markus@openbsd.org | cb1f944 | 2018-03-22 07:06:11 +0000 | [diff] [blame] | 1 | /* $OpenBSD: xmss_fast.c,v 1.3 2018/03/22 07:06:11 markus Exp $ */ |
markus@openbsd.org | 1b11ea7 | 2018-02-23 15:58:37 +0000 | [diff] [blame] | 2 | /* |
| 3 | xmss_fast.c version 20160722 |
| 4 | Andreas Hülsing |
| 5 | Joost Rijneveld |
| 6 | Public domain. |
| 7 | */ |
| 8 | |
Damien Miller | f885474 | 2018-02-26 12:18:14 +1100 | [diff] [blame] | 9 | #include "includes.h" |
Darren Tucker | 941e0d3 | 2018-02-28 19:59:35 +1100 | [diff] [blame] | 10 | #ifdef WITH_XMSS |
Damien Miller | f885474 | 2018-02-26 12:18:14 +1100 | [diff] [blame] | 11 | |
markus@openbsd.org | 1b11ea7 | 2018-02-23 15:58:37 +0000 | [diff] [blame] | 12 | #include <stdlib.h> |
| 13 | #include <string.h> |
Darren Tucker | c7ef4a3 | 2018-02-26 17:42:56 +1100 | [diff] [blame] | 14 | #ifdef HAVE_STDINT_H |
Damien Miller | cfc1897 | 2019-10-09 09:06:35 +1100 | [diff] [blame] | 15 | # include <stdint.h> |
Darren Tucker | c7ef4a3 | 2018-02-26 17:42:56 +1100 | [diff] [blame] | 16 | #endif |
markus@openbsd.org | 1b11ea7 | 2018-02-23 15:58:37 +0000 | [diff] [blame] | 17 | |
markus@openbsd.org | cb1f944 | 2018-03-22 07:06:11 +0000 | [diff] [blame] | 18 | #include "xmss_fast.h" |
markus@openbsd.org | 1b11ea7 | 2018-02-23 15:58:37 +0000 | [diff] [blame] | 19 | #include "crypto_api.h" |
| 20 | #include "xmss_wots.h" |
| 21 | #include "xmss_hash.h" |
| 22 | |
| 23 | #include "xmss_commons.h" |
| 24 | #include "xmss_hash_address.h" |
| 25 | // For testing |
| 26 | #include "stdio.h" |
| 27 | |
| 28 | |
| 29 | |
| 30 | /** |
| 31 | * Used for pseudorandom keygeneration, |
| 32 | * generates the seed for the WOTS keypair at address addr |
| 33 | * |
| 34 | * takes n byte sk_seed and returns n byte seed using 32 byte address addr. |
| 35 | */ |
| 36 | static void get_seed(unsigned char *seed, const unsigned char *sk_seed, int n, uint32_t addr[8]) |
| 37 | { |
| 38 | unsigned char bytes[32]; |
| 39 | // Make sure that chain addr, hash addr, and key bit are 0! |
| 40 | setChainADRS(addr,0); |
| 41 | setHashADRS(addr,0); |
| 42 | setKeyAndMask(addr,0); |
| 43 | // Generate pseudorandom value |
| 44 | addr_to_byte(bytes, addr); |
| 45 | prf(seed, bytes, sk_seed, n); |
| 46 | } |
| 47 | |
| 48 | /** |
| 49 | * Initialize xmss params struct |
| 50 | * parameter names are the same as in the draft |
| 51 | * parameter k is K as used in the BDS algorithm |
| 52 | */ |
| 53 | int xmss_set_params(xmss_params *params, int n, int h, int w, int k) |
| 54 | { |
| 55 | if (k >= h || k < 2 || (h - k) % 2) { |
| 56 | fprintf(stderr, "For BDS traversal, H - K must be even, with H > K >= 2!\n"); |
| 57 | return 1; |
| 58 | } |
| 59 | params->h = h; |
| 60 | params->n = n; |
| 61 | params->k = k; |
| 62 | wots_params wots_par; |
| 63 | wots_set_params(&wots_par, n, w); |
| 64 | params->wots_par = wots_par; |
| 65 | return 0; |
| 66 | } |
| 67 | |
| 68 | /** |
| 69 | * Initialize BDS state struct |
| 70 | * parameter names are the same as used in the description of the BDS traversal |
| 71 | */ |
| 72 | void xmss_set_bds_state(bds_state *state, unsigned char *stack, int stackoffset, unsigned char *stacklevels, unsigned char *auth, unsigned char *keep, treehash_inst *treehash, unsigned char *retain, int next_leaf) |
| 73 | { |
| 74 | state->stack = stack; |
| 75 | state->stackoffset = stackoffset; |
| 76 | state->stacklevels = stacklevels; |
| 77 | state->auth = auth; |
| 78 | state->keep = keep; |
| 79 | state->treehash = treehash; |
| 80 | state->retain = retain; |
| 81 | state->next_leaf = next_leaf; |
| 82 | } |
| 83 | |
| 84 | /** |
| 85 | * Initialize xmssmt_params struct |
| 86 | * parameter names are the same as in the draft |
| 87 | * |
| 88 | * Especially h is the total tree height, i.e. the XMSS trees have height h/d |
| 89 | */ |
| 90 | int xmssmt_set_params(xmssmt_params *params, int n, int h, int d, int w, int k) |
| 91 | { |
| 92 | if (h % d) { |
| 93 | fprintf(stderr, "d must divide h without remainder!\n"); |
| 94 | return 1; |
| 95 | } |
| 96 | params->h = h; |
| 97 | params->d = d; |
| 98 | params->n = n; |
| 99 | params->index_len = (h + 7) / 8; |
| 100 | xmss_params xmss_par; |
| 101 | if (xmss_set_params(&xmss_par, n, (h/d), w, k)) { |
| 102 | return 1; |
| 103 | } |
| 104 | params->xmss_par = xmss_par; |
| 105 | return 0; |
| 106 | } |
| 107 | |
| 108 | /** |
| 109 | * Computes a leaf from a WOTS public key using an L-tree. |
| 110 | */ |
| 111 | static void l_tree(unsigned char *leaf, unsigned char *wots_pk, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8]) |
| 112 | { |
| 113 | unsigned int l = params->wots_par.len; |
| 114 | unsigned int n = params->n; |
| 115 | uint32_t i = 0; |
| 116 | uint32_t height = 0; |
| 117 | uint32_t bound; |
| 118 | |
| 119 | //ADRS.setTreeHeight(0); |
| 120 | setTreeHeight(addr, height); |
| 121 | |
| 122 | while (l > 1) { |
| 123 | bound = l >> 1; //floor(l / 2); |
| 124 | for (i = 0; i < bound; i++) { |
| 125 | //ADRS.setTreeIndex(i); |
| 126 | setTreeIndex(addr, i); |
| 127 | //wots_pk[i] = RAND_HASH(pk[2i], pk[2i + 1], SEED, ADRS); |
| 128 | hash_h(wots_pk+i*n, wots_pk+i*2*n, pub_seed, addr, n); |
