d0), (k16 + d4)); |
| 495 | |
| 496 | h1 += MUL64((k1 + d1), (k5 + d5)); |
| 497 | h2 += MUL64((k5 + d1), (k9 + d5)); |
| 498 | h3 += MUL64((k9 + d1), (k13 + d5)); |
| 499 | h4 += MUL64((k13 + d1), (k17 + d5)); |
| 500 | |
| 501 | h1 += MUL64((k2 + d2), (k6 + d6)); |
| 502 | h2 += MUL64((k6 + d2), (k10 + d6)); |
| 503 | h3 += MUL64((k10 + d2), (k14 + d6)); |
| 504 | h4 += MUL64((k14 + d2), (k18 + d6)); |
| 505 | |
| 506 | h1 += MUL64((k3 + d3), (k7 + d7)); |
| 507 | h2 += MUL64((k7 + d3), (k11 + d7)); |
| 508 | h3 += MUL64((k11 + d3), (k15 + d7)); |
| 509 | h4 += MUL64((k15 + d3), (k19 + d7)); |
| 510 | |
| 511 | k0 = k8; k1 = k9; k2 = k10; k3 = k11; |
| 512 | k4 = k12; k5 = k13; k6 = k14; k7 = k15; |
| 513 | k8 = k16; k9 = k17; k10 = k18; k11 = k19; |
| 514 | |
| 515 | d += 8; |
| 516 | k += 8; |
| 517 | } while (--c); |
| 518 | ((UINT64 *)hp)[0] = h1; |
| 519 | ((UINT64 *)hp)[1] = h2; |
| 520 | ((UINT64 *)hp)[2] = h3; |
| 521 | ((UINT64 *)hp)[3] = h4; |
| 522 | } |
| 523 | |
| 524 | /* ---------------------------------------------------------------------- */ |
| 525 | #endif /* UMAC_OUTPUT_LENGTH */ |
| 526 | /* ---------------------------------------------------------------------- */ |
| 527 | |
| 528 | |
| 529 | /* ---------------------------------------------------------------------- */ |
| 530 | |
| 531 | static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes) |
| 532 | /* This function is a wrapper for the primitive NH hash functions. It takes |
| 533 | * as argument "hc" the current hash context and a buffer which must be a |
| 534 | * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset |
| 535 | * appropriately according to how much message has been hashed already. |
| 536 | */ |
| 537 | { |
| 538 | UINT8 *key; |
| 539 | |
| 540 | key = hc->nh_key + hc->bytes_hashed; |
| 541 | nh_aux(key, buf, hc->state, nbytes); |
| 542 | } |
| 543 | |
| 544 | /* ---------------------------------------------------------------------- */ |
| 545 | |
| 546 | static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes) |
| 547 | /* We endian convert the keys on little-endian computers to */ |
| 548 | /* compensate for the lack of big-endian memory reads during hashing. */ |
| 549 | { |
| 550 | UWORD iters = num_bytes / bpw; |
| 551 | if (bpw == 4) { |
| 552 | UINT32 *p = (UINT32 *)buf; |
| 553 | do { |
| 554 | *p = LOAD_UINT32_REVERSED(p); |
| 555 | p++; |
| 556 | } while (--iters); |
| 557 | } else if (bpw == 8) { |
| 558 | UINT32 *p = (UINT32 *)buf; |
| 559 | UINT32 t; |
| 560 | do { |
| 561 | t = LOAD_UINT32_REVERSED(p+1); |
| 562 | p[1] = LOAD_UINT32_REVERSED(p); |
| 563 | p[0] = t; |
| 564 | p += 2; |
| 565 | } while (--iters); |
| 566 | } |
| 567 | } |
| 568 | #if (__LITTLE_ENDIAN__) |
| 569 | #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z)) |
| 570 | #else |
| 571 | #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */ |
| 572 | #endif |
| 573 | |
| 574 | /* ---------------------------------------------------------------------- */ |
| 575 | |
| 576 | static void nh_reset(nh_ctx *hc) |
| 577 | /* Reset nh_ctx to ready for hashing of new data */ |
| 578 | { |
| 579 | hc->bytes_hashed = 0; |
| 580 | hc->next_data_empty = 0; |
| 581 | hc->state[0] = 0; |
| 582 | #if (UMAC_OUTPUT_LEN >= 8) |
| 583 | hc->state[1] = 0; |
| 584 | #endif |
| 585 | #if (UMAC_OUTPUT_LEN >= 12) |
| 586 | hc->state[2] = 0; |
| 587 | #endif |
| 588 | #if (UMAC_OUTPUT_LEN == 16) |
| 589 | hc->state[3] = 0; |
| 590 | #endif |
| 591 | |
| 592 | } |
| 593 | |
| 594 | /* ---------------------------------------------------------------------- */ |
| 595 | |
| 596 | static void nh_init(nh_ctx *hc, aes_int_key prf_key) |
| 597 | /* Generate nh_key, endian convert and reset to be ready for hashing. */ |
| 598 | { |
| 599 | kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key)); |
