blob: c2fdcf4485ce807f5daa71e21216d2902fd4ed4d [file] [log] [blame]
Damien Millere45796f2007-06-11 14:01:42 +10001/* $OpenBSD: umac.c,v 1.1 2007/06/07 19:37:34 pvalchev Exp $ */
2/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
55#define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
56/* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
57/* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
58/* #define SSE2 0 Is SSE2 is available? */
59/* #define RUN_TESTS 0 Run basic correctness/speed tests */
60/* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
61
62/* ---------------------------------------------------------------------- */
63/* -- Global Includes --------------------------------------------------- */
64/* ---------------------------------------------------------------------- */
65
66#include "includes.h"
67#include <sys/types.h>
68
69#include "umac.h"
70#include <string.h>
71#include <stdlib.h>
72#include <stddef.h>
73
74/* ---------------------------------------------------------------------- */
75/* --- Primitive Data Types --- */
76/* ---------------------------------------------------------------------- */
77
78/* The following assumptions may need change on your system */
79typedef u_int8_t UINT8; /* 1 byte */
80typedef u_int16_t UINT16; /* 2 byte */
81typedef u_int32_t UINT32; /* 4 byte */
82typedef u_int64_t UINT64; /* 8 bytes */
83typedef unsigned int UWORD; /* Register */
84
85/* ---------------------------------------------------------------------- */
86/* --- Constants -------------------------------------------------------- */
87/* ---------------------------------------------------------------------- */
88
89#define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
90
91/* Message "words" are read from memory in an endian-specific manner. */
92/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
93/* be set true if the host computer is little-endian. */
94
95#if BYTE_ORDER == LITTLE_ENDIAN
96#define __LITTLE_ENDIAN__ 1
97#else
98#define __LITTLE_ENDIAN__ 0
99#endif
100
101/* ---------------------------------------------------------------------- */
102/* ---------------------------------------------------------------------- */
103/* ----- Architecture Specific ------------------------------------------ */
104/* ---------------------------------------------------------------------- */
105/* ---------------------------------------------------------------------- */
106
107
108/* ---------------------------------------------------------------------- */
109/* ---------------------------------------------------------------------- */
110/* ----- Primitive Routines --------------------------------------------- */
111/* ---------------------------------------------------------------------- */
112/* ---------------------------------------------------------------------- */
113
114
115/* ---------------------------------------------------------------------- */
116/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
117/* ---------------------------------------------------------------------- */
118
119#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
120
121/* ---------------------------------------------------------------------- */
122/* --- Endian Conversion --- Forcing assembly on some platforms */
123/* ---------------------------------------------------------------------- */
124
Damien Miller34a17692007-06-11 14:15:42 +1000125#if HAVE_SWAP32
126#define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
127#define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
128#else /* HAVE_SWAP32 */
129
Damien Millere45796f2007-06-11 14:01:42 +1000130static UINT32 LOAD_UINT32_REVERSED(void *ptr)
131{
132 UINT32 temp = *(UINT32 *)ptr;
133 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
134 | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
135 return (UINT32)temp;
136}
137
138static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
139{
140 UINT32 i = (UINT32)x;
141 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
142 | ((i & 0x0000FF00) << 8 ) | (i << 24);
143}
Damien Miller34a17692007-06-11 14:15:42 +1000144#endif /* HAVE_SWAP32 */
Damien Millere45796f2007-06-11 14:01:42 +1000145
146/* The following definitions use the above reversal-primitives to do the right
147 * thing on endian specific load and stores.
148 */
149
Damien Millere45796f2007-06-11 14:01:42 +1000150#if (__LITTLE_ENDIAN__)
151#define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
152#define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
153#else
154#define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
155#define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
156#endif
157
Damien Millere45796f2007-06-11 14:01:42 +1000158/* ---------------------------------------------------------------------- */
159/* ---------------------------------------------------------------------- */
160/* ----- Begin KDF & PDF Section ---------------------------------------- */
161/* ---------------------------------------------------------------------- */
162/* ---------------------------------------------------------------------- */
163
164/* UMAC uses AES with 16 byte block and key lengths */
165#define AES_BLOCK_LEN 16
166
167/* OpenSSL's AES */
Darren Tuckercb520172007-06-14 23:21:32 +1000168#include "openbsd-compat/openssl-compat.h"
169#ifndef USE_BUILTIN_RIJNDAEL
170# include <openssl/aes.h>
171#endif
Damien Millere45796f2007-06-11 14:01:42 +1000172typedef AES_KEY aes_int_key[1];
173#define aes_encryption(in,out,int_key) \
174 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
175#define aes_key_setup(key,int_key) \
176 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
177
178/* The user-supplied UMAC key is stretched using AES in a counter
179 * mode to supply all random bits needed by UMAC. The kdf function takes
180 * an AES internal key representation 'key' and writes a stream of
181 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
182 * 'ndx' causes a distinct byte stream.
