Darren Tucker | b2f9d41 | 2003-08-02 23:51:38 +1000 | [diff] [blame] | 1 | /* $OpenBSD: moduli.c,v 1.1 2003/07/28 09:49:56 djm Exp $ */ |
| 2 | /* |
| 3 | * Copyright 1994 Phil Karn <karn@qualcomm.com> |
| 4 | * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com> |
| 5 | * Copyright 2000 Niels Provos <provos@citi.umich.edu> |
| 6 | * All rights reserved. |
| 7 | * |
| 8 | * Redistribution and use in source and binary forms, with or without |
| 9 | * modification, are permitted provided that the following conditions |
| 10 | * are met: |
| 11 | * 1. Redistributions of source code must retain the above copyright |
| 12 | * notice, this list of conditions and the following disclaimer. |
| 13 | * 2. Redistributions in binary form must reproduce the above copyright |
| 14 | * notice, this list of conditions and the following disclaimer in the |
| 15 | * documentation and/or other materials provided with the distribution. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /* |
| 30 | * Two-step process to generate safe primes for DHGEX |
| 31 | * |
| 32 | * Sieve candidates for "safe" primes, |
| 33 | * suitable for use as Diffie-Hellman moduli; |
| 34 | * that is, where q = (p-1)/2 is also prime. |
| 35 | * |
| 36 | * First step: generate candidate primes (memory intensive) |
| 37 | * Second step: test primes' safety (processor intensive) |
| 38 | */ |
| 39 | |
| 40 | #include "includes.h" |
| 41 | #include "moduli.h" |
| 42 | #include "xmalloc.h" |
| 43 | #include "log.h" |
| 44 | |
| 45 | #include <openssl/bn.h> |
| 46 | |
| 47 | |
| 48 | /* |
| 49 | * Debugging defines |
| 50 | */ |
| 51 | |
| 52 | /* define DEBUG_LARGE 1 */ |
| 53 | /* define DEBUG_SMALL 1 */ |
| 54 | /* define DEBUG_TEST 1 */ |
| 55 | |
| 56 | /* |
| 57 | * File output defines |
| 58 | */ |
| 59 | |
| 60 | /* need line long enough for largest moduli plus headers */ |
| 61 | #define QLINESIZE (100+8192) |
| 62 | |
| 63 | /* Type: decimal. |
| 64 | * Specifies the internal structure of the prime modulus. |
| 65 | */ |
| 66 | #define QTYPE_UNKNOWN (0) |
| 67 | #define QTYPE_UNSTRUCTURED (1) |
| 68 | #define QTYPE_SAFE (2) |
| 69 | #define QTYPE_SCHNOOR (3) |
| 70 | #define QTYPE_SOPHIE_GERMAINE (4) |
| 71 | #define QTYPE_STRONG (5) |
| 72 | |
| 73 | /* Tests: decimal (bit field). |
| 74 | * Specifies the methods used in checking for primality. |
| 75 | * Usually, more than one test is used. |
| 76 | */ |
| 77 | #define QTEST_UNTESTED (0x00) |
| 78 | #define QTEST_COMPOSITE (0x01) |
| 79 | #define QTEST_SIEVE (0x02) |
| 80 | #define QTEST_MILLER_RABIN (0x04) |
| 81 | #define QTEST_JACOBI (0x08) |
| 82 | #define QTEST_ELLIPTIC (0x10) |
| 83 | |
| 84 | /* Size: decimal. |
| 85 | * Specifies the number of the most significant bit (0 to M). |
| 86 | ** WARNING: internally, usually 1 to N. |
| 87 | */ |
| 88 | #define QSIZE_MINIMUM (511) |
| 89 | |
| 90 | /* |
| 91 | * Prime sieving defines |
| 92 | */ |
| 93 | |
| 94 | /* Constant: assuming 8 bit bytes and 32 bit words */ |
| 95 | #define SHIFT_BIT (3) |
| 96 | #define SHIFT_BYTE (2) |
| 97 | #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE) |
| 98 | #define SHIFT_MEGABYTE (20) |
| 99 | #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE) |
| 100 | |
| 101 | /* |
| 102 | * Constant: when used with 32-bit integers, the largest sieve prime |
