blob: 0567c37f94f92be509702384ab24bb7a2d2fbef8 [file] [log] [blame]
Darren Tucker8a057952011-11-04 10:53:31 +11001/* $OpenBSD: umac.c,v 1.4 2011/10/19 10:39:48 djm Exp $ */
Damien Millere45796f2007-06-11 14:01:42 +10002/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
50
51/* ---------------------------------------------------------------------- */
52/* --- User Switches ---------------------------------------------------- */
53/* ---------------------------------------------------------------------- */
54
Darren Tucker992faad2012-10-05 11:38:24 +100055#ifndef UMAC_OUTPUT_LEN
Damien Millere45796f2007-06-11 14:01:42 +100056#define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
Darren Tucker992faad2012-10-05 11:38:24 +100057#endif
Darren Tucker50ce4472012-10-05 12:11:33 +100058
59#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62#endif
63
Damien Millere45796f2007-06-11 14:01:42 +100064/* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
65/* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
66/* #define SSE2 0 Is SSE2 is available? */
67/* #define RUN_TESTS 0 Run basic correctness/speed tests */
68/* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
69
70/* ---------------------------------------------------------------------- */
71/* -- Global Includes --------------------------------------------------- */
72/* ---------------------------------------------------------------------- */
73
74#include "includes.h"
75#include <sys/types.h>
76
Damien Miller83e04f22007-09-17 16:11:01 +100077#include "xmalloc.h"
Damien Millere45796f2007-06-11 14:01:42 +100078#include "umac.h"
79#include <string.h>
80#include <stdlib.h>
81#include <stddef.h>
82
83/* ---------------------------------------------------------------------- */
84/* --- Primitive Data Types --- */
85/* ---------------------------------------------------------------------- */
86
87/* The following assumptions may need change on your system */
88typedef u_int8_t UINT8; /* 1 byte */
89typedef u_int16_t UINT16; /* 2 byte */
90typedef u_int32_t UINT32; /* 4 byte */
91typedef u_int64_t UINT64; /* 8 bytes */
92typedef unsigned int UWORD; /* Register */
93
94/* ---------------------------------------------------------------------- */
95/* --- Constants -------------------------------------------------------- */
96/* ---------------------------------------------------------------------- */
97
98#define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
99
100/* Message "words" are read from memory in an endian-specific manner. */
101/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
102/* be set true if the host computer is little-endian. */
103
104#if BYTE_ORDER == LITTLE_ENDIAN
105#define __LITTLE_ENDIAN__ 1
106#else
107#define __LITTLE_ENDIAN__ 0
108#endif
109
110/* ---------------------------------------------------------------------- */
111/* ---------------------------------------------------------------------- */
112/* ----- Architecture Specific ------------------------------------------ */
113/* ---------------------------------------------------------------------- */
114/* ---------------------------------------------------------------------- */
115
116
117/* ---------------------------------------------------------------------- */
118/* ---------------------------------------------------------------------- */
119/* ----- Primitive Routines --------------------------------------------- */
120/* ---------------------------------------------------------------------- */
121/* ---------------------------------------------------------------------- */
122
123
124/* ---------------------------------------------------------------------- */
125/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
126/* ---------------------------------------------------------------------- */
127
128#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
129
130/* ---------------------------------------------------------------------- */
131/* --- Endian Conversion --- Forcing assembly on some platforms */
132/* ---------------------------------------------------------------------- */
133
Damien Miller34a17692007-06-11 14:15:42 +1000134#if HAVE_SWAP32
135#define LOAD_UINT32_REVERSED(p) (swap32(*(UINT32 *)(p)))
136#define STORE_UINT32_REVERSED(p,v) (*(UINT32 *)(p) = swap32(v))
137#else /* HAVE_SWAP32 */
138
Damien Millere45796f2007-06-11 14:01:42 +1000139static UINT32 LOAD_UINT32_REVERSED(void *ptr)
140{
141 UINT32 temp = *(UINT32 *)ptr;
142 temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
143 | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
144 return (UINT32)temp;
145}
146
Darren Tucker2c91b282008-06-13 12:40:55 +1000147# if (__LITTLE_ENDIAN__)
Damien Millere45796f2007-06-11 14:01:42 +1000148static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
149{
150 UINT32 i = (UINT32)x;
151 *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
152 | ((i & 0x0000FF00) << 8 ) | (i << 24);
153}
Darren Tucker2c91b282008-06-13 12:40:55 +1000154# endif /* __LITTLE_ENDIAN */
Damien Miller34a17692007-06-11 14:15:42 +1000155#endif /* HAVE_SWAP32 */
Damien Millere45796f2007-06-11 14:01:42 +1000156
157/* The following definitions use the above reversal-primitives to do the right
158 * thing on endian specific load and stores.