| 600 | endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key)); |
| 601 | nh_reset(hc); |
| 602 | } |
| 603 | |
| 604 | /* ---------------------------------------------------------------------- */ |
| 605 | |
| 606 | static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes) |
| 607 | /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */ |
| 608 | /* even multiple of HASH_BUF_BYTES. */ |
| 609 | { |
| 610 | UINT32 i,j; |
| 611 | |
| 612 | j = hc->next_data_empty; |
| 613 | if ((j + nbytes) >= HASH_BUF_BYTES) { |
| 614 | if (j) { |
| 615 | i = HASH_BUF_BYTES - j; |
| 616 | memcpy(hc->data+j, buf, i); |
| 617 | nh_transform(hc,hc->data,HASH_BUF_BYTES); |
| 618 | nbytes -= i; |
| 619 | buf += i; |
| 620 | hc->bytes_hashed += HASH_BUF_BYTES; |
| 621 | } |
| 622 | if (nbytes >= HASH_BUF_BYTES) { |
| 623 | i = nbytes & ~(HASH_BUF_BYTES - 1); |
| 624 | nh_transform(hc, buf, i); |
| 625 | nbytes -= i; |
| 626 | buf += i; |
| 627 | hc->bytes_hashed += i; |
| 628 | } |
| 629 | j = 0; |
| 630 | } |
| 631 | memcpy(hc->data + j, buf, nbytes); |
| 632 | hc->next_data_empty = j + nbytes; |
| 633 | } |
| 634 | |
| 635 | /* ---------------------------------------------------------------------- */ |
| 636 | |
| 637 | static void zero_pad(UINT8 *p, int nbytes) |
| 638 | { |
| 639 | /* Write "nbytes" of zeroes, beginning at "p" */ |
| 640 | if (nbytes >= (int)sizeof(UWORD)) { |
| 641 | while ((ptrdiff_t)p % sizeof(UWORD)) { |
| 642 | *p = 0; |
| 643 | nbytes--; |
| 644 | p++; |
| 645 | } |
| 646 | while (nbytes >= (int)sizeof(UWORD)) { |
| 647 | *(UWORD *)p = 0; |
| 648 | nbytes -= sizeof(UWORD); |
| 649 | p += sizeof(UWORD); |
| 650 | } |
| 651 | } |
| 652 | while (nbytes) { |
| 653 | *p = 0; |
| 654 | nbytes--; |
| 655 | p++; |
| 656 | } |
| 657 | } |
| 658 | |
| 659 | /* ---------------------------------------------------------------------- */ |
| 660 | |
| 661 | static void nh_final(nh_ctx *hc, UINT8 *result) |
| 662 | /* After passing some number of data buffers to nh_update() for integration |
| 663 | * into an NH context, nh_final is called to produce a hash result. If any |
| 664 | * bytes are in the buffer hc->data, incorporate them into the |
| 665 | * NH context. Finally, add into the NH accumulation "state" the total number |
| 666 | * of bits hashed. The resulting numbers are written to the buffer "result". |
| 667 | * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated. |
| 668 | */ |
| 669 | { |
| 670 | int nh_len, nbits; |
| 671 | |
| 672 | if (hc->next_data_empty != 0) { |
| 673 | nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) & |
| 674 | ~(L1_PAD_BOUNDARY - 1)); |
| 675 | zero_pad(hc->data + hc->next_data_empty, |
| 676 | nh_len - hc->next_data_empty); |
| 677 | nh_transform(hc, hc->data, nh_len); |
| 678 | hc->bytes_hashed += hc->next_data_empty; |
| 679 | } else if (hc->bytes_hashed == 0) { |
| 680 | nh_len = L1_PAD_BOUNDARY; |
| 681 | zero_pad(hc->data, L1_PAD_BOUNDARY); |
| 682 | nh_transform(hc, hc->data, nh_len); |
| 683 | } |
| 684 | |
| 685 | nbits = (hc->bytes_hashed << 3); |
| 686 | ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits; |
| 687 | #if (UMAC_OUTPUT_LEN >= 8) |
| 688 | ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits; |
| 689 | #endif |
| 690 | #if (UMAC_OUTPUT_LEN >= 12) |
| 691 | ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits; |
| 692 | #endif |
| 693 | #if (UMAC_OUTPUT_LEN == 16) |
| 694 | ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits; |
| 695 | #endif |
| 696 | nh_reset(hc); |
| 697 | } |
| 698 | |
| 699 | /* ---------------------------------------------------------------------- */ |
| 700 | |
| 701 | static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len, |
| 702 | UINT32 unpadded_len, UINT8 *result) |