| 103 | * has to be less than 2**32. |
| 104 | */ |
| 105 | #define SMALL_MAXIMUM (0xffffffffUL) |
| 106 | |
| 107 | /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */ |
| 108 | #define TINY_NUMBER (1UL<<16) |
| 109 | |
| 110 | /* Ensure enough bit space for testing 2*q. */ |
| 111 | #define TEST_MAXIMUM (1UL<<16) |
| 112 | #define TEST_MINIMUM (QSIZE_MINIMUM + 1) |
| 113 | /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */ |
| 114 | #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */ |
| 115 | |
| 116 | /* bit operations on 32-bit words */ |
| 117 | #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31))) |
| 118 | #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31))) |
| 119 | #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31))) |
| 120 | |
| 121 | /* |
| 122 | * Prime testing defines |
| 123 | */ |
| 124 | |
| 125 | /* |
| 126 | * Sieving data (XXX - move to struct) |
| 127 | */ |
| 128 | |
| 129 | /* sieve 2**16 */ |
| 130 | static u_int32_t *TinySieve, tinybits; |
| 131 | |
| 132 | /* sieve 2**30 in 2**16 parts */ |
| 133 | static u_int32_t *SmallSieve, smallbits, smallbase; |
| 134 | |
| 135 | /* sieve relative to the initial value */ |
| 136 | static u_int32_t *LargeSieve, largewords, largetries, largenumbers; |
| 137 | static u_int32_t largebits, largememory; /* megabytes */ |
| 138 | static BIGNUM *largebase; |
| 139 | |
| 140 | |
| 141 | /* |
| 142 | * print moduli out in consistent form, |
| 143 | */ |
| 144 | static int |
| 145 | qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries, |
| 146 | u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus) |
| 147 | { |
| 148 | struct tm *gtm; |
| 149 | time_t time_now; |
| 150 | int res; |
| 151 | |
| 152 | time(&time_now); |
| 153 | gtm = gmtime(&time_now); |
| 154 | |
| 155 | res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ", |
| 156 | gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday, |
| 157 | gtm->tm_hour, gtm->tm_min, gtm->tm_sec, |
| 158 | otype, otests, otries, osize, ogenerator); |
| 159 | |
| 160 | if (res < 0) |
| 161 | return (-1); |
| 162 | |
| 163 | if (BN_print_fp(ofile, omodulus) < 1) |
| 164 | return (-1); |
| 165 | |
| 166 | res = fprintf(ofile, "\n"); |
| 167 | fflush(ofile); |
| 168 | |
| 169 | return (res > 0 ? 0 : -1); |
| 170 | } |
| 171 | |
| 172 | |
| 173 | /* |
| 174 | ** Sieve p's and q's with small factors |
| 175 | */ |
| 176 | static void |
| 177 | sieve_large(u_int32_t s) |
| 178 | { |
| 179 | u_int32_t r, u; |
| 180 | |
| 181 | debug2("sieve_large %u", s); |
| 182 | largetries++; |
| 183 | /* r = largebase mod s */ |
| 184 | r = BN_mod_word(largebase, s); |
| 185 | if (r == 0) |
| 186 | u = 0; /* s divides into largebase exactly */ |
| 187 | else |
| 188 | u = s - r; /* largebase+u is first entry divisible by s */ |
| 189 | |
| 190 | if (u < largebits * 2) { |
| 191 | /* |
| 192 | * The sieve omits p's and q's divisible by 2, so ensure that |
| 193 | * largebase+u is odd. Then, step through the sieve in |
| 194 | * increments of 2*s |
| 195 | */ |
| 196 | if (u & 0x1) |
| 197 | u += s; /* Make largebase+u odd, and u even */ |
| 198 | |
| 199 | /* Mark all multiples of 2*s */ |
| 200 | for (u /= 2; u < largebits; u += s) |
| 201 | BIT_SET(LargeSieve, u); |
| 202 | } |
| 203 | |
| 204 | /* r = p mod s */ |
| 205 | r = (2 * r + 1) % s; |