159 */
160
Damien Millere45796f2007-06-11 14:01:42 +1000161#if (__LITTLE_ENDIAN__)
162#define LOAD_UINT32_LITTLE(ptr) (*(UINT32 *)(ptr))
163#define STORE_UINT32_BIG(ptr,x) STORE_UINT32_REVERSED(ptr,x)
164#else
165#define LOAD_UINT32_LITTLE(ptr) LOAD_UINT32_REVERSED(ptr)
166#define STORE_UINT32_BIG(ptr,x) (*(UINT32 *)(ptr) = (UINT32)(x))
167#endif
168
Damien Millere45796f2007-06-11 14:01:42 +1000169/* ---------------------------------------------------------------------- */
170/* ---------------------------------------------------------------------- */
171/* ----- Begin KDF & PDF Section ---------------------------------------- */
172/* ---------------------------------------------------------------------- */
173/* ---------------------------------------------------------------------- */
174
175/* UMAC uses AES with 16 byte block and key lengths */
176#define AES_BLOCK_LEN 16
177
178/* OpenSSL's AES */
Darren Tuckercb520172007-06-14 23:21:32 +1000179#include "openbsd-compat/openssl-compat.h"
180#ifndef USE_BUILTIN_RIJNDAEL
181# include <openssl/aes.h>
182#endif
Damien Millere45796f2007-06-11 14:01:42 +1000183typedef AES_KEY aes_int_key[1];
184#define aes_encryption(in,out,int_key) \
185 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
186#define aes_key_setup(key,int_key) \
187 AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)
188
189/* The user-supplied UMAC key is stretched using AES in a counter
190 * mode to supply all random bits needed by UMAC. The kdf function takes
191 * an AES internal key representation 'key' and writes a stream of
Damien Miller36d70562008-07-14 12:04:43 +1000192 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
Damien Millere45796f2007-06-11 14:01:42 +1000193 * 'ndx' causes a distinct byte stream.
194 */
Damien Miller36d70562008-07-14 12:04:43 +1000195static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
Damien Millere45796f2007-06-11 14:01:42 +1000196{
197 UINT8 in_buf[AES_BLOCK_LEN] = {0};
198 UINT8 out_buf[AES_BLOCK_LEN];
Damien Miller36d70562008-07-14 12:04:43 +1000199 UINT8 *dst_buf = (UINT8 *)bufp;
Damien Millere45796f2007-06-11 14:01:42 +1000200 int i;
201
202 /* Setup the initial value */
203 in_buf[AES_BLOCK_LEN-9] = ndx;
204 in_buf[AES_BLOCK_LEN-1] = i = 1;
205
206 while (nbytes >= AES_BLOCK_LEN) {
207 aes_encryption(in_buf, out_buf, key);
208 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
209 in_buf[AES_BLOCK_LEN-1] = ++i;
210 nbytes -= AES_BLOCK_LEN;
211 dst_buf += AES_BLOCK_LEN;
212 }
213 if (nbytes) {
214 aes_encryption(in_buf, out_buf, key);
215 memcpy(dst_buf,out_buf,nbytes);
216 }
217}
218
219/* The final UHASH result is XOR'd with the output of a pseudorandom
220 * function. Here, we use AES to generate random output and
221 * xor the appropriate bytes depending on the last bits of nonce.
222 * This scheme is optimized for sequential, increasing big-endian nonces.
223 */
224
225typedef struct {
226 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
227 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
228 aes_int_key prf_key; /* Expanded AES key for PDF */
229} pdf_ctx;
230
231static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
232{
233 UINT8 buf[UMAC_KEY_LEN];
234
235 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
236 aes_key_setup(buf, pc->prf_key);
237
238 /* Initialize pdf and cache */
239 memset(pc->nonce, 0, sizeof(pc->nonce));
240 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
241}
242
243static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
244{
245 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
246 * of the AES output. If last time around we returned the ndx-1st
247 * element, then we may have the result in the cache already.
248 */
249
250#if (UMAC_OUTPUT_LEN == 4)
251#define LOW_BIT_MASK 3
252#elif (UMAC_OUTPUT_LEN == 8)
253#define LOW_BIT_MASK 1
254#elif (UMAC_OUTPUT_LEN > 8)
255#define LOW_BIT_MASK 0
256#endif
257
258 UINT8 tmp_nonce_lo[4];
259#if LOW_BIT_MASK != 0
260 int ndx = nonce[7] & LOW_BIT_MASK;
261#endif
262 *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
263 tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
264
265 if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
266 (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
267 {
268 ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
269 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
270 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
271 }
272
273#if (UMAC_OUTPUT_LEN == 4)
274 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
275#elif (UMAC_OUTPUT_LEN == 8)
276 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
277#elif (UMAC_OUTPUT_LEN == 12)
278 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
279 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
280#elif (UMAC_OUTPUT_LEN == 16)
281 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
282 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
283#endif
284}
285
286/* ---------------------------------------------------------------------- */
287/* ---------------------------------------------------------------------- */
288/* ----- Begin NH Hash Section ------------------------------------------ */
289/* ---------------------------------------------------------------------- */
290/* ---------------------------------------------------------------------- */
291
292/* The NH-based hash functions used in UMAC are described in the UMAC paper
293 * and specification, both of which can be found at the UMAC website.
294 * The interface to this implementation has two
295 * versions, one expects the entire message being hashed to be passed
296 * in a single buffer and returns the hash result immediately. The second
297 * allows the message to be passed in a sequence of buffers. In the
298 * muliple-buffer interface, the client calls the routine nh_update() as
299 * many times as necessary. When there is no more data to be fed to the
300 * hash, the client calls nh_final() which calculates the hash output.