| 129 | } |
| 130 | //if ( l % 2 == 1 ) { |
| 131 | if (l & 1) { |
| 132 | //pk[floor(l / 2) + 1] = pk[l]; |
| 133 | memcpy(wots_pk+(l>>1)*n, wots_pk+(l-1)*n, n); |
| 134 | //l = ceil(l / 2); |
| 135 | l=(l>>1)+1; |
| 136 | } |
| 137 | else { |
| 138 | //l = ceil(l / 2); |
| 139 | l=(l>>1); |
| 140 | } |
| 141 | //ADRS.setTreeHeight(ADRS.getTreeHeight() + 1); |
| 142 | height++; |
| 143 | setTreeHeight(addr, height); |
| 144 | } |
| 145 | //return pk[0]; |
| 146 | memcpy(leaf, wots_pk, n); |
| 147 | } |
| 148 | |
| 149 | /** |
| 150 | * Computes the leaf at a given address. First generates the WOTS key pair, then computes leaf using l_tree. As this happens position independent, we only require that addr encodes the right ltree-address. |
| 151 | */ |
| 152 | static void gen_leaf_wots(unsigned char *leaf, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, uint32_t ltree_addr[8], uint32_t ots_addr[8]) |
| 153 | { |
| 154 | unsigned char seed[params->n]; |
| 155 | unsigned char pk[params->wots_par.keysize]; |
| 156 | |
| 157 | get_seed(seed, sk_seed, params->n, ots_addr); |
| 158 | wots_pkgen(pk, seed, &(params->wots_par), pub_seed, ots_addr); |
| 159 | |
| 160 | l_tree(leaf, pk, params, pub_seed, ltree_addr); |
| 161 | } |
| 162 | |
| 163 | static int treehash_minheight_on_stack(bds_state* state, const xmss_params *params, const treehash_inst *treehash) { |
| 164 | unsigned int r = params->h, i; |
| 165 | for (i = 0; i < treehash->stackusage; i++) { |
| 166 | if (state->stacklevels[state->stackoffset - i - 1] < r) { |
| 167 | r = state->stacklevels[state->stackoffset - i - 1]; |
| 168 | } |
| 169 | } |
| 170 | return r; |
| 171 | } |
| 172 | |
| 173 | /** |
| 174 | * Merkle's TreeHash algorithm. The address only needs to initialize the first 78 bits of addr. Everything else will be set by treehash. |
| 175 | * Currently only used for key generation. |
| 176 | * |
| 177 | */ |
| 178 | static void treehash_setup(unsigned char *node, int height, int index, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) |
| 179 | { |
| 180 | unsigned int idx = index; |
| 181 | unsigned int n = params->n; |
| 182 | unsigned int h = params->h; |
| 183 | unsigned int k = params->k; |
| 184 | // use three different addresses because at this point we use all three formats in parallel |
| 185 | uint32_t ots_addr[8]; |
| 186 | uint32_t ltree_addr[8]; |
| 187 | uint32_t node_addr[8]; |
| 188 | // only copy layer and tree address parts |
| 189 | memcpy(ots_addr, addr, 12); |
| 190 | // type = ots |
| 191 | setType(ots_addr, 0); |
| 192 | memcpy(ltree_addr, addr, 12); |
| 193 | setType(ltree_addr, 1); |
| 194 | memcpy(node_addr, addr, 12); |
| 195 | setType(node_addr, 2); |
| 196 | |
| 197 | uint32_t lastnode, i; |
| 198 | unsigned char stack[(height+1)*n]; |
| 199 | unsigned int stacklevels[height+1]; |
| 200 | unsigned int stackoffset=0; |
| 201 | unsigned int nodeh; |
| 202 | |
| 203 | lastnode = idx+(1<<height); |
| 204 | |
| 205 | for (i = 0; i < h-k; i++) { |
| 206 | state->treehash[i].h = i; |
| 207 | state->treehash[i].completed = 1; |
| 208 | state->treehash[i].stackusage = 0; |
| 209 | } |
| 210 | |
| 211 | i = 0; |
| 212 | for (; idx < lastnode; idx++) { |
| 213 | setLtreeADRS(ltree_addr, idx); |
| 214 | setOTSADRS(ots_addr, idx); |
| 215 | gen_leaf_wots(stack+stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); |
| 216 | stacklevels[stackoffset] = 0; |
| 217 | stackoffset++; |
| 218 | if (h - k > 0 && i == 3) { |
| 219 | memcpy(state->treehash[0].node, stack+stackoffset*n, n); |
| 220 | } |
| 221 | while (stackoffset>1 && stacklevels[stackoffset-1] == stacklevels[stackoffset-2]) |
| 222 | { |
| 223 | nodeh = stacklevels[stackoffset-1]; |
| 224 | if (i >> nodeh == 1) { |
| 225 | memcpy(state->auth + nodeh*n, stack+(stackoffset-1)*n, n); |
| 226 | } |
| 227 | else { |
| 228 | if (nodeh < h - k && i >> nodeh == 3) { |
| 229 | memcpy(state->treehash[nodeh].node, stack+(stackoffset-1)*n, n); |
| 230 | } |
| 231 | else if (nodeh >= h - k) { |
| 232 | memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((i >> nodeh) - 3) >> 1)) * n, stack+(stackoffset-1)*n, n); |
| 233 | } |
| 234 | } |
| 235 | setTreeHeight(node_addr, stacklevels[stackoffset-1]); |
| 236 | setTreeIndex(node_addr, (idx >> (stacklevels[stackoffset-1]+1))); |
| 237 | hash_h(stack+(stackoffset-2)*n, stack+(stackoffset-2)*n, pub_seed, |
| 238 | node_addr, n); |
| 239 | stacklevels[stackoffset-2]++; |
| 240 | stackoffset--; |
| 241 | } |
| 242 | i++; |
| 243 | } |
| 244 | |
| 245 | for (i = 0; i < n; i++) |
| 246 | node[i] = stack[i]; |
| 247 | } |
| 248 | |
| 249 | static void treehash_update(treehash_inst *treehash, bds_state *state, const unsigned char *sk_seed, const xmss_params *params, const unsigned char *pub_seed, const uint32_t addr[8]) { |
| 250 | int n = params->n; |
| 251 | |
| 252 | uint32_t ots_addr[8]; |
| 253 | uint32_t ltree_addr[8]; |
| 254 | uint32_t node_addr[8]; |
| 255 | // only copy layer and tree address parts |
| 256 | memcpy(ots_addr, addr, 12); |
| 257 | // type = ots |
| 258 | setType(ots_addr, 0); |
| 259 | memcpy(ltree_addr, addr, 12); |