| 206 | if (r == 0) |
| 207 | u = 0; /* s divides p exactly */ |
| 208 | else |
| 209 | u = s - r; /* p+u is first entry divisible by s */ |
| 210 | |
| 211 | if (u < largebits * 4) { |
| 212 | /* |
| 213 | * The sieve omits p's divisible by 4, so ensure that |
| 214 | * largebase+u is not. Then, step through the sieve in |
| 215 | * increments of 4*s |
| 216 | */ |
| 217 | while (u & 0x3) { |
| 218 | if (SMALL_MAXIMUM - u < s) |
| 219 | return; |
| 220 | u += s; |
| 221 | } |
| 222 | |
| 223 | /* Mark all multiples of 4*s */ |
| 224 | for (u /= 4; u < largebits; u += s) |
| 225 | BIT_SET(LargeSieve, u); |
| 226 | } |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * list candidates for Sophie-Germaine primes (where q = (p-1)/2) |
| 231 | * to standard output. |
| 232 | * The list is checked against small known primes (less than 2**30). |
| 233 | */ |
| 234 | int |
| 235 | gen_candidates(FILE *out, int memory, int power, BIGNUM *start) |
| 236 | { |
| 237 | BIGNUM *q; |
| 238 | u_int32_t j, r, s, t; |
| 239 | u_int32_t smallwords = TINY_NUMBER >> 6; |
| 240 | u_int32_t tinywords = TINY_NUMBER >> 6; |
| 241 | time_t time_start, time_stop; |
| 242 | int i, ret = 0; |
| 243 | |
| 244 | largememory = memory; |
| 245 | |
| 246 | /* |
| 247 | * Set power to the length in bits of the prime to be generated. |
| 248 | * This is changed to 1 less than the desired safe prime moduli p. |
| 249 | */ |
| 250 | if (power > TEST_MAXIMUM) { |
| 251 | error("Too many bits: %u > %lu", power, TEST_MAXIMUM); |
| 252 | return (-1); |
| 253 | } else if (power < TEST_MINIMUM) { |
| 254 | error("Too few bits: %u < %u", power, TEST_MINIMUM); |
| 255 | return (-1); |
| 256 | } |
| 257 | power--; /* decrement before squaring */ |
| 258 | |
| 259 | /* |
| 260 | * The density of ordinary primes is on the order of 1/bits, so the |
| 261 | * density of safe primes should be about (1/bits)**2. Set test range |
| 262 | * to something well above bits**2 to be reasonably sure (but not |
| 263 | * guaranteed) of catching at least one safe prime. |
| 264 | */ |
| 265 | largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER)); |
| 266 | |
| 267 | /* |
| 268 | * Need idea of how much memory is available. We don't have to use all |
| 269 | * of it. |
| 270 | */ |
| 271 | if (largememory > LARGE_MAXIMUM) { |
| 272 | logit("Limited memory: %u MB; limit %lu MB", |
| 273 | largememory, LARGE_MAXIMUM); |
| 274 | largememory = LARGE_MAXIMUM; |
| 275 | } |
| 276 | |
| 277 | if (largewords <= (largememory << SHIFT_MEGAWORD)) { |
| 278 | logit("Increased memory: %u MB; need %u bytes", |
| 279 | largememory, (largewords << SHIFT_BYTE)); |
| 280 | largewords = (largememory << SHIFT_MEGAWORD); |
| 281 | } else if (largememory > 0) { |
| 282 | logit("Decreased memory: %u MB; want %u bytes", |
| 283 | largememory, (largewords << SHIFT_BYTE)); |
| 284 | largewords = (largememory << SHIFT_MEGAWORD); |
| 285 | } |
| 286 | |
| 287 | TinySieve = calloc(tinywords, sizeof(u_int32_t)); |
| 288 | if (TinySieve == NULL) { |
| 289 | error("Insufficient memory for tiny sieve: need %u bytes", |
| 290 | tinywords << SHIFT_BYTE); |
| 291 | exit(1); |
| 292 | } |
| 293 | tinybits = tinywords << SHIFT_WORD; |
| 294 | |
| 295 | SmallSieve = calloc(smallwords, sizeof(u_int32_t)); |
| 296 | if (SmallSieve == NULL) { |