301 * Before beginning another hash calculation the nh_reset() routine
302 * must be called. The single-buffer routine, nh(), is equivalent to
303 * the sequence of calls nh_update() and nh_final(); however it is
304 * optimized and should be prefered whenever the multiple-buffer interface
305 * is not necessary. When using either interface, it is the client's
306 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
307 *
308 * The routine nh_init() initializes the nh_ctx data structure and
309 * must be called once, before any other PDF routine.
310 */
311
312 /* The "nh_aux" routines do the actual NH hashing work. They
313 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
314 * produce output for all STREAMS NH iterations in one call,
315 * allowing the parallel implementation of the streams.
316 */
317
318#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
319#define L1_KEY_LEN 1024 /* Internal key bytes */
320#define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
321#define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
322#define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
323#define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
324
325typedef struct {
326 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
Darren Tucker8a057952011-11-04 10:53:31 +1100327 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
Damien Millere45796f2007-06-11 14:01:42 +1000328 int next_data_empty; /* Bookeeping variable for data buffer. */
329 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
330 UINT64 state[STREAMS]; /* on-line state */
331} nh_ctx;
332
333
334#if (UMAC_OUTPUT_LEN == 4)
335
336static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
337/* NH hashing primitive. Previous (partial) hash result is loaded and
338* then stored via hp pointer. The length of the data pointed at by "dp",
339* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
340* is expected to be endian compensated in memory at key setup.
341*/
342{
343 UINT64 h;
344 UWORD c = dlen / 32;
345 UINT32 *k = (UINT32 *)kp;
346 UINT32 *d = (UINT32 *)dp;
347 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
348 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
349
350 h = *((UINT64 *)hp);
351 do {
352 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
353 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
354 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
355 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
356 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
357 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
358 h += MUL64((k0 + d0), (k4 + d4));
359 h += MUL64((k1 + d1), (k5 + d5));
360 h += MUL64((k2 + d2), (k6 + d6));
361 h += MUL64((k3 + d3), (k7 + d7));
362
363 d += 8;
364 k += 8;
365 } while (--c);
366 *((UINT64 *)hp) = h;
367}
368
369#elif (UMAC_OUTPUT_LEN == 8)
370
371static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
372/* Same as previous nh_aux, but two streams are handled in one pass,
373 * reading and writing 16 bytes of hash-state per call.
374 */
375{
376 UINT64 h1,h2;
377 UWORD c = dlen / 32;
378 UINT32 *k = (UINT32 *)kp;
379 UINT32 *d = (UINT32 *)dp;
380 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
381 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
382 k8,k9,k10,k11;
383
384 h1 = *((UINT64 *)hp);
385 h2 = *((UINT64 *)hp + 1);
386 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
387 do {
388 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
389 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
390 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
391 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
392 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
393 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
394
395 h1 += MUL64((k0 + d0), (k4 + d4));
396 h2 += MUL64((k4 + d0), (k8 + d4));
397
398 h1 += MUL64((k1 + d1), (k5 + d5));
399 h2 += MUL64((k5 + d1), (k9 + d5));
400
401 h1 += MUL64((k2 + d2), (k6 + d6));
402 h2 += MUL64((k6 + d2), (k10 + d6));
403
404 h1 += MUL64((k3 + d3), (k7 + d7));
405 h2 += MUL64((k7 + d3), (k11 + d7));
406
407 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
408
409 d += 8;
410 k += 8;
411 } while (--c);
412 ((UINT64 *)hp)[0] = h1;
413 ((UINT64 *)hp)[1] = h2;
414}
415
416#elif (UMAC_OUTPUT_LEN == 12)
417
418static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
419/* Same as previous nh_aux, but two streams are handled in one pass,
420 * reading and writing 24 bytes of hash-state per call.
421*/
422{
423 UINT64 h1,h2,h3;
424 UWORD c = dlen / 32;
425 UINT32 *k = (UINT32 *)kp;
426 UINT32 *d = (UINT32 *)dp;
427 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
428 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
429 k8,k9,k10,k11,k12,k13,k14,k15;
430
431 h1 = *((UINT64 *)hp);
432 h2 = *((UINT64 *)hp + 1);
433 h3 = *((UINT64 *)hp + 2);
434 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
435 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
436 do {
437 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
438 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
439 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
440 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
441 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
442 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
443
444 h1 += MUL64((k0 + d0), (k4 + d4));
445 h2 += MUL64((k4 + d0), (k8 + d4));
446 h3 += MUL64((k8 + d0), (k12 + d4));
447
448 h1 += MUL64((k1 + d1), (k5 + d5));
449 h2 += MUL64((k5 + d1), (k9 + d5));
450 h3 += MUL64((k9 + d1), (k13 + d5));
451
452 h1 += MUL64((k2 + d2), (k6 + d6));
453 h2 += MUL64((k6 + d2), (k10 + d6));
454 h3 += MUL64((k10 + d2), (k14 + d6));
455
456 h1 += MUL64((k3 + d3), (k7 + d7));
457 h2 += MUL64((k7 + d3), (k11 + d7));
458 h3 += MUL64((k11 + d3), (k15 + d7));
459
460 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
461 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
462
463 d += 8;
464 k += 8;
465 } while (--c);
466 ((UINT64 *)hp)[0] = h1;
467 ((UINT64 *)hp)[1] = h2;
468 ((UINT64 *)hp)[2] = h3;
469}
470
471#elif (UMAC_OUTPUT_LEN == 16)
472
473static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
474/* Same as previous nh_aux, but two streams are handled in one pass,
475 * reading and writing 24 bytes of hash-state per call.