183 */
184static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
185{
186 UINT8 in_buf[AES_BLOCK_LEN] = {0};
187 UINT8 out_buf[AES_BLOCK_LEN];
188 UINT8 *dst_buf = (UINT8 *)buffer_ptr;
189 int i;
190
191 /* Setup the initial value */
192 in_buf[AES_BLOCK_LEN-9] = ndx;
193 in_buf[AES_BLOCK_LEN-1] = i = 1;
194
195 while (nbytes >= AES_BLOCK_LEN) {
196 aes_encryption(in_buf, out_buf, key);
197 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
198 in_buf[AES_BLOCK_LEN-1] = ++i;
199 nbytes -= AES_BLOCK_LEN;
200 dst_buf += AES_BLOCK_LEN;
201 }
202 if (nbytes) {
203 aes_encryption(in_buf, out_buf, key);
204 memcpy(dst_buf,out_buf,nbytes);
205 }
206}
207
208/* The final UHASH result is XOR'd with the output of a pseudorandom
209 * function. Here, we use AES to generate random output and
210 * xor the appropriate bytes depending on the last bits of nonce.
211 * This scheme is optimized for sequential, increasing big-endian nonces.
212 */
213
214typedef struct {
215 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
216 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
217 aes_int_key prf_key; /* Expanded AES key for PDF */
218} pdf_ctx;
219
220static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
221{
222 UINT8 buf[UMAC_KEY_LEN];
223
224 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
225 aes_key_setup(buf, pc->prf_key);
226
227 /* Initialize pdf and cache */
228 memset(pc->nonce, 0, sizeof(pc->nonce));
229 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
230}
231
232static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
233{
234 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
235 * of the AES output. If last time around we returned the ndx-1st
236 * element, then we may have the result in the cache already.
237 */
238
239#if (UMAC_OUTPUT_LEN == 4)
240#define LOW_BIT_MASK 3
241#elif (UMAC_OUTPUT_LEN == 8)
242#define LOW_BIT_MASK 1
243#elif (UMAC_OUTPUT_LEN > 8)
244#define LOW_BIT_MASK 0
245#endif
246
247 UINT8 tmp_nonce_lo[4];
248#if LOW_BIT_MASK != 0
249 int ndx = nonce[7] & LOW_BIT_MASK;
250#endif
251 *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
252 tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
253
254 if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
255 (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
256 {
257 ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
258 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
259 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
260 }
261
262#if (UMAC_OUTPUT_LEN == 4)
263 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
264#elif (UMAC_OUTPUT_LEN == 8)
265 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
266#elif (UMAC_OUTPUT_LEN == 12)
267 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
268 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
269#elif (UMAC_OUTPUT_LEN == 16)
270 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
271 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
272#endif
273}
274
275/* ---------------------------------------------------------------------- */
276/* ---------------------------------------------------------------------- */
277/* ----- Begin NH Hash Section ------------------------------------------ */
278/* ---------------------------------------------------------------------- */
279/* ---------------------------------------------------------------------- */
280
281/* The NH-based hash functions used in UMAC are described in the UMAC paper
282 * and specification, both of which can be found at the UMAC website.
283 * The interface to this implementation has two
284 * versions, one expects the entire message being hashed to be passed
285 * in a single buffer and returns the hash result immediately. The second
286 * allows the message to be passed in a sequence of buffers. In the
287 * muliple-buffer interface, the client calls the routine nh_update() as
288 * many times as necessary. When there is no more data to be fed to the
289 * hash, the client calls nh_final() which calculates the hash output.
290 * Before beginning another hash calculation the nh_reset() routine
291 * must be called. The single-buffer routine, nh(), is equivalent to
292 * the sequence of calls nh_update() and nh_final(); however it is
293 * optimized and should be prefered whenever the multiple-buffer interface
294 * is not necessary. When using either interface, it is the client's
295 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
296 *
297 * The routine nh_init() initializes the nh_ctx data structure and
298 * must be called once, before any other PDF routine.
299 */
300
301 /* The "nh_aux" routines do the actual NH hashing work. They
302 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
303 * produce output for all STREAMS NH iterations in one call,
304 * allowing the parallel implementation of the streams.
305 */
306
307#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
308#define L1_KEY_LEN 1024 /* Internal key bytes */
309#define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
310#define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
311#define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
312#define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
313
314typedef struct {
315 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
316 UINT8 data [HASH_BUF_BYTES]; /* Incomming data buffer */
317 int next_data_empty; /* Bookeeping variable for data buffer. */
318 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
319 UINT64 state[STREAMS]; /* on-line state */
320} nh_ctx;
321
322
323#if (UMAC_OUTPUT_LEN == 4)
324
325static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
326/* NH hashing primitive. Previous (partial) hash result is loaded and
327* then stored via hp pointer. The length of the data pointed at by "dp",
328* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
329* is expected to be endian compensated in memory at key setup.