| 297 | error("Insufficient memory for small sieve: need %u bytes", |
| 298 | smallwords << SHIFT_BYTE); |
| 299 | xfree(TinySieve); |
| 300 | exit(1); |
| 301 | } |
| 302 | smallbits = smallwords << SHIFT_WORD; |
| 303 | |
| 304 | /* |
| 305 | * dynamically determine available memory |
| 306 | */ |
| 307 | while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL) |
| 308 | largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */ |
| 309 | |
| 310 | largebits = largewords << SHIFT_WORD; |
| 311 | largenumbers = largebits * 2; /* even numbers excluded */ |
| 312 | |
| 313 | /* validation check: count the number of primes tried */ |
| 314 | largetries = 0; |
| 315 | q = BN_new(); |
| 316 | |
| 317 | /* |
| 318 | * Generate random starting point for subprime search, or use |
| 319 | * specified parameter. |
| 320 | */ |
| 321 | largebase = BN_new(); |
| 322 | if (start == NULL) |
| 323 | BN_rand(largebase, power, 1, 1); |
| 324 | else |
| 325 | BN_copy(largebase, start); |
| 326 | |
| 327 | /* ensure odd */ |
| 328 | BN_set_bit(largebase, 0); |
| 329 | |
| 330 | time(&time_start); |
| 331 | |
| 332 | logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start), |
| 333 | largenumbers, power); |
| 334 | debug2("start point: 0x%s", BN_bn2hex(largebase)); |
| 335 | |
| 336 | /* |
| 337 | * TinySieve |
| 338 | */ |
| 339 | for (i = 0; i < tinybits; i++) { |
| 340 | if (BIT_TEST(TinySieve, i)) |
| 341 | continue; /* 2*i+3 is composite */ |
| 342 | |
| 343 | /* The next tiny prime */ |
| 344 | t = 2 * i + 3; |
| 345 | |
| 346 | /* Mark all multiples of t */ |
| 347 | for (j = i + t; j < tinybits; j += t) |
| 348 | BIT_SET(TinySieve, j); |
| 349 | |
| 350 | sieve_large(t); |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * Start the small block search at the next possible prime. To avoid |
| 355 | * fencepost errors, the last pass is skipped. |
| 356 | */ |
| 357 | for (smallbase = TINY_NUMBER + 3; |
| 358 | smallbase < (SMALL_MAXIMUM - TINY_NUMBER); |
| 359 | smallbase += TINY_NUMBER) { |
| 360 | for (i = 0; i < tinybits; i++) { |
| 361 | if (BIT_TEST(TinySieve, i)) |
| 362 | continue; /* 2*i+3 is composite */ |
| 363 | |
| 364 | /* The next tiny prime */ |
| 365 | t = 2 * i + 3; |
| 366 | r = smallbase % t; |
| 367 | |
| 368 | if (r == 0) { |
| 369 | s = 0; /* t divides into smallbase exactly */ |
| 370 | } else { |
| 371 | /* smallbase+s is first entry divisible by t */ |
| 372 | s = t - r; |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * The sieve omits even numbers, so ensure that |
| 377 | * smallbase+s is odd. Then, step through the sieve |
| 378 | * in increments of 2*t |
| 379 | */ |
| 380 | if (s & 1) |
| 381 | s += t; /* Make smallbase+s odd, and s even */ |
| 382 | |
| 383 | /* Mark all multiples of 2*t */ |
| 384 | for (s /= 2; s < smallbits; s += t) |
| 385 | BIT_SET(SmallSieve, s); |
| 386 | } |
| 387 | |
| 388 | /* |
| 389 | * SmallSieve |
| 390 | */ |
| 391 | for (i = 0; i < smallbits; i++) { |
| 392 | if (BIT_TEST(SmallSieve, i)) |
| 393 | continue; /* 2*i+smallbase is composite */ |
| 394 | |
| 395 | /* The next small prime */ |
| 396 | sieve_large((2 * i) + smallbase); |
| 397 | } |
| 398 | |
| 399 | memset(SmallSieve, 0, smallwords << SHIFT_BYTE); |
| 400 | } |
| 401 | |
| 402 | time(&time_stop); |
| 403 | |