476*/
477{
478 UINT64 h1,h2,h3,h4;
479 UWORD c = dlen / 32;
480 UINT32 *k = (UINT32 *)kp;
481 UINT32 *d = (UINT32 *)dp;
482 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
483 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
484 k8,k9,k10,k11,k12,k13,k14,k15,
485 k16,k17,k18,k19;
486
487 h1 = *((UINT64 *)hp);
488 h2 = *((UINT64 *)hp + 1);
489 h3 = *((UINT64 *)hp + 2);
490 h4 = *((UINT64 *)hp + 3);
491 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
492 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
493 do {
494 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
495 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
496 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
497 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
498 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
499 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
500 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
501
502 h1 += MUL64((k0 + d0), (k4 + d4));
503 h2 += MUL64((k4 + d0), (k8 + d4));
504 h3 += MUL64((k8 + d0), (k12 + d4));
505 h4 += MUL64((k12 + d0), (k16 + d4));
506
507 h1 += MUL64((k1 + d1), (k5 + d5));
508 h2 += MUL64((k5 + d1), (k9 + d5));
509 h3 += MUL64((k9 + d1), (k13 + d5));
510 h4 += MUL64((k13 + d1), (k17 + d5));
511
512 h1 += MUL64((k2 + d2), (k6 + d6));
513 h2 += MUL64((k6 + d2), (k10 + d6));
514 h3 += MUL64((k10 + d2), (k14 + d6));
515 h4 += MUL64((k14 + d2), (k18 + d6));
516
517 h1 += MUL64((k3 + d3), (k7 + d7));
518 h2 += MUL64((k7 + d3), (k11 + d7));
519 h3 += MUL64((k11 + d3), (k15 + d7));
520 h4 += MUL64((k15 + d3), (k19 + d7));
521
522 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
523 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
524 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
525
526 d += 8;
527 k += 8;
528 } while (--c);
529 ((UINT64 *)hp)[0] = h1;
530 ((UINT64 *)hp)[1] = h2;
531 ((UINT64 *)hp)[2] = h3;
532 ((UINT64 *)hp)[3] = h4;
533}
534
535/* ---------------------------------------------------------------------- */
536#endif /* UMAC_OUTPUT_LENGTH */
537/* ---------------------------------------------------------------------- */
538
539
540/* ---------------------------------------------------------------------- */
541
542static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
543/* This function is a wrapper for the primitive NH hash functions. It takes
544 * as argument "hc" the current hash context and a buffer which must be a
545 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
546 * appropriately according to how much message has been hashed already.
547 */
548{
549 UINT8 *key;
550
551 key = hc->nh_key + hc->bytes_hashed;
552 nh_aux(key, buf, hc->state, nbytes);
553}
554
555/* ---------------------------------------------------------------------- */
556
Darren Tucker2c91b282008-06-13 12:40:55 +1000557#if (__LITTLE_ENDIAN__)
Damien Millere45796f2007-06-11 14:01:42 +1000558static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
559/* We endian convert the keys on little-endian computers to */
560/* compensate for the lack of big-endian memory reads during hashing. */
561{
562 UWORD iters = num_bytes / bpw;
563 if (bpw == 4) {
564 UINT32 *p = (UINT32 *)buf;
565 do {
566 *p = LOAD_UINT32_REVERSED(p);
567 p++;
568 } while (--iters);
569 } else if (bpw == 8) {
570 UINT32 *p = (UINT32 *)buf;
571 UINT32 t;
572 do {
573 t = LOAD_UINT32_REVERSED(p+1);
574 p[1] = LOAD_UINT32_REVERSED(p);
575 p[0] = t;
576 p += 2;
577 } while (--iters);
578 }
579}
Damien Millere45796f2007-06-11 14:01:42 +1000580#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
581#else
582#define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
583#endif
584
585/* ---------------------------------------------------------------------- */
586
587static void nh_reset(nh_ctx *hc)
588/* Reset nh_ctx to ready for hashing of new data */
589{
590 hc->bytes_hashed = 0;
591 hc->next_data_empty = 0;
592 hc->state[0] = 0;
593#if (UMAC_OUTPUT_LEN >= 8)
594 hc->state[1] = 0;
595#endif
596#if (UMAC_OUTPUT_LEN >= 12)
597 hc->state[2] = 0;
598#endif
599#if (UMAC_OUTPUT_LEN == 16)
600 hc->state[3] = 0;
601#endif
602
603}
604
605/* ---------------------------------------------------------------------- */
606
607static void nh_init(nh_ctx *hc, aes_int_key prf_key)
608/* Generate nh_key, endian convert and reset to be ready for hashing. */
609{
610 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
611 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
612 nh_reset(hc);
613}
614
615/* ---------------------------------------------------------------------- */
616
617static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
618/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
619/* even multiple of HASH_BUF_BYTES. */
620{
621 UINT32 i,j;