330*/
331{
332 UINT64 h;
333 UWORD c = dlen / 32;
334 UINT32 *k = (UINT32 *)kp;
335 UINT32 *d = (UINT32 *)dp;
336 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
337 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
338
339 h = *((UINT64 *)hp);
340 do {
341 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
342 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
343 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
344 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
345 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
346 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
347 h += MUL64((k0 + d0), (k4 + d4));
348 h += MUL64((k1 + d1), (k5 + d5));
349 h += MUL64((k2 + d2), (k6 + d6));
350 h += MUL64((k3 + d3), (k7 + d7));
351
352 d += 8;
353 k += 8;
354 } while (--c);
355 *((UINT64 *)hp) = h;
356}
357
358#elif (UMAC_OUTPUT_LEN == 8)
359
360static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
361/* Same as previous nh_aux, but two streams are handled in one pass,
362 * reading and writing 16 bytes of hash-state per call.
363 */
364{
365 UINT64 h1,h2;
366 UWORD c = dlen / 32;
367 UINT32 *k = (UINT32 *)kp;
368 UINT32 *d = (UINT32 *)dp;
369 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
370 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
371 k8,k9,k10,k11;
372
373 h1 = *((UINT64 *)hp);
374 h2 = *((UINT64 *)hp + 1);
375 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
376 do {
377 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
378 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
379 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
380 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
381 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
382 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
383
384 h1 += MUL64((k0 + d0), (k4 + d4));
385 h2 += MUL64((k4 + d0), (k8 + d4));
386
387 h1 += MUL64((k1 + d1), (k5 + d5));
388 h2 += MUL64((k5 + d1), (k9 + d5));
389
390 h1 += MUL64((k2 + d2), (k6 + d6));
391 h2 += MUL64((k6 + d2), (k10 + d6));
392
393 h1 += MUL64((k3 + d3), (k7 + d7));
394 h2 += MUL64((k7 + d3), (k11 + d7));
395
396 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
397
398 d += 8;
399 k += 8;
400 } while (--c);
401 ((UINT64 *)hp)[0] = h1;
402 ((UINT64 *)hp)[1] = h2;
403}
404
405#elif (UMAC_OUTPUT_LEN == 12)
406
407static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
408/* Same as previous nh_aux, but two streams are handled in one pass,
409 * reading and writing 24 bytes of hash-state per call.
410*/
411{
412 UINT64 h1,h2,h3;
413 UWORD c = dlen / 32;
414 UINT32 *k = (UINT32 *)kp;
415 UINT32 *d = (UINT32 *)dp;
416 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
417 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
418 k8,k9,k10,k11,k12,k13,k14,k15;
419
420 h1 = *((UINT64 *)hp);
421 h2 = *((UINT64 *)hp + 1);
422 h3 = *((UINT64 *)hp + 2);
423 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
424 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
425 do {
426 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
427 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
428 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
429 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
430 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
431 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
432
433 h1 += MUL64((k0 + d0), (k4 + d4));
434 h2 += MUL64((k4 + d0), (k8 + d4));
435 h3 += MUL64((k8 + d0), (k12 + d4));
436
437 h1 += MUL64((k1 + d1), (k5 + d5));
438 h2 += MUL64((k5 + d1), (k9 + d5));
439 h3 += MUL64((k9 + d1), (k13 + d5));
440
441 h1 += MUL64((k2 + d2), (k6 + d6));
442 h2 += MUL64((k6 + d2), (k10 + d6));
443 h3 += MUL64((k10 + d2), (k14 + d6));
444
445 h1 += MUL64((k3 + d3), (k7 + d7));
446 h2 += MUL64((k7 + d3), (k11 + d7));
447 h3 += MUL64((k11 + d3), (k15 + d7));
448
449 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
450 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
451
452 d += 8;
453 k += 8;
454 } while (--c);
455 ((UINT64 *)hp)[0] = h1;
456 ((UINT64 *)hp)[1] = h2;
457 ((UINT64 *)hp)[2] = h3;
458}
459
460#elif (UMAC_OUTPUT_LEN == 16)
461
462static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
463/* Same as previous nh_aux, but two streams are handled in one pass,
464 * reading and writing 24 bytes of hash-state per call.