| 260 | setType(ltree_addr, 1); |
| 261 | memcpy(node_addr, addr, 12); |
| 262 | setType(node_addr, 2); |
| 263 | |
| 264 | setLtreeADRS(ltree_addr, treehash->next_idx); |
| 265 | setOTSADRS(ots_addr, treehash->next_idx); |
| 266 | |
| 267 | unsigned char nodebuffer[2 * n]; |
| 268 | unsigned int nodeheight = 0; |
| 269 | gen_leaf_wots(nodebuffer, sk_seed, params, pub_seed, ltree_addr, ots_addr); |
| 270 | while (treehash->stackusage > 0 && state->stacklevels[state->stackoffset-1] == nodeheight) { |
| 271 | memcpy(nodebuffer + n, nodebuffer, n); |
| 272 | memcpy(nodebuffer, state->stack + (state->stackoffset-1)*n, n); |
| 273 | setTreeHeight(node_addr, nodeheight); |
| 274 | setTreeIndex(node_addr, (treehash->next_idx >> (nodeheight+1))); |
| 275 | hash_h(nodebuffer, nodebuffer, pub_seed, node_addr, n); |
| 276 | nodeheight++; |
| 277 | treehash->stackusage--; |
| 278 | state->stackoffset--; |
| 279 | } |
| 280 | if (nodeheight == treehash->h) { // this also implies stackusage == 0 |
| 281 | memcpy(treehash->node, nodebuffer, n); |
| 282 | treehash->completed = 1; |
| 283 | } |
| 284 | else { |
| 285 | memcpy(state->stack + state->stackoffset*n, nodebuffer, n); |
| 286 | treehash->stackusage++; |
| 287 | state->stacklevels[state->stackoffset] = nodeheight; |
| 288 | state->stackoffset++; |
| 289 | treehash->next_idx++; |
| 290 | } |
| 291 | } |
| 292 | |
| 293 | /** |
| 294 | * Computes a root node given a leaf and an authapth |
| 295 | */ |
| 296 | static void validate_authpath(unsigned char *root, const unsigned char *leaf, unsigned long leafidx, const unsigned char *authpath, const xmss_params *params, const unsigned char *pub_seed, uint32_t addr[8]) |
| 297 | { |
| 298 | unsigned int n = params->n; |
| 299 | |
| 300 | uint32_t i, j; |
| 301 | unsigned char buffer[2*n]; |
| 302 | |
| 303 | // If leafidx is odd (last bit = 1), current path element is a right child and authpath has to go to the left. |
| 304 | // Otherwise, it is the other way around |
| 305 | if (leafidx & 1) { |
| 306 | for (j = 0; j < n; j++) |
| 307 | buffer[n+j] = leaf[j]; |
| 308 | for (j = 0; j < n; j++) |
| 309 | buffer[j] = authpath[j]; |
| 310 | } |
| 311 | else { |
| 312 | for (j = 0; j < n; j++) |
| 313 | buffer[j] = leaf[j]; |
| 314 | for (j = 0; j < n; j++) |
| 315 | buffer[n+j] = authpath[j]; |
| 316 | } |
| 317 | authpath += n; |
| 318 | |
| 319 | for (i=0; i < params->h-1; i++) { |
| 320 | setTreeHeight(addr, i); |
| 321 | leafidx >>= 1; |
| 322 | setTreeIndex(addr, leafidx); |
| 323 | if (leafidx&1) { |
| 324 | hash_h(buffer+n, buffer, pub_seed, addr, n); |
| 325 | for (j = 0; j < n; j++) |
| 326 | buffer[j] = authpath[j]; |
| 327 | } |
| 328 | else { |
| 329 | hash_h(buffer, buffer, pub_seed, addr, n); |
| 330 | for (j = 0; j < n; j++) |
| 331 | buffer[j+n] = authpath[j]; |
| 332 | } |
| 333 | authpath += n; |
| 334 | } |
| 335 | setTreeHeight(addr, (params->h-1)); |
| 336 | leafidx >>= 1; |
| 337 | setTreeIndex(addr, leafidx); |
| 338 | hash_h(root, buffer, pub_seed, addr, n); |
| 339 | } |
| 340 | |
| 341 | /** |
| 342 | * Performs one treehash update on the instance that needs it the most. |
| 343 | * Returns 1 if such an instance was not found |
| 344 | **/ |
| 345 | static char bds_treehash_update(bds_state *state, unsigned int updates, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { |
| 346 | uint32_t i, j; |
| 347 | unsigned int level, l_min, low; |
| 348 | unsigned int h = params->h; |
| 349 | unsigned int k = params->k; |
| 350 | unsigned int used = 0; |
| 351 | |
| 352 | for (j = 0; j < updates; j++) { |
| 353 | l_min = h; |
| 354 | level = h - k; |
| 355 | for (i = 0; i < h - k; i++) { |
| 356 | if (state->treehash[i].completed) { |
| 357 | low = h; |
| 358 | } |
| 359 | else if (state->treehash[i].stackusage == 0) { |
| 360 | low = i; |
| 361 | } |
| 362 | else { |
| 363 | low = treehash_minheight_on_stack(state, params, &(state->treehash[i])); |
| 364 | } |
| 365 | if (low < l_min) { |
| 366 | level = i; |
| 367 | l_min = low; |
| 368 | } |
| 369 | } |
| 370 | if (level == h - k) { |
| 371 | break; |
| 372 | } |
| 373 | treehash_update(&(state->treehash[level]), state, sk_seed, params, pub_seed, addr); |
| 374 | used++; |
| 375 | } |
| 376 | return updates - used; |
| 377 | } |
| 378 | |
| 379 | /** |
| 380 | * Updates the state (typically NEXT_i) by adding a leaf and updating the stack |
| 381 | * Returns 1 if all leaf nodes have already been processed |
| 382 | **/ |
| 383 | static char bds_state_update(bds_state *state, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, const uint32_t addr[8]) { |
| 384 | uint32_t ltree_addr[8]; |
| 385 | uint32_t node_addr[8]; |
| 386 | uint32_t ots_addr[8]; |
| 387 | |
| 388 | int n = params->n; |
| 389 | int h = params->h; |
| 390 | int k = params->k; |
| 391 | |
| 392 | int nodeh; |
| 393 | int idx = state->next_leaf; |
| 394 | if (idx == 1 << h) { |
| 395 | return 1; |
| 396 | } |
| 397 | |
| 398 | // only copy layer and tree address parts |
| 399 | memcpy(ots_addr, addr, 12); |
| 400 | // type = ots |
| 401 | setType(ots_addr, 0); |
| 402 | memcpy(ltree_addr, addr, 12); |
| 403 | setType(ltree_addr, 1); |