622
623 j = hc->next_data_empty;
624 if ((j + nbytes) >= HASH_BUF_BYTES) {
625 if (j) {
626 i = HASH_BUF_BYTES - j;
627 memcpy(hc->data+j, buf, i);
628 nh_transform(hc,hc->data,HASH_BUF_BYTES);
629 nbytes -= i;
630 buf += i;
631 hc->bytes_hashed += HASH_BUF_BYTES;
632 }
633 if (nbytes >= HASH_BUF_BYTES) {
634 i = nbytes & ~(HASH_BUF_BYTES - 1);
635 nh_transform(hc, buf, i);
636 nbytes -= i;
637 buf += i;
638 hc->bytes_hashed += i;
639 }
640 j = 0;
641 }
642 memcpy(hc->data + j, buf, nbytes);
643 hc->next_data_empty = j + nbytes;
644}
645
646/* ---------------------------------------------------------------------- */
647
648static void zero_pad(UINT8 *p, int nbytes)
649{
650/* Write "nbytes" of zeroes, beginning at "p" */
651 if (nbytes >= (int)sizeof(UWORD)) {
652 while ((ptrdiff_t)p % sizeof(UWORD)) {
653 *p = 0;
654 nbytes--;
655 p++;
656 }
657 while (nbytes >= (int)sizeof(UWORD)) {
658 *(UWORD *)p = 0;
659 nbytes -= sizeof(UWORD);
660 p += sizeof(UWORD);
661 }
662 }
663 while (nbytes) {
664 *p = 0;
665 nbytes--;
666 p++;
667 }
668}
669
670/* ---------------------------------------------------------------------- */
671
672static void nh_final(nh_ctx *hc, UINT8 *result)
673/* After passing some number of data buffers to nh_update() for integration
674 * into an NH context, nh_final is called to produce a hash result. If any
675 * bytes are in the buffer hc->data, incorporate them into the
676 * NH context. Finally, add into the NH accumulation "state" the total number
677 * of bits hashed. The resulting numbers are written to the buffer "result".
678 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
679 */
680{
681 int nh_len, nbits;
682
683 if (hc->next_data_empty != 0) {
684 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
685 ~(L1_PAD_BOUNDARY - 1));
686 zero_pad(hc->data + hc->next_data_empty,
687 nh_len - hc->next_data_empty);
688 nh_transform(hc, hc->data, nh_len);
689 hc->bytes_hashed += hc->next_data_empty;
690 } else if (hc->bytes_hashed == 0) {
691 nh_len = L1_PAD_BOUNDARY;
692 zero_pad(hc->data, L1_PAD_BOUNDARY);
693 nh_transform(hc, hc->data, nh_len);
694 }
695
696 nbits = (hc->bytes_hashed << 3);
697 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
698#if (UMAC_OUTPUT_LEN >= 8)
699 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
700#endif
701#if (UMAC_OUTPUT_LEN >= 12)
702 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
703#endif
704#if (UMAC_OUTPUT_LEN == 16)
705 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
706#endif
707 nh_reset(hc);
708}
709
710/* ---------------------------------------------------------------------- */
711
712static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
713 UINT32 unpadded_len, UINT8 *result)
714/* All-in-one nh_update() and nh_final() equivalent.
715 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
716 * well aligned
717 */
718{
719 UINT32 nbits;
720
721 /* Initialize the hash state */
722 nbits = (unpadded_len << 3);
723
724 ((UINT64 *)result)[0] = nbits;
725#if (UMAC_OUTPUT_LEN >= 8)
726 ((UINT64 *)result)[1] = nbits;
727#endif
728#if (UMAC_OUTPUT_LEN >= 12)
729 ((UINT64 *)result)[2] = nbits;
730#endif
731#if (UMAC_OUTPUT_LEN == 16)
732 ((UINT64 *)result)[3] = nbits;
733#endif
734
735 nh_aux(hc->nh_key, buf, result, padded_len);
736}
737
738/* ---------------------------------------------------------------------- */
739/* ---------------------------------------------------------------------- */
740/* ----- Begin UHASH Section -------------------------------------------- */
741/* ---------------------------------------------------------------------- */
742/* ---------------------------------------------------------------------- */
743
744/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
745 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
746 * unless the initial data to be hashed is short. After the polynomial-
747 * layer, an inner-product hash is used to produce the final UHASH output.
748 *
749 * UHASH provides two interfaces, one all-at-once and another where data
750 * buffers are presented sequentially. In the sequential interface, the
751 * UHASH client calls the routine uhash_update() as many times as necessary.
752 * When there is no more data to be fed to UHASH, the client calls
753 * uhash_final() which
754 * calculates the UHASH output. Before beginning another UHASH calculation
755 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
756 * uhash(), is equivalent to the sequence of calls uhash_update() and
757 * uhash_final(); however it is optimized and should be
758 * used whenever the sequential interface is not necessary.
759 *
760 * The routine uhash_init() initializes the uhash_ctx data structure and
761 * must be called once, before any other UHASH routine.