| 703 | /* All-in-one nh_update() and nh_final() equivalent. |
| 704 | * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is |
| 705 | * well aligned |
| 706 | */ |
| 707 | { |
| 708 | UINT32 nbits; |
| 709 | |
| 710 | /* Initialize the hash state */ |
| 711 | nbits = (unpadded_len << 3); |
| 712 | |
| 713 | ((UINT64 *)result)[0] = nbits; |
| 714 | #if (UMAC_OUTPUT_LEN >= 8) |
| 715 | ((UINT64 *)result)[1] = nbits; |
| 716 | #endif |
| 717 | #if (UMAC_OUTPUT_LEN >= 12) |
| 718 | ((UINT64 *)result)[2] = nbits; |
| 719 | #endif |
| 720 | #if (UMAC_OUTPUT_LEN == 16) |
| 721 | ((UINT64 *)result)[3] = nbits; |
| 722 | #endif |
| 723 | |
| 724 | nh_aux(hc->nh_key, buf, result, padded_len); |
| 725 | } |
| 726 | |
| 727 | /* ---------------------------------------------------------------------- */ |
| 728 | /* ---------------------------------------------------------------------- */ |
| 729 | /* ----- Begin UHASH Section -------------------------------------------- */ |
| 730 | /* ---------------------------------------------------------------------- */ |
| 731 | /* ---------------------------------------------------------------------- */ |
| 732 | |
| 733 | /* UHASH is a multi-layered algorithm. Data presented to UHASH is first |
| 734 | * hashed by NH. The NH output is then hashed by a polynomial-hash layer |
| 735 | * unless the initial data to be hashed is short. After the polynomial- |
| 736 | * layer, an inner-product hash is used to produce the final UHASH output. |
| 737 | * |
| 738 | * UHASH provides two interfaces, one all-at-once and another where data |
| 739 | * buffers are presented sequentially. In the sequential interface, the |
| 740 | * UHASH client calls the routine uhash_update() as many times as necessary. |
| 741 | * When there is no more data to be fed to UHASH, the client calls |
| 742 | * uhash_final() which |
| 743 | * calculates the UHASH output. Before beginning another UHASH calculation |
| 744 | * the uhash_reset() routine must be called. The all-at-once UHASH routine, |
| 745 | * uhash(), is equivalent to the sequence of calls uhash_update() and |
| 746 | * uhash_final(); however it is optimized and should be |
| 747 | * used whenever the sequential interface is not necessary. |
| 748 | * |
| 749 | * The routine uhash_init() initializes the uhash_ctx data structure and |
| 750 | * must be called once, before any other UHASH routine. |
| 751 | */ |
| 752 | |
| 753 | /* ---------------------------------------------------------------------- */ |
| 754 | /* ----- Constants and uhash_ctx ---------------------------------------- */ |
| 755 | /* ---------------------------------------------------------------------- */ |
| 756 | |
| 757 | /* ---------------------------------------------------------------------- */ |
| 758 | /* ----- Poly hash and Inner-Product hash Constants --------------------- */ |
| 759 | /* ---------------------------------------------------------------------- */ |
| 760 | |
| 761 | /* Primes and masks */ |
| 762 | #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */ |
| 763 | #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */ |
| 764 | #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */ |
| 765 | |
| 766 | |
| 767 | /* ---------------------------------------------------------------------- */ |
| 768 | |
| 769 | typedef struct uhash_ctx { |
| 770 | nh_ctx hash; /* Hash context for L1 NH hash */ |
| 771 | UINT64 poly_key_8[STREAMS]; /* p64 poly keys */ |
| 772 | UINT64 poly_accum[STREAMS]; /* poly hash result */ |
| 773 | UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */ |
| 774 | UINT32 ip_trans[STREAMS]; /* Inner-product translation */ |
| 775 | UINT32 msg_len; /* Total length of data passed */ |
| 776 | /* to uhash */ |
| 777 | } uhash_ctx; |
| 778 | typedef struct uhash_ctx *uhash_ctx_t; |