465*/
466{
467 UINT64 h1,h2,h3,h4;
468 UWORD c = dlen / 32;
469 UINT32 *k = (UINT32 *)kp;
470 UINT32 *d = (UINT32 *)dp;
471 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
472 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
473 k8,k9,k10,k11,k12,k13,k14,k15,
474 k16,k17,k18,k19;
475
476 h1 = *((UINT64 *)hp);
477 h2 = *((UINT64 *)hp + 1);
478 h3 = *((UINT64 *)hp + 2);
479 h4 = *((UINT64 *)hp + 3);
480 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
481 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
482 do {
483 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
484 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
485 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
486 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
487 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
488 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
489 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
490
491 h1 += MUL64((k0 + d0), (k4 + d4));
492 h2 += MUL64((k4 + d0), (k8 + d4));
493 h3 += MUL64((k8 + d0), (k12 + d4));
494 h4 += MUL64((k12 + d0), (k16 + d4));
495
496 h1 += MUL64((k1 + d1), (k5 + d5));
497 h2 += MUL64((k5 + d1), (k9 + d5));
498 h3 += MUL64((k9 + d1), (k13 + d5));
499 h4 += MUL64((k13 + d1), (k17 + d5));
500
501 h1 += MUL64((k2 + d2), (k6 + d6));
502 h2 += MUL64((k6 + d2), (k10 + d6));
503 h3 += MUL64((k10 + d2), (k14 + d6));
504 h4 += MUL64((k14 + d2), (k18 + d6));
505
506 h1 += MUL64((k3 + d3), (k7 + d7));
507 h2 += MUL64((k7 + d3), (k11 + d7));
508 h3 += MUL64((k11 + d3), (k15 + d7));
509 h4 += MUL64((k15 + d3), (k19 + d7));
510
511 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
512 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
513 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
514
515 d += 8;
516 k += 8;
517 } while (--c);
518 ((UINT64 *)hp)[0] = h1;
519 ((UINT64 *)hp)[1] = h2;
520 ((UINT64 *)hp)[2] = h3;
521 ((UINT64 *)hp)[3] = h4;
522}
523
524/* ---------------------------------------------------------------------- */
525#endif /* UMAC_OUTPUT_LENGTH */
526/* ---------------------------------------------------------------------- */
527
528
529/* ---------------------------------------------------------------------- */
530
531static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
532/* This function is a wrapper for the primitive NH hash functions. It takes
533 * as argument "hc" the current hash context and a buffer which must be a
534 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
535 * appropriately according to how much message has been hashed already.
536 */
537{
538 UINT8 *key;
539
540 key = hc->nh_key + hc->bytes_hashed;
541 nh_aux(key, buf, hc->state, nbytes);
542}
543
544/* ---------------------------------------------------------------------- */
545
546static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
547/* We endian convert the keys on little-endian computers to */
548/* compensate for the lack of big-endian memory reads during hashing. */
549{
550 UWORD iters = num_bytes / bpw;
551 if (bpw == 4) {
552 UINT32 *p = (UINT32 *)buf;
553 do {
554 *p = LOAD_UINT32_REVERSED(p);
555 p++;
556 } while (--iters);
557 } else if (bpw == 8) {
558 UINT32 *p = (UINT32 *)buf;
559 UINT32 t;
560 do {
561 t = LOAD_UINT32_REVERSED(p+1);
562 p[1] = LOAD_UINT32_REVERSED(p);
563 p[0] = t;
564 p += 2;
565 } while (--iters);
566 }
567}
568#if (__LITTLE_ENDIAN__)
569#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
570#else
571#define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
572#endif
573
574/* ---------------------------------------------------------------------- */
575
576static void nh_reset(nh_ctx *hc)
577/* Reset nh_ctx to ready for hashing of new data */
578{
579 hc->bytes_hashed = 0;
580 hc->next_data_empty = 0;
581 hc->state[0] = 0;
582#if (UMAC_OUTPUT_LEN >= 8)
583 hc->state[1] = 0;
584#endif
585#if (UMAC_OUTPUT_LEN >= 12)
586 hc->state[2] = 0;
587#endif
588#if (UMAC_OUTPUT_LEN == 16)
589 hc->state[3] = 0;
590#endif
591
592}
593
594/* ---------------------------------------------------------------------- */
595
596static void nh_init(nh_ctx *hc, aes_int_key prf_key)
597/* Generate nh_key, endian convert and reset to be ready for hashing. */
598{
599 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
600 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
601 nh_reset(hc);
602}
603
604/* ---------------------------------------------------------------------- */
605
606static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
607/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
608/* even multiple of HASH_BUF_BYTES. */
609{
610 UINT32 i,j;
611
612 j = hc->next_data_empty;
613 if ((j + nbytes) >= HASH_BUF_BYTES) {
614 if (j) {
615 i = HASH_BUF_BYTES - j;
616 memcpy(hc->data+j, buf, i);
617 nh_transform(hc,hc->data,HASH_BUF_BYTES);
618 nbytes -= i;
619 buf += i;
620 hc->bytes_hashed += HASH_BUF_BYTES;
621 }
622 if (nbytes >= HASH_BUF_BYTES) {
623 i = nbytes & ~(HASH_BUF_BYTES - 1);
624 nh_transform(hc, buf, i);
625 nbytes -= i;
626 buf += i;
627 hc->bytes_hashed += i;
628 }
629 j = 0;
630 }
631 memcpy(hc->data + j, buf, nbytes);
632 hc->next_data_empty = j + nbytes;
633}
634
635/* ---------------------------------------------------------------------- */
636
637static void zero_pad(UINT8 *p, int nbytes)
638{
639/* Write "nbytes" of zeroes, beginning at "p" */
640 if (nbytes >= (int)sizeof(UWORD)) {
641 while ((ptrdiff_t)p % sizeof(UWORD)) {
642 *p = 0;
643 nbytes--;
644 p++;
645 }
646 while (nbytes >= (int)sizeof(UWORD)) {
647 *(UWORD *)p = 0;
648 nbytes -= sizeof(UWORD);
649 p += sizeof(UWORD);
650 }
651 }
652 while (nbytes) {
653 *p = 0;
654 nbytes--;
655 p++;
656 }
657}
658
659/* ---------------------------------------------------------------------- */
660
661static void nh_final(nh_ctx *hc, UINT8 *result)
662/* After passing some number of data buffers to nh_update() for integration
663 * into an NH context, nh_final is called to produce a hash result. If any
664 * bytes are in the buffer hc->data, incorporate them into the
665 * NH context. Finally, add into the NH accumulation "state" the total number
666 * of bits hashed. The resulting numbers are written to the buffer "result".