| 404 | logit("%.24s Sieved with %u small primes in %ld seconds", |
| 405 | ctime(&time_stop), largetries, (long) (time_stop - time_start)); |
| 406 | |
| 407 | for (j = r = 0; j < largebits; j++) { |
| 408 | if (BIT_TEST(LargeSieve, j)) |
| 409 | continue; /* Definitely composite, skip */ |
| 410 | |
| 411 | debug2("test q = largebase+%u", 2 * j); |
| 412 | BN_set_word(q, 2 * j); |
| 413 | BN_add(q, q, largebase); |
| 414 | if (qfileout(out, QTYPE_SOPHIE_GERMAINE, QTEST_SIEVE, |
| 415 | largetries, (power - 1) /* MSB */, (0), q) == -1) { |
| 416 | ret = -1; |
| 417 | break; |
| 418 | } |
| 419 | |
| 420 | r++; /* count q */ |
| 421 | } |
| 422 | |
| 423 | time(&time_stop); |
| 424 | |
| 425 | xfree(LargeSieve); |
| 426 | xfree(SmallSieve); |
| 427 | xfree(TinySieve); |
| 428 | |
| 429 | logit("%.24s Found %u candidates", ctime(&time_stop), r); |
| 430 | |
| 431 | return (ret); |
| 432 | } |
| 433 | |
| 434 | /* |
| 435 | * perform a Miller-Rabin primality test |
| 436 | * on the list of candidates |
| 437 | * (checking both q and p) |
| 438 | * The result is a list of so-call "safe" primes |
| 439 | */ |
| 440 | int |
| 441 | prime_test(FILE *in, FILE *out, u_int32_t trials, |
| 442 | u_int32_t generator_wanted) |
| 443 | { |
| 444 | BIGNUM *q, *p, *a; |
| 445 | BN_CTX *ctx; |
| 446 | char *cp, *lp; |
| 447 | u_int32_t count_in = 0, count_out = 0, count_possible = 0; |
| 448 | u_int32_t generator_known, in_tests, in_tries, in_type, in_size; |
| 449 | time_t time_start, time_stop; |
| 450 | int res; |
| 451 | |
| 452 | time(&time_start); |
| 453 | |
| 454 | p = BN_new(); |
| 455 | q = BN_new(); |
| 456 | ctx = BN_CTX_new(); |
| 457 | |
| 458 | debug2("%.24s Final %u Miller-Rabin trials (%x generator)", |
| 459 | ctime(&time_start), trials, generator_wanted); |
| 460 | |
| 461 | res = 0; |
| 462 | lp = xmalloc(QLINESIZE + 1); |
| 463 | while (fgets(lp, QLINESIZE, in) != NULL) { |
| 464 | int ll = strlen(lp); |
| 465 | |
| 466 | count_in++; |
| 467 | if (ll < 14 || *lp == '!' || *lp == '#') { |
| 468 | debug2("%10u: comment or short line", count_in); |
| 469 | continue; |
| 470 | } |
| 471 | |
| 472 | /* XXX - fragile parser */ |
| 473 | /* time */ |
| 474 | cp = &lp[14]; /* (skip) */ |
| 475 | |
| 476 | /* type */ |
| 477 | in_type = strtoul(cp, &cp, 10); |
| 478 | |
| 479 | /* tests */ |
| 480 | in_tests = strtoul(cp, &cp, 10); |
| 481 | |
| 482 | if (in_tests & QTEST_COMPOSITE) { |
| 483 | debug2("%10u: known composite", count_in); |
| 484 | continue; |
| 485 | } |
| 486 | /* tries */ |
| 487 | in_tries = strtoul(cp, &cp, 10); |
| 488 | |
| 489 | /* size (most significant bit) */ |
| 490 | in_size = strtoul(cp, &cp, 10); |
| 491 | |
| 492 | /* generator (hex) */ |
| 493 | generator_known = strtoul(cp, &cp, 16); |
| 494 | |
| 495 | /* Skip white space */ |
| 496 | cp += strspn(cp, " "); |
| 497 | |
| 498 | /* modulus (hex) */ |
| 499 | switch (in_type) { |
| 500 | case QTYPE_SOPHIE_GERMAINE: |
| 501 | debug2("%10u: (%u) Sophie-Germaine", count_in, in_type); |
| 502 | a = q; |
| 503 | BN_hex2bn(&a, cp); |
| 504 | /* p = 2*q + 1 */ |
| 505 | BN_lshift(p, q, 1); |
| 506 | BN_add_word(p, 1); |
| 507 | in_size += 1; |
| 508 | generator_known = 0; |
| 509 | break; |
| 510 | default: |
| 511 | debug2("%10u: (%u)", count_in, in_type); |
| 512 | a = p; |
| 513 | BN_hex2bn(&a, cp); |
| 514 | /* q = (p-1) / 2 */ |