| 779 | |
| 780 | /* ---------------------------------------------------------------------- */ |
| 781 | |
| 782 | |
| 783 | /* The polynomial hashes use Horner's rule to evaluate a polynomial one |
| 784 | * word at a time. As described in the specification, poly32 and poly64 |
| 785 | * require keys from special domains. The following implementations exploit |
| 786 | * the special domains to avoid overflow. The results are not guaranteed to |
| 787 | * be within Z_p32 and Z_p64, but the Inner-Product hash implementation |
| 788 | * patches any errant values. |
| 789 | */ |
| 790 | |
| 791 | static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data) |
| 792 | { |
| 793 | UINT32 key_hi = (UINT32)(key >> 32), |
| 794 | key_lo = (UINT32)key, |
| 795 | cur_hi = (UINT32)(cur >> 32), |
| 796 | cur_lo = (UINT32)cur, |
| 797 | x_lo, |
| 798 | x_hi; |
| 799 | UINT64 X,T,res; |
| 800 | |
| 801 | X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo); |
| 802 | x_lo = (UINT32)X; |
| 803 | x_hi = (UINT32)(X >> 32); |
| 804 | |
| 805 | res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo); |
| 806 | |
| 807 | T = ((UINT64)x_lo << 32); |
| 808 | res += T; |
| 809 | if (res < T) |
| 810 | res += 59; |
| 811 | |
| 812 | res += data; |
| 813 | if (res < data) |
| 814 | res += 59; |
| 815 | |
| 816 | return res; |
| 817 | } |
| 818 | |
| 819 | |
| 820 | /* Although UMAC is specified to use a ramped polynomial hash scheme, this |
| 821 | * implementation does not handle all ramp levels. Because we don't handle |
| 822 | * the ramp up to p128 modulus in this implementation, we are limited to |
| 823 | * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24 |
| 824 | * bytes input to UMAC per tag, ie. 16MB). |
| 825 | */ |
| 826 | static void poly_hash(uhash_ctx_t hc, UINT32 data_in[]) |
| 827 | { |
| 828 | int i; |
| 829 | UINT64 *data=(UINT64*)data_in; |
| 830 | |
| 831 | for (i = 0; i < STREAMS; i++) { |
| 832 | if ((UINT32)(data[i] >> 32) == 0xfffffffful) { |
| 833 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
| 834 | hc->poly_key_8[i], p64 - 1); |
| 835 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
| 836 | hc->poly_key_8[i], (data[i] - 59)); |
| 837 | } else { |
| 838 | hc->poly_accum[i] = poly64(hc->poly_accum[i], |
| 839 | hc->poly_key_8[i], data[i]); |
| 840 | } |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | |
| 845 | /* ---------------------------------------------------------------------- */ |
| 846 | |
| 847 | |
| 848 | /* The final step in UHASH is an inner-product hash. The poly hash |
| 849 | * produces a result not neccesarily WORD_LEN bytes long. The inner- |
| 850 | * product hash breaks the polyhash output into 16-bit chunks and |
| 851 | * multiplies each with a 36 bit key. |
| 852 | */ |
| 853 | |
| 854 | static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data) |
| 855 | { |
| 856 | t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48); |
| 857 | t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32); |
| 858 | t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16); |
| 859 | t = t + ipkp[3] * (UINT64)(UINT16)(data); |
| 860 | |
| 861 | return t; |
| 862 | } |
| 863 | |
| 864 | static UINT32 ip_reduce_p36(UINT64 t) |
| 865 | { |
| 866 | /* Divisionless modular reduction */ |
| 867 | UINT64 ret; |
| 868 | |
| 869 | ret = (t & m36) + 5 * (t >> 36); |
| 870 | if (ret >= p36) |
| 871 | ret -= p36; |
| 872 | |
| 873 | /* return least significant 32 bits */ |
| 874 | return (UINT32)(ret); |
| 875 | } |
| 876 | |
| 877 | |
| 878 | /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then |
| 879 | * the polyhash stage is skipped and ip_short is applied directly to the |
| 880 | * NH output. |
| 881 | */ |
| 882 | static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res) |
| 883 | { |