667 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
668 */
669{
670 int nh_len, nbits;
671
672 if (hc->next_data_empty != 0) {
673 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
674 ~(L1_PAD_BOUNDARY - 1));
675 zero_pad(hc->data + hc->next_data_empty,
676 nh_len - hc->next_data_empty);
677 nh_transform(hc, hc->data, nh_len);
678 hc->bytes_hashed += hc->next_data_empty;
679 } else if (hc->bytes_hashed == 0) {
680 nh_len = L1_PAD_BOUNDARY;
681 zero_pad(hc->data, L1_PAD_BOUNDARY);
682 nh_transform(hc, hc->data, nh_len);
683 }
684
685 nbits = (hc->bytes_hashed << 3);
686 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
687#if (UMAC_OUTPUT_LEN >= 8)
688 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
689#endif
690#if (UMAC_OUTPUT_LEN >= 12)
691 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
692#endif
693#if (UMAC_OUTPUT_LEN == 16)
694 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
695#endif
696 nh_reset(hc);
697}
698
699/* ---------------------------------------------------------------------- */
700
701static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
702 UINT32 unpadded_len, UINT8 *result)
703/* All-in-one nh_update() and nh_final() equivalent.
704 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
705 * well aligned
706 */
707{
708 UINT32 nbits;
709
710 /* Initialize the hash state */
711 nbits = (unpadded_len << 3);
712
713 ((UINT64 *)result)[0] = nbits;
714#if (UMAC_OUTPUT_LEN >= 8)
715 ((UINT64 *)result)[1] = nbits;
716#endif
717#if (UMAC_OUTPUT_LEN >= 12)
718 ((UINT64 *)result)[2] = nbits;
719#endif
720#if (UMAC_OUTPUT_LEN == 16)
721 ((UINT64 *)result)[3] = nbits;
722#endif
723
724 nh_aux(hc->nh_key, buf, result, padded_len);
725}
726
727/* ---------------------------------------------------------------------- */
728/* ---------------------------------------------------------------------- */
729/* ----- Begin UHASH Section -------------------------------------------- */
730/* ---------------------------------------------------------------------- */
731/* ---------------------------------------------------------------------- */
732
733/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
734 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
735 * unless the initial data to be hashed is short. After the polynomial-
736 * layer, an inner-product hash is used to produce the final UHASH output.
737 *
738 * UHASH provides two interfaces, one all-at-once and another where data
739 * buffers are presented sequentially. In the sequential interface, the
740 * UHASH client calls the routine uhash_update() as many times as necessary.
741 * When there is no more data to be fed to UHASH, the client calls
742 * uhash_final() which
743 * calculates the UHASH output. Before beginning another UHASH calculation
744 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
745 * uhash(), is equivalent to the sequence of calls uhash_update() and
746 * uhash_final(); however it is optimized and should be
747 * used whenever the sequential interface is not necessary.
748 *
749 * The routine uhash_init() initializes the uhash_ctx data structure and
750 * must be called once, before any other UHASH routine.
751 */
752
753/* ---------------------------------------------------------------------- */
754/* ----- Constants and uhash_ctx ---------------------------------------- */
755/* ---------------------------------------------------------------------- */
756
757/* ---------------------------------------------------------------------- */
758/* ----- Poly hash and Inner-Product hash Constants --------------------- */
759/* ---------------------------------------------------------------------- */
760
761/* Primes and masks */
762#define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
763#define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
764#define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
765
766
767/* ---------------------------------------------------------------------- */
768
769typedef struct uhash_ctx {
770 nh_ctx hash; /* Hash context for L1 NH hash */
771 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
772 UINT64 poly_accum[STREAMS]; /* poly hash result */
773 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
774 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
775 UINT32 msg_len; /* Total length of data passed */
776 /* to uhash */
777} uhash_ctx;
778typedef struct uhash_ctx *uhash_ctx_t;
779
780/* ---------------------------------------------------------------------- */
781
782
783/* The polynomial hashes use Horner's rule to evaluate a polynomial one
784 * word at a time. As described in the specification, poly32 and poly64
785 * require keys from special domains. The following implementations exploit
786 * the special domains to avoid overflow. The results are not guaranteed to
787 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
788 * patches any errant values.