| 515 | BN_rshift(q, p, 1); |
| 516 | break; |
| 517 | } |
| 518 | |
| 519 | /* |
| 520 | * due to earlier inconsistencies in interpretation, check |
| 521 | * the proposed bit size. |
| 522 | */ |
| 523 | if (BN_num_bits(p) != (in_size + 1)) { |
| 524 | debug2("%10u: bit size %u mismatch", count_in, in_size); |
| 525 | continue; |
| 526 | } |
| 527 | if (in_size < QSIZE_MINIMUM) { |
| 528 | debug2("%10u: bit size %u too short", count_in, in_size); |
| 529 | continue; |
| 530 | } |
| 531 | |
| 532 | if (in_tests & QTEST_MILLER_RABIN) |
| 533 | in_tries += trials; |
| 534 | else |
| 535 | in_tries = trials; |
| 536 | /* |
| 537 | * guess unknown generator |
| 538 | */ |
| 539 | if (generator_known == 0) { |
| 540 | if (BN_mod_word(p, 24) == 11) |
| 541 | generator_known = 2; |
| 542 | else if (BN_mod_word(p, 12) == 5) |
| 543 | generator_known = 3; |
| 544 | else { |
| 545 | u_int32_t r = BN_mod_word(p, 10); |
| 546 | |
| 547 | if (r == 3 || r == 7) { |
| 548 | generator_known = 5; |
| 549 | } |
| 550 | } |
| 551 | } |
| 552 | /* |
| 553 | * skip tests when desired generator doesn't match |
| 554 | */ |
| 555 | if (generator_wanted > 0 && |
| 556 | generator_wanted != generator_known) { |
| 557 | debug2("%10u: generator %d != %d", |
| 558 | count_in, generator_known, generator_wanted); |
| 559 | continue; |
| 560 | } |
| 561 | |
| 562 | count_possible++; |
| 563 | |
| 564 | /* |
| 565 | * The (1/4)^N performance bound on Miller-Rabin is |
| 566 | * extremely pessimistic, so don't spend a lot of time |
| 567 | * really verifying that q is prime until after we know |
| 568 | * that p is also prime. A single pass will weed out the |
| 569 | * vast majority of composite q's. |
| 570 | */ |
| 571 | if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) { |
| 572 | debug2("%10u: q failed first possible prime test", |
| 573 | count_in); |
| 574 | continue; |
| 575 | } |
| 576 | |
| 577 | /* |
| 578 | * q is possibly prime, so go ahead and really make sure |
| 579 | * that p is prime. If it is, then we can go back and do |
| 580 | * the same for q. If p is composite, chances are that |
| 581 | * will show up on the first Rabin-Miller iteration so it |
| 582 | * doesn't hurt to specify a high iteration count. |
| 583 | */ |
| 584 | if (!BN_is_prime(p, trials, NULL, ctx, NULL)) { |
| 585 | debug2("%10u: p is not prime", count_in); |
| 586 | continue; |
| 587 | } |
| 588 | debug("%10u: p is almost certainly prime", count_in); |
| 589 | |
| 590 | /* recheck q more rigorously */ |
| 591 | if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) { |
| 592 | debug("%10u: q is not prime", count_in); |
| 593 | continue; |
| 594 | } |
| 595 | debug("%10u: q is almost certainly prime", count_in); |
| 596 | |
| 597 | if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN), |
| 598 | in_tries, in_size, generator_known, p)) { |
| 599 | res = -1; |
| 600 | break; |
| 601 | } |
| 602 | |
| 603 | count_out++; |
| 604 | } |
| 605 | |
| 606 | time(&time_stop); |
| 607 | xfree(lp); |
| 608 | BN_free(p); |
| 609 | BN_free(q); |
| 610 | BN_CTX_free(ctx); |
| 611 | |
| 612 | logit("%.24s Found %u safe primes of %u candidates in %ld seconds", |
| 613 | ctime(&time_stop), count_out, count_possible, |
| 614 | (long) (time_stop - time_start)); |
| 615 | |
| 616 | return (res); |
| 617 | } |