762 */
763
764/* ---------------------------------------------------------------------- */
765/* ----- Constants and uhash_ctx ---------------------------------------- */
766/* ---------------------------------------------------------------------- */
767
768/* ---------------------------------------------------------------------- */
769/* ----- Poly hash and Inner-Product hash Constants --------------------- */
770/* ---------------------------------------------------------------------- */
771
772/* Primes and masks */
773#define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
774#define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
775#define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
776
777
778/* ---------------------------------------------------------------------- */
779
780typedef struct uhash_ctx {
781 nh_ctx hash; /* Hash context for L1 NH hash */
782 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
783 UINT64 poly_accum[STREAMS]; /* poly hash result */
784 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
785 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
786 UINT32 msg_len; /* Total length of data passed */
787 /* to uhash */
788} uhash_ctx;
789typedef struct uhash_ctx *uhash_ctx_t;
790
791/* ---------------------------------------------------------------------- */
792
793
794/* The polynomial hashes use Horner's rule to evaluate a polynomial one
795 * word at a time. As described in the specification, poly32 and poly64
796 * require keys from special domains. The following implementations exploit
797 * the special domains to avoid overflow. The results are not guaranteed to
798 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
799 * patches any errant values.
800 */
801
802static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
803{
804 UINT32 key_hi = (UINT32)(key >> 32),
805 key_lo = (UINT32)key,
806 cur_hi = (UINT32)(cur >> 32),
807 cur_lo = (UINT32)cur,
808 x_lo,
809 x_hi;
810 UINT64 X,T,res;
811
812 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
813 x_lo = (UINT32)X;
814 x_hi = (UINT32)(X >> 32);
815
816 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
817
818 T = ((UINT64)x_lo << 32);
819 res += T;
820 if (res < T)
821 res += 59;
822
823 res += data;
824 if (res < data)
825 res += 59;
826
827 return res;
828}
829
830
831/* Although UMAC is specified to use a ramped polynomial hash scheme, this
832 * implementation does not handle all ramp levels. Because we don't handle
833 * the ramp up to p128 modulus in this implementation, we are limited to
834 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
835 * bytes input to UMAC per tag, ie. 16MB).
836 */
837static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
838{
839 int i;
840 UINT64 *data=(UINT64*)data_in;
841
842 for (i = 0; i < STREAMS; i++) {
843 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
844 hc->poly_accum[i] = poly64(hc->poly_accum[i],
845 hc->poly_key_8[i], p64 - 1);
846 hc->poly_accum[i] = poly64(hc->poly_accum[i],
847 hc->poly_key_8[i], (data[i] - 59));
848 } else {
849 hc->poly_accum[i] = poly64(hc->poly_accum[i],
850 hc->poly_key_8[i], data[i]);
851 }
852 }
853}
854
855
856/* ---------------------------------------------------------------------- */
857
858
859/* The final step in UHASH is an inner-product hash. The poly hash
860 * produces a result not neccesarily WORD_LEN bytes long. The inner-
861 * product hash breaks the polyhash output into 16-bit chunks and
862 * multiplies each with a 36 bit key.
863 */
864
865static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
866{
867 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
868 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
869 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
870 t = t + ipkp[3] * (UINT64)(UINT16)(data);
871
872 return t;
873}
874
875static UINT32 ip_reduce_p36(UINT64 t)
876{
877/* Divisionless modular reduction */
878 UINT64 ret;
879
880 ret = (t & m36) + 5 * (t >> 36);
881 if (ret >= p36)
882 ret -= p36;
883
884 /* return least significant 32 bits */
885 return (UINT32)(ret);
886}
887
888
889/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
890 * the polyhash stage is skipped and ip_short is applied directly to the
891 * NH output.
892 */
893static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
894{
895 UINT64 t;
896 UINT64 *nhp = (UINT64 *)nh_res;
897
898 t = ip_aux(0,ahc->ip_keys, nhp[0]);
899 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
900#if (UMAC_OUTPUT_LEN >= 8)
901 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
902 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
903#endif
904#if (UMAC_OUTPUT_LEN >= 12)
905 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
906 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
907#endif
908#if (UMAC_OUTPUT_LEN == 16)
909 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
910 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
911#endif
912}
913
914/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
915 * the polyhash stage is not skipped and ip_long is applied to the
916 * polyhash output.
917 */
918static void ip_long(uhash_ctx_t ahc, u_char *res)
919{
920 int i;
921 UINT64 t;
922
923 for (i = 0; i < STREAMS; i++) {
924 /* fix polyhash output not in Z_p64 */
925 if (ahc->poly_accum[i] >= p64)
926 ahc->poly_accum[i] -= p64;
927 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
928 STORE_UINT32_BIG((UINT32 *)res+i,
929 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
930 }
931}
932
933
934/* ---------------------------------------------------------------------- */
935
936/* ---------------------------------------------------------------------- */
937
938/* Reset uhash context for next hash session */
939static int uhash_reset(uhash_ctx_t pc)
940{
941 nh_reset(&pc->hash);
942 pc->msg_len = 0;
943 pc->poly_accum[0] = 1;
944#if (UMAC_OUTPUT_LEN >= 8)
945 pc->poly_accum[1] = 1;
946#endif
947#if (UMAC_OUTPUT_LEN >= 12)
948 pc->poly_accum[2] = 1;
949#endif
950#if (UMAC_OUTPUT_LEN == 16)
951 pc->poly_accum[3] = 1;
952#endif
953 return 1;
954}
955
956/* ---------------------------------------------------------------------- */
957
958/* Given a pointer to the internal key needed by kdf() and a uhash context,
959 * initialize the NH context and generate keys needed for poly and inner-
960 * product hashing. All keys are endian adjusted in memory so that native
961 * loads cause correct keys to be in registers during calculation.