| 404 | memcpy(node_addr, addr, 12); |
| 405 | setType(node_addr, 2); |
| 406 | |
| 407 | setOTSADRS(ots_addr, idx); |
| 408 | setLtreeADRS(ltree_addr, idx); |
| 409 | |
| 410 | gen_leaf_wots(state->stack+state->stackoffset*n, sk_seed, params, pub_seed, ltree_addr, ots_addr); |
| 411 | |
| 412 | state->stacklevels[state->stackoffset] = 0; |
| 413 | state->stackoffset++; |
| 414 | if (h - k > 0 && idx == 3) { |
| 415 | memcpy(state->treehash[0].node, state->stack+state->stackoffset*n, n); |
| 416 | } |
| 417 | while (state->stackoffset>1 && state->stacklevels[state->stackoffset-1] == state->stacklevels[state->stackoffset-2]) { |
| 418 | nodeh = state->stacklevels[state->stackoffset-1]; |
| 419 | if (idx >> nodeh == 1) { |
| 420 | memcpy(state->auth + nodeh*n, state->stack+(state->stackoffset-1)*n, n); |
| 421 | } |
| 422 | else { |
| 423 | if (nodeh < h - k && idx >> nodeh == 3) { |
| 424 | memcpy(state->treehash[nodeh].node, state->stack+(state->stackoffset-1)*n, n); |
| 425 | } |
| 426 | else if (nodeh >= h - k) { |
| 427 | memcpy(state->retain + ((1 << (h - 1 - nodeh)) + nodeh - h + (((idx >> nodeh) - 3) >> 1)) * n, state->stack+(state->stackoffset-1)*n, n); |
| 428 | } |
| 429 | } |
| 430 | setTreeHeight(node_addr, state->stacklevels[state->stackoffset-1]); |
| 431 | setTreeIndex(node_addr, (idx >> (state->stacklevels[state->stackoffset-1]+1))); |
| 432 | hash_h(state->stack+(state->stackoffset-2)*n, state->stack+(state->stackoffset-2)*n, pub_seed, node_addr, n); |
| 433 | |
| 434 | state->stacklevels[state->stackoffset-2]++; |
| 435 | state->stackoffset--; |
| 436 | } |
| 437 | state->next_leaf++; |
| 438 | return 0; |
| 439 | } |
| 440 | |
| 441 | /** |
| 442 | * Returns the auth path for node leaf_idx and computes the auth path for the |
| 443 | * next leaf node, using the algorithm described by Buchmann, Dahmen and Szydlo |
| 444 | * in "Post Quantum Cryptography", Springer 2009. |
| 445 | */ |
| 446 | static void bds_round(bds_state *state, const unsigned long leaf_idx, const unsigned char *sk_seed, const xmss_params *params, unsigned char *pub_seed, uint32_t addr[8]) |
| 447 | { |
| 448 | unsigned int i; |
| 449 | unsigned int n = params->n; |
| 450 | unsigned int h = params->h; |
| 451 | unsigned int k = params->k; |
| 452 | |
| 453 | unsigned int tau = h; |
| 454 | unsigned int startidx; |
| 455 | unsigned int offset, rowidx; |
| 456 | unsigned char buf[2 * n]; |
| 457 | |
| 458 | uint32_t ots_addr[8]; |
| 459 | uint32_t ltree_addr[8]; |
| 460 | uint32_t node_addr[8]; |
| 461 | // only copy layer and tree address parts |
| 462 | memcpy(ots_addr, addr, 12); |
| 463 | // type = ots |
| 464 | setType(ots_addr, 0); |
| 465 | memcpy(ltree_addr, addr, 12); |
| 466 | setType(ltree_addr, 1); |
| 467 | memcpy(node_addr, addr, 12); |
| 468 | setType(node_addr, 2); |
| 469 | |
| 470 | for (i = 0; i < h; i++) { |
| 471 | if (! ((leaf_idx >> i) & 1)) { |
| 472 | tau = i; |
| 473 | break; |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | if (tau > 0) { |
| 478 | memcpy(buf, state->auth + (tau-1) * n, n); |
| 479 | // we need to do this before refreshing state->keep to prevent overwriting |
| 480 | memcpy(buf + n, state->keep + ((tau-1) >> 1) * n, n); |
| 481 | } |
| 482 | if (!((leaf_idx >> (tau + 1)) & 1) && (tau < h - 1)) { |
| 483 | memcpy(state->keep + (tau >> 1)*n, state->auth + tau*n, n); |
| 484 | } |
| 485 | if (tau == 0) { |
| 486 | setLtreeADRS(ltree_addr, leaf_idx); |
| 487 | setOTSADRS(ots_addr, leaf_idx); |
| 488 | gen_leaf_wots(state->auth, sk_seed, params, pub_seed, ltree_addr, ots_addr); |
| 489 | } |
| 490 | else { |
| 491 | setTreeHeight(node_addr, (tau-1)); |
| 492 | setTreeIndex(node_addr, leaf_idx >> tau); |
| 493 | hash_h(state->auth + tau * n, buf, pub_seed, node_addr, n); |
| 494 | for (i = 0; i < tau; i++) { |
| 495 | if (i < h - k) { |
| 496 | memcpy(state->auth + i * n, state->treehash[i].node, n); |
| 497 | } |
| 498 | else { |
| 499 | offset = (1 << (h - 1 - i)) + i - h; |
| 500 | rowidx = ((leaf_idx >> i) - 1) >> 1; |
| 501 | memcpy(state->auth + i * n, state->retain + (offset + rowidx) * n, n); |
| 502 | } |
| 503 | } |
| 504 | |
| 505 | for (i = 0; i < ((tau < h - k) ? tau : (h - k)); i++) { |
| 506 | startidx = leaf_idx + 1 + 3 * (1 << i); |
| 507 | if (startidx < 1U << h) { |
| 508 | state->treehash[i].h = i; |
| 509 | state->treehash[i].next_idx = startidx; |
| 510 | state->treehash[i].completed = 0; |
| 511 | state->treehash[i].stackusage = 0; |
| 512 | } |
| 513 | } |
| 514 | } |
| 515 | } |
| 516 | |
| 517 | /* |
| 518 | * Generates a XMSS key pair for a given parameter set. |
| 519 | * Format sk: [(32bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] |
| 520 | * Format pk: [root || PUB_SEED] omitting algo oid. |
| 521 | */ |
| 522 | int xmss_keypair(unsigned char *pk, unsigned char *sk, bds_state *state, xmss_params *params) |
| 523 | { |
| 524 | unsigned int n = params->n; |
| 525 | // Set idx = 0 |
| 526 | sk[0] = 0; |
| 527 | sk[1] = 0; |
| 528 | sk[2] = 0; |
| 529 | sk[3] = 0; |
| 530 | // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) |
| 531 | randombytes(sk+4, 3*n); |
| 532 | // Copy PUB_SEED to public key |