| 884 | UINT64 t; |
| 885 | UINT64 *nhp = (UINT64 *)nh_res; |
| 886 | |
| 887 | t = ip_aux(0,ahc->ip_keys, nhp[0]); |
| 888 | STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]); |
| 889 | #if (UMAC_OUTPUT_LEN >= 8) |
| 890 | t = ip_aux(0,ahc->ip_keys+4, nhp[1]); |
| 891 | STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]); |
| 892 | #endif |
| 893 | #if (UMAC_OUTPUT_LEN >= 12) |
| 894 | t = ip_aux(0,ahc->ip_keys+8, nhp[2]); |
| 895 | STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]); |
| 896 | #endif |
| 897 | #if (UMAC_OUTPUT_LEN == 16) |
| 898 | t = ip_aux(0,ahc->ip_keys+12, nhp[3]); |
| 899 | STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]); |
| 900 | #endif |
| 901 | } |
| 902 | |
| 903 | /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then |
| 904 | * the polyhash stage is not skipped and ip_long is applied to the |
| 905 | * polyhash output. |
| 906 | */ |
| 907 | static void ip_long(uhash_ctx_t ahc, u_char *res) |
| 908 | { |
| 909 | int i; |
| 910 | UINT64 t; |
| 911 | |
| 912 | for (i = 0; i < STREAMS; i++) { |
| 913 | /* fix polyhash output not in Z_p64 */ |
| 914 | if (ahc->poly_accum[i] >= p64) |
| 915 | ahc->poly_accum[i] -= p64; |
| 916 | t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]); |
| 917 | STORE_UINT32_BIG((UINT32 *)res+i, |
| 918 | ip_reduce_p36(t) ^ ahc->ip_trans[i]); |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | |
| 923 | /* ---------------------------------------------------------------------- */ |
| 924 | |
| 925 | /* ---------------------------------------------------------------------- */ |
| 926 | |
| 927 | /* Reset uhash context for next hash session */ |
| 928 | static int uhash_reset(uhash_ctx_t pc) |
| 929 | { |
| 930 | nh_reset(&pc->hash); |
| 931 | pc->msg_len = 0; |
| 932 | pc->poly_accum[0] = 1; |
| 933 | #if (UMAC_OUTPUT_LEN >= 8) |
| 934 | pc->poly_accum[1] = 1; |
| 935 | #endif |
| 936 | #if (UMAC_OUTPUT_LEN >= 12) |
| 937 | pc->poly_accum[2] = 1; |
| 938 | #endif |
| 939 | #if (UMAC_OUTPUT_LEN == 16) |
| 940 | pc->poly_accum[3] = 1; |
| 941 | #endif |
| 942 | return 1; |
| 943 | } |
| 944 | |
| 945 | /* ---------------------------------------------------------------------- */ |
| 946 | |
| 947 | /* Given a pointer to the internal key needed by kdf() and a uhash context, |
| 948 | * initialize the NH context and generate keys needed for poly and inner- |
| 949 | * product hashing. All keys are endian adjusted in memory so that native |
| 950 | * loads cause correct keys to be in registers during calculation. |
| 951 | */ |
| 952 | static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key) |
| 953 | { |
| 954 | int i; |
| 955 | UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)]; |
| 956 | |
| 957 | /* Zero the entire uhash context */ |
| 958 | memset(ahc, 0, sizeof(uhash_ctx)); |
| 959 | |
| 960 | /* Initialize the L1 hash */ |
| 961 | nh_init(&ahc->hash, prf_key); |
| 962 | |
| 963 | /* Setup L2 hash variables */ |
| 964 | kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */ |
| 965 | for (i = 0; i < STREAMS; i++) { |
| 966 | /* Fill keys from the buffer, skipping bytes in the buffer not |
| 967 | * used by this implementation. Endian reverse the keys if on a |
| 968 | * little-endian computer. |
| 969 | */ |
| 970 | memcpy(ahc->poly_key_8+i, buf+24*i, 8); |
| 971 | endian_convert_if_le(ahc->poly_key_8+i, 8, 8); |
| 972 | /* Mask the 64-bit keys to their special domain */ |
| 973 | ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu; |
| 974 | ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */ |
| 975 | } |
| 976 | |
| 977 | /* Setup L3-1 hash variables */ |
| 978 | kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */ |
| 979 | for (i = 0; i < STREAMS; i++) |
| 980 | memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64), |