962 */
963static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
964{
965 int i;
966 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
967
968 /* Zero the entire uhash context */
969 memset(ahc, 0, sizeof(uhash_ctx));
970
971 /* Initialize the L1 hash */
972 nh_init(&ahc->hash, prf_key);
973
974 /* Setup L2 hash variables */
975 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
976 for (i = 0; i < STREAMS; i++) {
977 /* Fill keys from the buffer, skipping bytes in the buffer not
978 * used by this implementation. Endian reverse the keys if on a
979 * little-endian computer.
980 */
981 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
982 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
983 /* Mask the 64-bit keys to their special domain */
984 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
985 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
986 }
987
988 /* Setup L3-1 hash variables */
989 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
990 for (i = 0; i < STREAMS; i++)
991 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
992 4*sizeof(UINT64));
993 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
994 sizeof(ahc->ip_keys));
995 for (i = 0; i < STREAMS*4; i++)
996 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
997
998 /* Setup L3-2 hash variables */
999 /* Fill buffer with index 4 key */
1000 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
1001 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
1002 STREAMS * sizeof(UINT32));
1003}
1004
1005/* ---------------------------------------------------------------------- */
1006
1007#if 0
1008static uhash_ctx_t uhash_alloc(u_char key[])
1009{
1010/* Allocate memory and force to a 16-byte boundary. */
1011 uhash_ctx_t ctx;
1012 u_char bytes_to_add;
1013 aes_int_key prf_key;
1014
1015 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1016 if (ctx) {
1017 if (ALLOC_BOUNDARY) {
1018 bytes_to_add = ALLOC_BOUNDARY -
1019 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1020 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1021 *((u_char *)ctx - 1) = bytes_to_add;
1022 }
1023 aes_key_setup(key,prf_key);
1024 uhash_init(ctx, prf_key);
1025 }
1026 return (ctx);
1027}
1028#endif
1029
1030/* ---------------------------------------------------------------------- */
1031
1032#if 0
1033static int uhash_free(uhash_ctx_t ctx)
1034{
1035/* Free memory allocated by uhash_alloc */
1036 u_char bytes_to_sub;
1037
1038 if (ctx) {
1039 if (ALLOC_BOUNDARY) {
1040 bytes_to_sub = *((u_char *)ctx - 1);
1041 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1042 }
1043 free(ctx);
1044 }
1045 return (1);
1046}
1047#endif
1048/* ---------------------------------------------------------------------- */
1049
1050static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
1051/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1052 * hash each one with NH, calling the polyhash on each NH output.
1053 */
1054{
1055 UWORD bytes_hashed, bytes_remaining;
Damien Miller0f30c872008-05-19 16:07:45 +10001056 UINT64 result_buf[STREAMS];
1057 UINT8 *nh_result = (UINT8 *)&result_buf;
Damien Millere45796f2007-06-11 14:01:42 +10001058
1059 if (ctx->msg_len + len <= L1_KEY_LEN) {
1060 nh_update(&ctx->hash, (UINT8 *)input, len);
1061 ctx->msg_len += len;
1062 } else {
1063
1064 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1065 if (ctx->msg_len == L1_KEY_LEN)
1066 bytes_hashed = L1_KEY_LEN;
1067
1068 if (bytes_hashed + len >= L1_KEY_LEN) {
1069
1070 /* If some bytes have been passed to the hash function */
1071 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1072 /* bytes to complete the current nh_block. */
1073 if (bytes_hashed) {
1074 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1075 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
1076 nh_final(&ctx->hash, nh_result);
1077 ctx->msg_len += bytes_remaining;
1078 poly_hash(ctx,(UINT32 *)nh_result);
1079 len -= bytes_remaining;
1080 input += bytes_remaining;
1081 }
1082
1083 /* Hash directly from input stream if enough bytes */
1084 while (len >= L1_KEY_LEN) {
1085 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
1086 L1_KEY_LEN, nh_result);
1087 ctx->msg_len += L1_KEY_LEN;
1088 len -= L1_KEY_LEN;
1089 input += L1_KEY_LEN;
1090 poly_hash(ctx,(UINT32 *)nh_result);
1091 }
1092 }
1093
1094 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1095 if (len) {
1096 nh_update(&ctx->hash, (UINT8 *)input, len);
1097 ctx->msg_len += len;
1098 }
1099 }
1100
1101 return (1);
1102}
1103
1104/* ---------------------------------------------------------------------- */
1105
1106static int uhash_final(uhash_ctx_t ctx, u_char *res)
1107/* Incorporate any pending data, pad, and generate tag */
1108{
Damien Miller0f30c872008-05-19 16:07:45 +10001109 UINT64 result_buf[STREAMS];
1110 UINT8 *nh_result = (UINT8 *)&result_buf;
Damien Millere45796f2007-06-11 14:01:42 +10001111
1112 if (ctx->msg_len > L1_KEY_LEN) {
1113 if (ctx->msg_len % L1_KEY_LEN) {
1114 nh_final(&ctx->hash, nh_result);
1115 poly_hash(ctx,(UINT32 *)nh_result);
1116 }
1117 ip_long(ctx, res);
1118 } else {
1119 nh_final(&ctx->hash, nh_result);
1120 ip_short(ctx,nh_result, res);
1121 }
1122 uhash_reset(ctx);
1123 return (1);
1124}
1125
1126/* ---------------------------------------------------------------------- */
1127
1128#if 0
1129static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1130/* assumes that msg is in a writable buffer of length divisible by */
1131/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1132{
1133 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1134 UINT32 nh_len;
1135 int extra_zeroes_needed;
1136
1137 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1138 * the polyhash.