| 533 | memcpy(pk+n, sk+4+2*n, n); |
| 534 | |
| 535 | uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 536 | |
| 537 | // Compute root |
| 538 | treehash_setup(pk, params->h, 0, state, sk+4, params, sk+4+2*n, addr); |
| 539 | // copy root to sk |
| 540 | memcpy(sk+4+3*n, pk, n); |
| 541 | return 0; |
| 542 | } |
| 543 | |
| 544 | /** |
| 545 | * Signs a message. |
| 546 | * Returns |
| 547 | * 1. an array containing the signature followed by the message AND |
| 548 | * 2. an updated secret key! |
| 549 | * |
| 550 | */ |
| 551 | int xmss_sign(unsigned char *sk, bds_state *state, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmss_params *params) |
| 552 | { |
| 553 | unsigned int h = params->h; |
| 554 | unsigned int n = params->n; |
| 555 | unsigned int k = params->k; |
| 556 | uint16_t i = 0; |
| 557 | |
| 558 | // Extract SK |
| 559 | unsigned long idx = ((unsigned long)sk[0] << 24) | ((unsigned long)sk[1] << 16) | ((unsigned long)sk[2] << 8) | sk[3]; |
| 560 | unsigned char sk_seed[n]; |
| 561 | memcpy(sk_seed, sk+4, n); |
| 562 | unsigned char sk_prf[n]; |
| 563 | memcpy(sk_prf, sk+4+n, n); |
| 564 | unsigned char pub_seed[n]; |
| 565 | memcpy(pub_seed, sk+4+2*n, n); |
| 566 | |
| 567 | // index as 32 bytes string |
| 568 | unsigned char idx_bytes_32[32]; |
| 569 | to_byte(idx_bytes_32, idx, 32); |
| 570 | |
| 571 | unsigned char hash_key[3*n]; |
| 572 | |
| 573 | // Update SK |
| 574 | sk[0] = ((idx + 1) >> 24) & 255; |
| 575 | sk[1] = ((idx + 1) >> 16) & 255; |
| 576 | sk[2] = ((idx + 1) >> 8) & 255; |
| 577 | sk[3] = (idx + 1) & 255; |
| 578 | // -- Secret key for this non-forward-secure version is now updated. |
| 579 | // -- A productive implementation should use a file handle instead and write the updated secret key at this point! |
| 580 | |
| 581 | // Init working params |
| 582 | unsigned char R[n]; |
| 583 | unsigned char msg_h[n]; |
| 584 | unsigned char ots_seed[n]; |
| 585 | uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 586 | |
| 587 | // --------------------------------- |
| 588 | // Message Hashing |
| 589 | // --------------------------------- |
| 590 | |
| 591 | // Message Hash: |
| 592 | // First compute pseudorandom value |
| 593 | prf(R, idx_bytes_32, sk_prf, n); |
| 594 | // Generate hash key (R || root || idx) |
| 595 | memcpy(hash_key, R, n); |
| 596 | memcpy(hash_key+n, sk+4+3*n, n); |
| 597 | to_byte(hash_key+2*n, idx, n); |
| 598 | // Then use it for message digest |
| 599 | h_msg(msg_h, msg, msglen, hash_key, 3*n, n); |
| 600 | |
| 601 | // Start collecting signature |
| 602 | *sig_msg_len = 0; |
| 603 | |
| 604 | // Copy index to signature |
| 605 | sig_msg[0] = (idx >> 24) & 255; |
| 606 | sig_msg[1] = (idx >> 16) & 255; |
| 607 | sig_msg[2] = (idx >> 8) & 255; |
| 608 | sig_msg[3] = idx & 255; |
| 609 | |
| 610 | sig_msg += 4; |
| 611 | *sig_msg_len += 4; |
| 612 | |
| 613 | // Copy R to signature |
| 614 | for (i = 0; i < n; i++) |
| 615 | sig_msg[i] = R[i]; |
| 616 | |
| 617 | sig_msg += n; |
| 618 | *sig_msg_len += n; |
| 619 | |
| 620 | // ---------------------------------- |
| 621 | // Now we start to "really sign" |
| 622 | // ---------------------------------- |
| 623 | |
| 624 | // Prepare Address |
| 625 | setType(ots_addr, 0); |
| 626 | setOTSADRS(ots_addr, idx); |
| 627 | |
| 628 | // Compute seed for OTS key pair |
| 629 | get_seed(ots_seed, sk_seed, n, ots_addr); |
| 630 | |
| 631 | // Compute WOTS signature |
| 632 | wots_sign(sig_msg, msg_h, ots_seed, &(params->wots_par), pub_seed, ots_addr); |
| 633 | |
| 634 | sig_msg += params->wots_par.keysize; |
| 635 | *sig_msg_len += params->wots_par.keysize; |
| 636 | |
| 637 | // the auth path was already computed during the previous round |
| 638 | memcpy(sig_msg, state->auth, h*n); |
| 639 | |
| 640 | if (idx < (1U << h) - 1) { |
| 641 | bds_round(state, idx, sk_seed, params, pub_seed, ots_addr); |
| 642 | bds_treehash_update(state, (h - k) >> 1, sk_seed, params, pub_seed, ots_addr); |
| 643 | } |
| 644 | |
| 645 | /* TODO: save key/bds state here! */ |
| 646 | |
| 647 | sig_msg += params->h*n; |
| 648 | *sig_msg_len += params->h*n; |
| 649 | |
| 650 | //Whipe secret elements? |
| 651 | //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); |
| 652 | |
| 653 | |
| 654 | memcpy(sig_msg, msg, msglen); |
| 655 | *sig_msg_len += msglen; |
| 656 | |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | /** |
| 661 | * Verifies a given message signature pair under a given public key. |
| 662 | */ |
| 663 | int xmss_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmss_params *params) |
| 664 | { |
| 665 | unsigned int n = params->n; |
| 666 | |
| 667 | unsigned long long i, m_len; |
| 668 | unsigned long idx=0; |
| 669 | unsigned char wots_pk[params->wots_par.keysize]; |
| 670 | unsigned char pkhash[n]; |
| 671 | unsigned char root[n]; |
| 672 | unsigned char msg_h[n]; |
| 673 | unsigned char hash_key[3*n]; |
| 674 | |
| 675 | unsigned char pub_seed[n]; |
| 676 | memcpy(pub_seed, pk+n, n); |
| 677 | |
| 678 | // Init addresses |