789 */
790
791static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
792{
793 UINT32 key_hi = (UINT32)(key >> 32),
794 key_lo = (UINT32)key,
795 cur_hi = (UINT32)(cur >> 32),
796 cur_lo = (UINT32)cur,
797 x_lo,
798 x_hi;
799 UINT64 X,T,res;
800
801 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
802 x_lo = (UINT32)X;
803 x_hi = (UINT32)(X >> 32);
804
805 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
806
807 T = ((UINT64)x_lo << 32);
808 res += T;
809 if (res < T)
810 res += 59;
811
812 res += data;
813 if (res < data)
814 res += 59;
815
816 return res;
817}
818
819
820/* Although UMAC is specified to use a ramped polynomial hash scheme, this
821 * implementation does not handle all ramp levels. Because we don't handle
822 * the ramp up to p128 modulus in this implementation, we are limited to
823 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
824 * bytes input to UMAC per tag, ie. 16MB).
825 */
826static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
827{
828 int i;
829 UINT64 *data=(UINT64*)data_in;
830
831 for (i = 0; i < STREAMS; i++) {
832 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
833 hc->poly_accum[i] = poly64(hc->poly_accum[i],
834 hc->poly_key_8[i], p64 - 1);
835 hc->poly_accum[i] = poly64(hc->poly_accum[i],
836 hc->poly_key_8[i], (data[i] - 59));
837 } else {
838 hc->poly_accum[i] = poly64(hc->poly_accum[i],
839 hc->poly_key_8[i], data[i]);
840 }
841 }
842}
843
844
845/* ---------------------------------------------------------------------- */
846
847
848/* The final step in UHASH is an inner-product hash. The poly hash
849 * produces a result not neccesarily WORD_LEN bytes long. The inner-
850 * product hash breaks the polyhash output into 16-bit chunks and
851 * multiplies each with a 36 bit key.
852 */
853
854static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
855{
856 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
857 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
858 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
859 t = t + ipkp[3] * (UINT64)(UINT16)(data);
860
861 return t;
862}
863
864static UINT32 ip_reduce_p36(UINT64 t)
865{
866/* Divisionless modular reduction */
867 UINT64 ret;
868
869 ret = (t & m36) + 5 * (t >> 36);
870 if (ret >= p36)
871 ret -= p36;
872
873 /* return least significant 32 bits */
874 return (UINT32)(ret);
875}
876
877
878/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
879 * the polyhash stage is skipped and ip_short is applied directly to the
880 * NH output.
881 */
882static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
883{
884 UINT64 t;
885 UINT64 *nhp = (UINT64 *)nh_res;
886
887 t = ip_aux(0,ahc->ip_keys, nhp[0]);
888 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
889#if (UMAC_OUTPUT_LEN >= 8)
890 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
891 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
892#endif
893#if (UMAC_OUTPUT_LEN >= 12)
894 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
895 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
896#endif
897#if (UMAC_OUTPUT_LEN == 16)
898 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
899 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
900#endif
901}
902
903/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
904 * the polyhash stage is not skipped and ip_long is applied to the
905 * polyhash output.
906 */
907static void ip_long(uhash_ctx_t ahc, u_char *res)
908{
909 int i;
910 UINT64 t;
911
912 for (i = 0; i < STREAMS; i++) {
913 /* fix polyhash output not in Z_p64 */
914 if (ahc->poly_accum[i] >= p64)
915 ahc->poly_accum[i] -= p64;
916 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
917 STORE_UINT32_BIG((UINT32 *)res+i,
918 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
919 }
920}
921
922
923/* ---------------------------------------------------------------------- */
924
925/* ---------------------------------------------------------------------- */
926
927/* Reset uhash context for next hash session */
928static int uhash_reset(uhash_ctx_t pc)
929{
930 nh_reset(&pc->hash);
931 pc->msg_len = 0;
932 pc->poly_accum[0] = 1;
933#if (UMAC_OUTPUT_LEN >= 8)
934 pc->poly_accum[1] = 1;
935#endif
936#if (UMAC_OUTPUT_LEN >= 12)
937 pc->poly_accum[2] = 1;
938#endif
939#if (UMAC_OUTPUT_LEN == 16)
940 pc->poly_accum[3] = 1;
941#endif
942 return 1;
943}
944
945/* ---------------------------------------------------------------------- */
946
947/* Given a pointer to the internal key needed by kdf() and a uhash context,
948 * initialize the NH context and generate keys needed for poly and inner-
949 * product hashing. All keys are endian adjusted in memory so that native
950 * loads cause correct keys to be in registers during calculation.