1139 */
1140 if (len <= L1_KEY_LEN) {
1141 if (len == 0) /* If zero length messages will not */
1142 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1143 else
1144 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1145 extra_zeroes_needed = nh_len - len;
1146 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1147 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1148 ip_short(ahc,nh_result, res);
1149 } else {
1150 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1151 * output to poly_hash().
1152 */
1153 do {
1154 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1155 poly_hash(ahc,(UINT32 *)nh_result);
1156 len -= L1_KEY_LEN;
1157 msg += L1_KEY_LEN;
1158 } while (len >= L1_KEY_LEN);
1159 if (len) {
1160 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1161 extra_zeroes_needed = nh_len - len;
1162 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1163 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1164 poly_hash(ahc,(UINT32 *)nh_result);
1165 }
1166
1167 ip_long(ahc, res);
1168 }
1169
1170 uhash_reset(ahc);
1171 return 1;
1172}
1173#endif
1174
1175/* ---------------------------------------------------------------------- */
1176/* ---------------------------------------------------------------------- */
1177/* ----- Begin UMAC Section --------------------------------------------- */
1178/* ---------------------------------------------------------------------- */
1179/* ---------------------------------------------------------------------- */
1180
1181/* The UMAC interface has two interfaces, an all-at-once interface where
1182 * the entire message to be authenticated is passed to UMAC in one buffer,
1183 * and a sequential interface where the message is presented a little at a
1184 * time. The all-at-once is more optimaized than the sequential version and
1185 * should be preferred when the sequential interface is not required.
1186 */
1187struct umac_ctx {
1188 uhash_ctx hash; /* Hash function for message compression */
1189 pdf_ctx pdf; /* PDF for hashed output */
1190 void *free_ptr; /* Address to free this struct via */
1191} umac_ctx;
1192
1193/* ---------------------------------------------------------------------- */
1194
1195#if 0
1196int umac_reset(struct umac_ctx *ctx)
1197/* Reset the hash function to begin a new authentication. */
1198{
1199 uhash_reset(&ctx->hash);
1200 return (1);
1201}
1202#endif
1203
1204/* ---------------------------------------------------------------------- */
1205
1206int umac_delete(struct umac_ctx *ctx)
1207/* Deallocate the ctx structure */
1208{
1209 if (ctx) {
1210 if (ALLOC_BOUNDARY)
1211 ctx = (struct umac_ctx *)ctx->free_ptr;
Damien Miller83e04f22007-09-17 16:11:01 +10001212 xfree(ctx);
Damien Millere45796f2007-06-11 14:01:42 +10001213 }
1214 return (1);
1215}
1216
1217/* ---------------------------------------------------------------------- */
1218
1219struct umac_ctx *umac_new(u_char key[])
1220/* Dynamically allocate a umac_ctx struct, initialize variables,
1221 * generate subkeys from key. Align to 16-byte boundary.
1222 */
1223{
1224 struct umac_ctx *ctx, *octx;
1225 size_t bytes_to_add;
1226 aes_int_key prf_key;
1227
Damien Miller83e04f22007-09-17 16:11:01 +10001228 octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY);
Damien Millere45796f2007-06-11 14:01:42 +10001229 if (ctx) {
1230 if (ALLOC_BOUNDARY) {
1231 bytes_to_add = ALLOC_BOUNDARY -
1232 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1233 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1234 }
1235 ctx->free_ptr = octx;
1236 aes_key_setup(key,prf_key);
1237 pdf_init(&ctx->pdf, prf_key);
1238 uhash_init(&ctx->hash, prf_key);
1239 }
1240
1241 return (ctx);
1242}
1243
1244/* ---------------------------------------------------------------------- */
1245
1246int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
1247/* Incorporate any pending data, pad, and generate tag */
1248{
1249 uhash_final(&ctx->hash, (u_char *)tag);
1250 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1251
1252 return (1);
1253}
1254
1255/* ---------------------------------------------------------------------- */
1256
1257int umac_update(struct umac_ctx *ctx, u_char *input, long len)
1258/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1259/* hash each one, calling the PDF on the hashed output whenever the hash- */
1260/* output buffer is full. */
1261{
1262 uhash_update(&ctx->hash, input, len);
1263 return (1);
1264}
1265
1266/* ---------------------------------------------------------------------- */
1267
1268#if 0
1269int umac(struct umac_ctx *ctx, u_char *input,
1270 long len, u_char tag[],
1271 u_char nonce[8])
1272/* All-in-one version simply calls umac_update() and umac_final(). */
1273{
1274 uhash(&ctx->hash, input, len, (u_char *)tag);
1275 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1276
1277 return (1);
1278}
1279#endif
1280
1281/* ---------------------------------------------------------------------- */
1282/* ---------------------------------------------------------------------- */
1283/* ----- End UMAC Section ----------------------------------------------- */
1284/* ---------------------------------------------------------------------- */
1285/* ---------------------------------------------------------------------- */