| 679 | uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 680 | uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 681 | uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 682 | |
| 683 | setType(ots_addr, 0); |
| 684 | setType(ltree_addr, 1); |
| 685 | setType(node_addr, 2); |
| 686 | |
| 687 | // Extract index |
| 688 | idx = ((unsigned long)sig_msg[0] << 24) | ((unsigned long)sig_msg[1] << 16) | ((unsigned long)sig_msg[2] << 8) | sig_msg[3]; |
| 689 | printf("verify:: idx = %lu\n", idx); |
| 690 | |
| 691 | // Generate hash key (R || root || idx) |
| 692 | memcpy(hash_key, sig_msg+4,n); |
| 693 | memcpy(hash_key+n, pk, n); |
| 694 | to_byte(hash_key+2*n, idx, n); |
| 695 | |
| 696 | sig_msg += (n+4); |
| 697 | sig_msg_len -= (n+4); |
| 698 | |
| 699 | // hash message |
| 700 | unsigned long long tmp_sig_len = params->wots_par.keysize+params->h*n; |
| 701 | m_len = sig_msg_len - tmp_sig_len; |
| 702 | h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n); |
| 703 | |
| 704 | //----------------------- |
| 705 | // Verify signature |
| 706 | //----------------------- |
| 707 | |
| 708 | // Prepare Address |
| 709 | setOTSADRS(ots_addr, idx); |
| 710 | // Check WOTS signature |
| 711 | wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->wots_par), pub_seed, ots_addr); |
| 712 | |
| 713 | sig_msg += params->wots_par.keysize; |
| 714 | sig_msg_len -= params->wots_par.keysize; |
| 715 | |
| 716 | // Compute Ltree |
| 717 | setLtreeADRS(ltree_addr, idx); |
| 718 | l_tree(pkhash, wots_pk, params, pub_seed, ltree_addr); |
| 719 | |
| 720 | // Compute root |
| 721 | validate_authpath(root, pkhash, idx, sig_msg, params, pub_seed, node_addr); |
| 722 | |
| 723 | sig_msg += params->h*n; |
| 724 | sig_msg_len -= params->h*n; |
| 725 | |
| 726 | for (i = 0; i < n; i++) |
| 727 | if (root[i] != pk[i]) |
| 728 | goto fail; |
| 729 | |
| 730 | *msglen = sig_msg_len; |
| 731 | for (i = 0; i < *msglen; i++) |
| 732 | msg[i] = sig_msg[i]; |
| 733 | |
| 734 | return 0; |
| 735 | |
| 736 | |
| 737 | fail: |
| 738 | *msglen = sig_msg_len; |
| 739 | for (i = 0; i < *msglen; i++) |
| 740 | msg[i] = 0; |
| 741 | *msglen = -1; |
| 742 | return -1; |
| 743 | } |
| 744 | |
| 745 | /* |
| 746 | * Generates a XMSSMT key pair for a given parameter set. |
| 747 | * Format sk: [(ceil(h/8) bit) idx || SK_SEED || SK_PRF || PUB_SEED || root] |
| 748 | * Format pk: [root || PUB_SEED] omitting algo oid. |
| 749 | */ |
| 750 | int xmssmt_keypair(unsigned char *pk, unsigned char *sk, bds_state *states, unsigned char *wots_sigs, xmssmt_params *params) |
| 751 | { |
| 752 | unsigned int n = params->n; |
| 753 | unsigned int i; |
| 754 | unsigned char ots_seed[params->n]; |
| 755 | // Set idx = 0 |
| 756 | for (i = 0; i < params->index_len; i++) { |
| 757 | sk[i] = 0; |
| 758 | } |
| 759 | // Init SK_SEED (n byte), SK_PRF (n byte), and PUB_SEED (n byte) |
| 760 | randombytes(sk+params->index_len, 3*n); |
| 761 | // Copy PUB_SEED to public key |
| 762 | memcpy(pk+n, sk+params->index_len+2*n, n); |
| 763 | |
| 764 | // Set address to point on the single tree on layer d-1 |
| 765 | uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 766 | setLayerADRS(addr, (params->d-1)); |
| 767 | // Set up state and compute wots signatures for all but topmost tree root |
| 768 | for (i = 0; i < params->d - 1; i++) { |
| 769 | // Compute seed for OTS key pair |
| 770 | treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); |
| 771 | setLayerADRS(addr, (i+1)); |
| 772 | get_seed(ots_seed, sk+params->index_len, n, addr); |
| 773 | wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, pk, ots_seed, &(params->xmss_par.wots_par), pk+n, addr); |
| 774 | } |
| 775 | treehash_setup(pk, params->xmss_par.h, 0, states + i, sk+params->index_len, &(params->xmss_par), pk+n, addr); |
| 776 | memcpy(sk+params->index_len+3*n, pk, n); |
| 777 | return 0; |
| 778 | } |
| 779 | |
| 780 | /** |
| 781 | * Signs a message. |
| 782 | * Returns |
| 783 | * 1. an array containing the signature followed by the message AND |
| 784 | * 2. an updated secret key! |
| 785 | * |
| 786 | */ |
| 787 | int xmssmt_sign(unsigned char *sk, bds_state *states, unsigned char *wots_sigs, unsigned char *sig_msg, unsigned long long *sig_msg_len, const unsigned char *msg, unsigned long long msglen, const xmssmt_params *params) |
| 788 | { |
| 789 | unsigned int n = params->n; |
| 790 | |
| 791 | unsigned int tree_h = params->xmss_par.h; |
| 792 | unsigned int h = params->h; |
| 793 | unsigned int k = params->xmss_par.k; |
| 794 | unsigned int idx_len = params->index_len; |
| 795 | uint64_t idx_tree; |
| 796 | uint32_t idx_leaf; |
| 797 | uint64_t i, j; |
| 798 | int needswap_upto = -1; |
| 799 | unsigned int updates; |
| 800 | |
| 801 | unsigned char sk_seed[n]; |
| 802 | unsigned char sk_prf[n]; |
| 803 | unsigned char pub_seed[n]; |
| 804 | // Init working params |
| 805 | unsigned char R[n]; |
| 806 | unsigned char msg_h[n]; |
| 807 | unsigned char hash_key[3*n]; |
| 808 | unsigned char ots_seed[n]; |
| 809 | uint32_t addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 810 | uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 811 | unsigned char idx_bytes_32[32]; |
| 812 | bds_state tmp; |
| 813 | |