951 */
952static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
953{
954 int i;
955 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
956
957 /* Zero the entire uhash context */
958 memset(ahc, 0, sizeof(uhash_ctx));
959
960 /* Initialize the L1 hash */
961 nh_init(&ahc->hash, prf_key);
962
963 /* Setup L2 hash variables */
964 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
965 for (i = 0; i < STREAMS; i++) {
966 /* Fill keys from the buffer, skipping bytes in the buffer not
967 * used by this implementation. Endian reverse the keys if on a
968 * little-endian computer.
969 */
970 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
971 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
972 /* Mask the 64-bit keys to their special domain */
973 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
974 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
975 }
976
977 /* Setup L3-1 hash variables */
978 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
979 for (i = 0; i < STREAMS; i++)
980 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
981 4*sizeof(UINT64));
982 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
983 sizeof(ahc->ip_keys));
984 for (i = 0; i < STREAMS*4; i++)
985 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
986
987 /* Setup L3-2 hash variables */
988 /* Fill buffer with index 4 key */
989 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
990 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
991 STREAMS * sizeof(UINT32));
992}
993
994/* ---------------------------------------------------------------------- */
995
996#if 0
997static uhash_ctx_t uhash_alloc(u_char key[])
998{
999/* Allocate memory and force to a 16-byte boundary. */
1000 uhash_ctx_t ctx;
1001 u_char bytes_to_add;
1002 aes_int_key prf_key;
1003
1004 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1005 if (ctx) {
1006 if (ALLOC_BOUNDARY) {
1007 bytes_to_add = ALLOC_BOUNDARY -
1008 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1009 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1010 *((u_char *)ctx - 1) = bytes_to_add;
1011 }
1012 aes_key_setup(key,prf_key);
1013 uhash_init(ctx, prf_key);
1014 }
1015 return (ctx);
1016}
1017#endif
1018
1019/* ---------------------------------------------------------------------- */
1020
1021#if 0
1022static int uhash_free(uhash_ctx_t ctx)
1023{
1024/* Free memory allocated by uhash_alloc */
1025 u_char bytes_to_sub;
1026
1027 if (ctx) {
1028 if (ALLOC_BOUNDARY) {
1029 bytes_to_sub = *((u_char *)ctx - 1);
1030 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1031 }
1032 free(ctx);
1033 }
1034 return (1);
1035}
1036#endif
1037/* ---------------------------------------------------------------------- */
1038
1039static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1040/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1041 * hash each one with NH, calling the polyhash on each NH output.
1042 */
1043{
1044 UWORD bytes_hashed, bytes_remaining;
1045 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1046
1047 if (ctx->msg_len + len <= L1_KEY_LEN) {
1048 nh_update(&ctx->hash, (UINT8 *)input, len);
1049 ctx->msg_len += len;
1050 } else {
1051
1052 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1053 if (ctx->msg_len == L1_KEY_LEN)
1054 bytes_hashed = L1_KEY_LEN;
1055
1056 if (bytes_hashed + len >= L1_KEY_LEN) {
1057
1058 /* If some bytes have been passed to the hash function */
1059 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1060 /* bytes to complete the current nh_block. */
1061 if (bytes_hashed) {
1062 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1063 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1064 nh_final(&ctx->hash, nh_result);
1065 ctx->msg_len += bytes_remaining;
1066 poly_hash(ctx,(UINT32 *)nh_result);
1067 len -= bytes_remaining;
1068 input += bytes_remaining;
1069 }
1070
1071 /* Hash directly from input stream if enough bytes */
1072 while (len >= L1_KEY_LEN) {
1073 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1074 L1_KEY_LEN, nh_result);
1075 ctx->msg_len += L1_KEY_LEN;
1076 len -= L1_KEY_LEN;
1077 input += L1_KEY_LEN;
1078 poly_hash(ctx,(UINT32 *)nh_result);
1079 }
1080 }
1081
1082 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1083 if (len) {
1084 nh_update(&ctx->hash, (UINT8 *)input, len);
1085 ctx->msg_len += len;
1086 }
1087 }
1088
1089 return (1);
1090}
1091
1092/* ---------------------------------------------------------------------- */
1093
1094static int uhash_final(uhash_ctx_t ctx, u_char *res)
1095/* Incorporate any pending data, pad, and generate tag */
1096{
1097 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1098
1099 if (ctx->msg_len > L1_KEY_LEN) {
1100 if (ctx->msg_len % L1_KEY_LEN) {
1101 nh_final(&ctx->hash, nh_result);
1102 poly_hash(ctx,(UINT32 *)nh_result);
1103 }
1104 ip_long(ctx, res);
1105 } else {
1106 nh_final(&ctx->hash, nh_result);
1107 ip_short(ctx,nh_result, res);
1108 }
1109 uhash_reset(ctx);
1110 return (1);
1111}
1112
1113/* ---------------------------------------------------------------------- */
1114
1115#if 0
1116static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1117/* assumes that msg is in a writable buffer of length divisible by */
1118/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1119{
1120 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1121 UINT32 nh_len;
1122 int extra_zeroes_needed;
1123
1124 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1125 * the polyhash.