| 981 | 4*sizeof(UINT64)); |
| 982 | endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), |
| 983 | sizeof(ahc->ip_keys)); |
| 984 | for (i = 0; i < STREAMS*4; i++) |
| 985 | ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */ |
| 986 | |
| 987 | /* Setup L3-2 hash variables */ |
| 988 | /* Fill buffer with index 4 key */ |
| 989 | kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32)); |
| 990 | endian_convert_if_le(ahc->ip_trans, sizeof(UINT32), |
| 991 | STREAMS * sizeof(UINT32)); |
| 992 | } |
| 993 | |
| 994 | /* ---------------------------------------------------------------------- */ |
| 995 | |
| 996 | #if 0 |
| 997 | static uhash_ctx_t uhash_alloc(u_char key[]) |
| 998 | { |
| 999 | /* Allocate memory and force to a 16-byte boundary. */ |
| 1000 | uhash_ctx_t ctx; |
| 1001 | u_char bytes_to_add; |
| 1002 | aes_int_key prf_key; |
| 1003 | |
| 1004 | ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY); |
| 1005 | if (ctx) { |
| 1006 | if (ALLOC_BOUNDARY) { |
| 1007 | bytes_to_add = ALLOC_BOUNDARY - |
| 1008 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1)); |
| 1009 | ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add); |
| 1010 | *((u_char *)ctx - 1) = bytes_to_add; |
| 1011 | } |
| 1012 | aes_key_setup(key,prf_key); |
| 1013 | uhash_init(ctx, prf_key); |
| 1014 | } |
| 1015 | return (ctx); |
| 1016 | } |
| 1017 | #endif |
| 1018 | |
| 1019 | /* ---------------------------------------------------------------------- */ |
| 1020 | |
| 1021 | #if 0 |
| 1022 | static int uhash_free(uhash_ctx_t ctx) |
| 1023 | { |
| 1024 | /* Free memory allocated by uhash_alloc */ |
| 1025 | u_char bytes_to_sub; |
| 1026 | |
| 1027 | if (ctx) { |
| 1028 | if (ALLOC_BOUNDARY) { |
| 1029 | bytes_to_sub = *((u_char *)ctx - 1); |
| 1030 | ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub); |
| 1031 | } |
| 1032 | free(ctx); |
| 1033 | } |
| 1034 | return (1); |
| 1035 | } |
| 1036 | #endif |
| 1037 | /* ---------------------------------------------------------------------- */ |
| 1038 | |
| 1039 | static int uhash_update(uhash_ctx_t ctx, u_char *input, long len) |
| 1040 | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and |
| 1041 | * hash each one with NH, calling the polyhash on each NH output. |
| 1042 | */ |
| 1043 | { |
| 1044 | UWORD bytes_hashed, bytes_remaining; |
| 1045 | UINT8 nh_result[STREAMS*sizeof(UINT64)]; |
| 1046 | |
| 1047 | if (ctx->msg_len + len <= L1_KEY_LEN) { |
| 1048 | nh_update(&ctx->hash, (UINT8 *)input, len); |
| 1049 | ctx->msg_len += len; |
| 1050 | } else { |
| 1051 | |
| 1052 | bytes_hashed = ctx->msg_len % L1_KEY_LEN; |
| 1053 | if (ctx->msg_len == L1_KEY_LEN) |
| 1054 | bytes_hashed = L1_KEY_LEN; |
| 1055 | |
| 1056 | if (bytes_hashed + len >= L1_KEY_LEN) { |
| 1057 | |
| 1058 | /* If some bytes have been passed to the hash function */ |
| 1059 | /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */ |
| 1060 | /* bytes to complete the current nh_block. */ |
| 1061 | if (bytes_hashed) { |
| 1062 | bytes_remaining = (L1_KEY_LEN - bytes_hashed); |
| 1063 | nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining); |
| 1064 | nh_final(&ctx->hash, nh_result); |
| 1065 | ctx->msg_len += bytes_remaining; |
| 1066 | poly_hash(ctx,(UINT32 *)nh_result); |
| 1067 | len -= bytes_remaining; |
| 1068 | input += bytes_remaining; |
| 1069 | } |
| 1070 | |
| 1071 | /* Hash directly from input stream if enough bytes */ |
| 1072 | while (len >= L1_KEY_LEN) { |
| 1073 | nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN, |
| 1074 | L1_KEY_LEN, nh_result); |
| 1075 | ctx->msg_len += L1_KEY_LEN; |
| 1076 | len -= L1_KEY_LEN; |
| 1077 | input += L1_KEY_LEN; |
| 1078 | poly_hash(ctx,(UINT32 *)nh_result); |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | /* pass remaining < L1_KEY_LEN bytes of input data to NH */ |