| 814 | // Extract SK |
| 815 | unsigned long long idx = 0; |
| 816 | for (i = 0; i < idx_len; i++) { |
| 817 | idx |= ((unsigned long long)sk[i]) << 8*(idx_len - 1 - i); |
| 818 | } |
| 819 | |
| 820 | memcpy(sk_seed, sk+idx_len, n); |
| 821 | memcpy(sk_prf, sk+idx_len+n, n); |
| 822 | memcpy(pub_seed, sk+idx_len+2*n, n); |
| 823 | |
| 824 | // Update SK |
| 825 | for (i = 0; i < idx_len; i++) { |
| 826 | sk[i] = ((idx + 1) >> 8*(idx_len - 1 - i)) & 255; |
| 827 | } |
| 828 | // -- Secret key for this non-forward-secure version is now updated. |
| 829 | // -- A productive implementation should use a file handle instead and write the updated secret key at this point! |
| 830 | |
| 831 | |
| 832 | // --------------------------------- |
| 833 | // Message Hashing |
| 834 | // --------------------------------- |
| 835 | |
| 836 | // Message Hash: |
| 837 | // First compute pseudorandom value |
| 838 | to_byte(idx_bytes_32, idx, 32); |
| 839 | prf(R, idx_bytes_32, sk_prf, n); |
| 840 | // Generate hash key (R || root || idx) |
| 841 | memcpy(hash_key, R, n); |
| 842 | memcpy(hash_key+n, sk+idx_len+3*n, n); |
| 843 | to_byte(hash_key+2*n, idx, n); |
| 844 | |
| 845 | // Then use it for message digest |
| 846 | h_msg(msg_h, msg, msglen, hash_key, 3*n, n); |
| 847 | |
| 848 | // Start collecting signature |
| 849 | *sig_msg_len = 0; |
| 850 | |
| 851 | // Copy index to signature |
| 852 | for (i = 0; i < idx_len; i++) { |
| 853 | sig_msg[i] = (idx >> 8*(idx_len - 1 - i)) & 255; |
| 854 | } |
| 855 | |
| 856 | sig_msg += idx_len; |
| 857 | *sig_msg_len += idx_len; |
| 858 | |
| 859 | // Copy R to signature |
| 860 | for (i = 0; i < n; i++) |
| 861 | sig_msg[i] = R[i]; |
| 862 | |
| 863 | sig_msg += n; |
| 864 | *sig_msg_len += n; |
| 865 | |
| 866 | // ---------------------------------- |
| 867 | // Now we start to "really sign" |
| 868 | // ---------------------------------- |
| 869 | |
| 870 | // Handle lowest layer separately as it is slightly different... |
| 871 | |
| 872 | // Prepare Address |
| 873 | setType(ots_addr, 0); |
| 874 | idx_tree = idx >> tree_h; |
| 875 | idx_leaf = (idx & ((1 << tree_h)-1)); |
| 876 | setLayerADRS(ots_addr, 0); |
| 877 | setTreeADRS(ots_addr, idx_tree); |
| 878 | setOTSADRS(ots_addr, idx_leaf); |
| 879 | |
| 880 | // Compute seed for OTS key pair |
| 881 | get_seed(ots_seed, sk_seed, n, ots_addr); |
| 882 | |
| 883 | // Compute WOTS signature |
| 884 | wots_sign(sig_msg, msg_h, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); |
| 885 | |
| 886 | sig_msg += params->xmss_par.wots_par.keysize; |
| 887 | *sig_msg_len += params->xmss_par.wots_par.keysize; |
| 888 | |
| 889 | memcpy(sig_msg, states[0].auth, tree_h*n); |
| 890 | sig_msg += tree_h*n; |
| 891 | *sig_msg_len += tree_h*n; |
| 892 | |
| 893 | // prepare signature of remaining layers |
| 894 | for (i = 1; i < params->d; i++) { |
| 895 | // put WOTS signature in place |
| 896 | memcpy(sig_msg, wots_sigs + (i-1)*params->xmss_par.wots_par.keysize, params->xmss_par.wots_par.keysize); |
| 897 | |
| 898 | sig_msg += params->xmss_par.wots_par.keysize; |
| 899 | *sig_msg_len += params->xmss_par.wots_par.keysize; |
| 900 | |
| 901 | // put AUTH nodes in place |
| 902 | memcpy(sig_msg, states[i].auth, tree_h*n); |
| 903 | sig_msg += tree_h*n; |
| 904 | *sig_msg_len += tree_h*n; |
| 905 | } |
| 906 | |
| 907 | updates = (tree_h - k) >> 1; |
| 908 | |
| 909 | setTreeADRS(addr, (idx_tree + 1)); |
| 910 | // mandatory update for NEXT_0 (does not count towards h-k/2) if NEXT_0 exists |
| 911 | if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << h)) { |
| 912 | bds_state_update(&states[params->d], sk_seed, &(params->xmss_par), pub_seed, addr); |
| 913 | } |
| 914 | |
| 915 | for (i = 0; i < params->d; i++) { |
| 916 | // check if we're not at the end of a tree |
| 917 | if (! (((idx + 1) & ((1ULL << ((i+1)*tree_h)) - 1)) == 0)) { |
| 918 | idx_leaf = (idx >> (tree_h * i)) & ((1 << tree_h)-1); |
| 919 | idx_tree = (idx >> (tree_h * (i+1))); |
| 920 | setLayerADRS(addr, i); |
| 921 | setTreeADRS(addr, idx_tree); |
| 922 | if (i == (unsigned int) (needswap_upto + 1)) { |
| 923 | bds_round(&states[i], idx_leaf, sk_seed, &(params->xmss_par), pub_seed, addr); |
| 924 | } |
| 925 | updates = bds_treehash_update(&states[i], updates, sk_seed, &(params->xmss_par), pub_seed, addr); |
| 926 | setTreeADRS(addr, (idx_tree + 1)); |
| 927 | // if a NEXT-tree exists for this level; |
| 928 | if ((1 + idx_tree) * (1 << tree_h) + idx_leaf < (1ULL << (h - tree_h * i))) { |
| 929 | if (i > 0 && updates > 0 && states[params->d + i].next_leaf < (1ULL << h)) { |
| 930 | bds_state_update(&states[params->d + i], sk_seed, &(params->xmss_par), pub_seed, addr); |
| 931 | updates--; |
| 932 | } |
| 933 | } |
| 934 | } |
| 935 | else if (idx < (1ULL << h) - 1) { |
| 936 | memcpy(&tmp, states+params->d + i, sizeof(bds_state)); |
| 937 | memcpy(states+params->d + i, states + i, sizeof(bds_state)); |
| 938 | memcpy(states + i, &tmp, sizeof(bds_state)); |
| 939 | |
| 940 | setLayerADRS(ots_addr, (i+1)); |
| 941 | setTreeADRS(ots_addr, ((idx + 1) >> ((i+2) * tree_h))); |