1126 */
1127 if (len <= L1_KEY_LEN) {
1128 if (len == 0) /* If zero length messages will not */
1129 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1130 else
1131 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1132 extra_zeroes_needed = nh_len - len;
1133 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1134 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1135 ip_short(ahc,nh_result, res);
1136 } else {
1137 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1138 * output to poly_hash().
1139 */
1140 do {
1141 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1142 poly_hash(ahc,(UINT32 *)nh_result);
1143 len -= L1_KEY_LEN;
1144 msg += L1_KEY_LEN;
1145 } while (len >= L1_KEY_LEN);
1146 if (len) {
1147 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1148 extra_zeroes_needed = nh_len - len;
1149 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1150 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1151 poly_hash(ahc,(UINT32 *)nh_result);
1152 }
1153
1154 ip_long(ahc, res);
1155 }
1156
1157 uhash_reset(ahc);
1158 return 1;
1159}
1160#endif
1161
1162/* ---------------------------------------------------------------------- */
1163/* ---------------------------------------------------------------------- */
1164/* ----- Begin UMAC Section --------------------------------------------- */
1165/* ---------------------------------------------------------------------- */
1166/* ---------------------------------------------------------------------- */
1167
1168/* The UMAC interface has two interfaces, an all-at-once interface where
1169 * the entire message to be authenticated is passed to UMAC in one buffer,
1170 * and a sequential interface where the message is presented a little at a
1171 * time. The all-at-once is more optimaized than the sequential version and
1172 * should be preferred when the sequential interface is not required.
1173 */
1174struct umac_ctx {
1175 uhash_ctx hash; /* Hash function for message compression */
1176 pdf_ctx pdf; /* PDF for hashed output */
1177 void *free_ptr; /* Address to free this struct via */
1178} umac_ctx;
1179
1180/* ---------------------------------------------------------------------- */
1181
1182#if 0
1183int umac_reset(struct umac_ctx *ctx)
1184/* Reset the hash function to begin a new authentication. */
1185{
1186 uhash_reset(&ctx->hash);
1187 return (1);
1188}
1189#endif
1190
1191/* ---------------------------------------------------------------------- */
1192
1193int umac_delete(struct umac_ctx *ctx)
1194/* Deallocate the ctx structure */
1195{
1196 if (ctx) {
1197 if (ALLOC_BOUNDARY)
1198 ctx = (struct umac_ctx *)ctx->free_ptr;
1199 free(ctx);
1200 }
1201 return (1);
1202}
1203
1204/* ---------------------------------------------------------------------- */
1205
1206struct umac_ctx *umac_new(u_char key[])
1207/* Dynamically allocate a umac_ctx struct, initialize variables,
1208 * generate subkeys from key. Align to 16-byte boundary.
1209 */
1210{
1211 struct umac_ctx *ctx, *octx;
1212 size_t bytes_to_add;
1213 aes_int_key prf_key;
1214
1215 octx = ctx = malloc(sizeof(*ctx) + ALLOC_BOUNDARY);
1216 if (ctx) {
1217 if (ALLOC_BOUNDARY) {
1218 bytes_to_add = ALLOC_BOUNDARY -
1219 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1220 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1221 }
1222 ctx->free_ptr = octx;
1223 aes_key_setup(key,prf_key);
1224 pdf_init(&ctx->pdf, prf_key);
1225 uhash_init(&ctx->hash, prf_key);
1226 }
1227
1228 return (ctx);
1229}
1230
1231/* ---------------------------------------------------------------------- */
1232
1233int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1234/* Incorporate any pending data, pad, and generate tag */
1235{
1236 uhash_final(&ctx->hash, (u_char *)tag);
1237 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1238
1239 return (1);
1240}
1241
1242/* ---------------------------------------------------------------------- */
1243
1244int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1245/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1246/* hash each one, calling the PDF on the hashed output whenever the hash- */
1247/* output buffer is full. */
1248{
1249 uhash_update(&ctx->hash, input, len);
1250 return (1);
1251}
1252
1253/* ---------------------------------------------------------------------- */
1254
1255#if 0
1256int umac(struct umac_ctx *ctx, u_char *input,
1257 long len, u_char tag[],
1258 u_char nonce[8])
1259/* All-in-one version simply calls umac_update() and umac_final(). */
1260{
1261 uhash(&ctx->hash, input, len, (u_char *)tag);
1262 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1263
1264 return (1);
1265}
1266#endif
1267
1268/* ---------------------------------------------------------------------- */
1269/* ---------------------------------------------------------------------- */
1270/* ----- End UMAC Section ----------------------------------------------- */
1271/* ---------------------------------------------------------------------- */
1272/* ---------------------------------------------------------------------- */