| 1083 | if (len) { |
| 1084 | nh_update(&ctx->hash, (UINT8 *)input, len); |
| 1085 | ctx->msg_len += len; |
| 1086 | } |
| 1087 | } |
| 1088 | |
| 1089 | return (1); |
| 1090 | } |
| 1091 | |
| 1092 | /* ---------------------------------------------------------------------- */ |
| 1093 | |
| 1094 | static int uhash_final(uhash_ctx_t ctx, u_char *res) |
| 1095 | /* Incorporate any pending data, pad, and generate tag */ |
| 1096 | { |
| 1097 | UINT8 nh_result[STREAMS*sizeof(UINT64)]; |
| 1098 | |
| 1099 | if (ctx->msg_len > L1_KEY_LEN) { |
| 1100 | if (ctx->msg_len % L1_KEY_LEN) { |
| 1101 | nh_final(&ctx->hash, nh_result); |
| 1102 | poly_hash(ctx,(UINT32 *)nh_result); |
| 1103 | } |
| 1104 | ip_long(ctx, res); |
| 1105 | } else { |
| 1106 | nh_final(&ctx->hash, nh_result); |
| 1107 | ip_short(ctx,nh_result, res); |
| 1108 | } |
| 1109 | uhash_reset(ctx); |
| 1110 | return (1); |
| 1111 | } |
| 1112 | |
| 1113 | /* ---------------------------------------------------------------------- */ |
| 1114 | |
| 1115 | #if 0 |
| 1116 | static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res) |
| 1117 | /* assumes that msg is in a writable buffer of length divisible by */ |
| 1118 | /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */ |
| 1119 | { |
| 1120 | UINT8 nh_result[STREAMS*sizeof(UINT64)]; |
| 1121 | UINT32 nh_len; |
| 1122 | int extra_zeroes_needed; |
| 1123 | |
| 1124 | /* If the message to be hashed is no longer than L1_HASH_LEN, we skip |
| 1125 | * the polyhash. |
| 1126 | */ |
| 1127 | if (len <= L1_KEY_LEN) { |
| 1128 | if (len == 0) /* If zero length messages will not */ |
| 1129 | nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */ |
| 1130 | else |
| 1131 | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
| 1132 | extra_zeroes_needed = nh_len - len; |
| 1133 | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
| 1134 | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
| 1135 | ip_short(ahc,nh_result, res); |
| 1136 | } else { |
| 1137 | /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH |
| 1138 | * output to poly_hash(). |
| 1139 | */ |
| 1140 | do { |
| 1141 | nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result); |
| 1142 | poly_hash(ahc,(UINT32 *)nh_result); |
| 1143 | len -= L1_KEY_LEN; |
| 1144 | msg += L1_KEY_LEN; |
| 1145 | } while (len >= L1_KEY_LEN); |
| 1146 | if (len) { |
| 1147 | nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1)); |
| 1148 | extra_zeroes_needed = nh_len - len; |
| 1149 | zero_pad((UINT8 *)msg + len, extra_zeroes_needed); |
| 1150 | nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result); |
| 1151 | poly_hash(ahc,(UINT32 *)nh_result); |
| 1152 | } |
| 1153 | |
| 1154 | ip_long(ahc, res); |
| 1155 | } |
| 1156 | |
| 1157 | uhash_reset(ahc); |
| 1158 | return 1; |
| 1159 | } |
| 1160 | #endif |
| 1161 | |
| 1162 | /* ---------------------------------------------------------------------- */ |
| 1163 | /* ---------------------------------------------------------------------- */ |
| 1164 | /* ----- Begin UMAC Section --------------------------------------------- */ |
| 1165 | /* ---------------------------------------------------------------------- */ |
| 1166 | /* ---------------------------------------------------------------------- */ |
| 1167 | |
| 1168 | /* The UMAC interface has two interfaces, an all-at-once interface where |
| 1169 | * the entire message to be authenticated is passed to UMAC in one buffer, |
| 1170 | * and a sequential interface where the message is presented a little at a |
| 1171 | * time. The all-at-once is more optimaized than the sequential version and |
| 1172 | * should be preferred when the sequential interface is not required. |
| 1173 | */ |
| 1174 | struct umac_ctx { |
| 1175 | uhash_ctx hash; /* Hash function for message compression */ |
| 1176 | pdf_ctx pdf; /* PDF for hashed output */ |
| 1177 | void *free_ptr; /* Address to free this struct via */ |
| 1178 | } umac_ctx; |
| 1179 | |
| 1180 | /* ---------------------------------------------------------------------- */ |
| 1181 | |
| 1182 | #if 0 |
| 1183 | int umac_reset(struct umac_ctx *ctx) |
| 1184 | /* Reset the hash function to begin a new authentication. */ |
| 1185 | { |
| 1186 | uhash_reset(&ctx->hash); |
| 1187 | return (1); |
| 1188 | } |
| 1189 | #endif |
| 1190 | |
| 1191 | /* ---------------------------------------------------------------------- */ |
| 1192 | |
| 1193 | int umac_delete(struct umac_ctx *ctx) |
| 1194 | /* Deallocate the ctx structure */ |
| 1195 | { |
| 1196 | if (ctx) { |
| 1197 | if (ALLOC_BOUNDARY) |
| 1198 | ctx = (struct umac_ctx *)ctx->free_ptr; |
| 1199 | free(ctx); |
| 1200 | } |
| 1201 | return (1); |
| 1202 | } |
| 1203 | |
| 1204 | /* ---------------------------------------------------------------------- */ |
| 1205 | |
| 1206 | struct umac_ctx *umac_new(u_char key[]) |
| 1207 | /* Dynamically allocate a umac_ctx struct, initialize variables, |
| 1208 | * generate subkeys from key. Align to 16-byte boundary. |
| 1209 | */ |
| 1210 | { |
| 1211 | struct umac_ctx *ctx, *octx; |
| 1212 | size_t bytes_to_add; |
| 1213 | aes_int_key prf_key; |
| 1214 | |
| 1215 | octx = ctx = malloc(sizeof(*ctx) + ALLOC_BOUNDARY); |
| 1216 | if (ctx) { |
| 1217 | if (ALLOC_BOUNDARY) { |
| 1218 | bytes_to_add = ALLOC_BOUNDARY - |
| 1219 | ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1)); |
| 1220 | ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add); |
| 1221 | } |
| 1222 | ctx->free_ptr = octx; |
| 1223 | aes_key_setup(key,prf_key); |
| 1224 | pdf_init(&ctx->pdf, prf_key); |
| 1225 | uhash_init(&ctx->hash, prf_key); |
| 1226 | } |
| 1227 | |
| 1228 | return (ctx); |
| 1229 | } |
| 1230 | |
| 1231 | /* ---------------------------------------------------------------------- */ |
| 1232 | |
| 1233 | int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8]) |
| 1234 | /* Incorporate any pending data, pad, and generate tag */ |
| 1235 | { |
| 1236 | uhash_final(&ctx->hash, (u_char *)tag); |
| 1237 | pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
| 1238 | |
| 1239 | return (1); |
| 1240 | } |
| 1241 | |
| 1242 | /* ---------------------------------------------------------------------- */ |
| 1243 | |
| 1244 | int umac_update(struct umac_ctx *ctx, u_char *input, long len) |
| 1245 | /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */ |
| 1246 | /* hash each one, calling the PDF on the hashed output whenever the hash- */ |
| 1247 | /* output buffer is full. */ |
| 1248 | { |
| 1249 | uhash_update(&ctx->hash, input, len); |
| 1250 | return (1); |
| 1251 | } |
| 1252 | |
| 1253 | /* ---------------------------------------------------------------------- */ |
| 1254 | |
| 1255 | #if 0 |
| 1256 | int umac(struct umac_ctx *ctx, u_char *input, |
| 1257 | long len, u_char tag[], |
| 1258 | u_char nonce[8]) |
| 1259 | /* All-in-one version simply calls umac_update() and umac_final(). */ |
| 1260 | { |
| 1261 | uhash(&ctx->hash, input, len, (u_char *)tag); |
| 1262 | pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag); |
| 1263 | |
| 1264 | return (1); |
| 1265 | } |
| 1266 | #endif |
| 1267 | |
| 1268 | /* ---------------------------------------------------------------------- */ |
| 1269 | /* ---------------------------------------------------------------------- */ |
| 1270 | /* ----- End UMAC Section ----------------------------------------------- */ |
| 1271 | /* ---------------------------------------------------------------------- */ |
| 1272 | /* ---------------------------------------------------------------------- */ |