| 942 | setOTSADRS(ots_addr, (((idx >> ((i+1) * tree_h)) + 1) & ((1 << tree_h)-1))); |
| 943 | |
| 944 | get_seed(ots_seed, sk+params->index_len, n, ots_addr); |
| 945 | wots_sign(wots_sigs + i*params->xmss_par.wots_par.keysize, states[i].stack, ots_seed, &(params->xmss_par.wots_par), pub_seed, ots_addr); |
| 946 | |
| 947 | states[params->d + i].stackoffset = 0; |
| 948 | states[params->d + i].next_leaf = 0; |
| 949 | |
| 950 | updates--; // WOTS-signing counts as one update |
| 951 | needswap_upto = i; |
| 952 | for (j = 0; j < tree_h-k; j++) { |
| 953 | states[i].treehash[j].completed = 1; |
| 954 | } |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | //Whipe secret elements? |
| 959 | //zerobytes(tsk, CRYPTO_SECRETKEYBYTES); |
| 960 | |
| 961 | memcpy(sig_msg, msg, msglen); |
| 962 | *sig_msg_len += msglen; |
| 963 | |
| 964 | return 0; |
| 965 | } |
| 966 | |
| 967 | /** |
| 968 | * Verifies a given message signature pair under a given public key. |
| 969 | */ |
| 970 | int xmssmt_sign_open(unsigned char *msg, unsigned long long *msglen, const unsigned char *sig_msg, unsigned long long sig_msg_len, const unsigned char *pk, const xmssmt_params *params) |
| 971 | { |
| 972 | unsigned int n = params->n; |
| 973 | |
| 974 | unsigned int tree_h = params->xmss_par.h; |
| 975 | unsigned int idx_len = params->index_len; |
| 976 | uint64_t idx_tree; |
| 977 | uint32_t idx_leaf; |
| 978 | |
| 979 | unsigned long long i, m_len; |
| 980 | unsigned long long idx=0; |
| 981 | unsigned char wots_pk[params->xmss_par.wots_par.keysize]; |
| 982 | unsigned char pkhash[n]; |
| 983 | unsigned char root[n]; |
| 984 | unsigned char msg_h[n]; |
| 985 | unsigned char hash_key[3*n]; |
| 986 | |
| 987 | unsigned char pub_seed[n]; |
| 988 | memcpy(pub_seed, pk+n, n); |
| 989 | |
| 990 | // Init addresses |
| 991 | uint32_t ots_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 992 | uint32_t ltree_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 993 | uint32_t node_addr[8] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| 994 | |
| 995 | // Extract index |
| 996 | for (i = 0; i < idx_len; i++) { |
| 997 | idx |= ((unsigned long long)sig_msg[i]) << (8*(idx_len - 1 - i)); |
| 998 | } |
| 999 | printf("verify:: idx = %llu\n", idx); |
| 1000 | sig_msg += idx_len; |
| 1001 | sig_msg_len -= idx_len; |
| 1002 | |
| 1003 | // Generate hash key (R || root || idx) |
| 1004 | memcpy(hash_key, sig_msg,n); |
| 1005 | memcpy(hash_key+n, pk, n); |
| 1006 | to_byte(hash_key+2*n, idx, n); |
| 1007 | |
| 1008 | sig_msg += n; |
| 1009 | sig_msg_len -= n; |
| 1010 | |
| 1011 | |
| 1012 | // hash message (recall, R is now on pole position at sig_msg |
| 1013 | unsigned long long tmp_sig_len = (params->d * params->xmss_par.wots_par.keysize) + (params->h * n); |
| 1014 | m_len = sig_msg_len - tmp_sig_len; |
| 1015 | h_msg(msg_h, sig_msg + tmp_sig_len, m_len, hash_key, 3*n, n); |
| 1016 | |
| 1017 | |
| 1018 | //----------------------- |
| 1019 | // Verify signature |
| 1020 | //----------------------- |
| 1021 | |
| 1022 | // Prepare Address |
| 1023 | idx_tree = idx >> tree_h; |
| 1024 | idx_leaf = (idx & ((1 << tree_h)-1)); |
| 1025 | setLayerADRS(ots_addr, 0); |
| 1026 | setTreeADRS(ots_addr, idx_tree); |
| 1027 | setType(ots_addr, 0); |
| 1028 | |
| 1029 | memcpy(ltree_addr, ots_addr, 12); |
| 1030 | setType(ltree_addr, 1); |
| 1031 | |
| 1032 | memcpy(node_addr, ltree_addr, 12); |
| 1033 | setType(node_addr, 2); |
| 1034 | |
| 1035 | setOTSADRS(ots_addr, idx_leaf); |
| 1036 | |
| 1037 | // Check WOTS signature |
| 1038 | wots_pkFromSig(wots_pk, sig_msg, msg_h, &(params->xmss_par.wots_par), pub_seed, ots_addr); |
| 1039 | |
| 1040 | sig_msg += params->xmss_par.wots_par.keysize; |
| 1041 | sig_msg_len -= params->xmss_par.wots_par.keysize; |
| 1042 | |
| 1043 | // Compute Ltree |
| 1044 | setLtreeADRS(ltree_addr, idx_leaf); |
| 1045 | l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); |
| 1046 | |
| 1047 | // Compute root |
| 1048 | validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); |
| 1049 | |
| 1050 | sig_msg += tree_h*n; |
| 1051 | sig_msg_len -= tree_h*n; |
| 1052 | |
| 1053 | for (i = 1; i < params->d; i++) { |
| 1054 | // Prepare Address |
| 1055 | idx_leaf = (idx_tree & ((1 << tree_h)-1)); |
| 1056 | idx_tree = idx_tree >> tree_h; |
| 1057 | |
| 1058 | setLayerADRS(ots_addr, i); |
| 1059 | setTreeADRS(ots_addr, idx_tree); |
| 1060 | setType(ots_addr, 0); |
| 1061 | |
| 1062 | memcpy(ltree_addr, ots_addr, 12); |
| 1063 | setType(ltree_addr, 1); |
| 1064 | |
| 1065 | memcpy(node_addr, ltree_addr, 12); |
| 1066 | setType(node_addr, 2); |
| 1067 | |
| 1068 | setOTSADRS(ots_addr, idx_leaf); |
| 1069 | |
| 1070 | // Check WOTS signature |
| 1071 | wots_pkFromSig(wots_pk, sig_msg, root, &(params->xmss_par.wots_par), pub_seed, ots_addr); |
| 1072 | |
| 1073 | sig_msg += params->xmss_par.wots_par.keysize; |
| 1074 | sig_msg_len -= params->xmss_par.wots_par.keysize; |
| 1075 | |
| 1076 | // Compute Ltree |
| 1077 | setLtreeADRS(ltree_addr, idx_leaf); |
| 1078 | l_tree(pkhash, wots_pk, &(params->xmss_par), pub_seed, ltree_addr); |
| 1079 | |
| 1080 | // Compute root |
| 1081 | validate_authpath(root, pkhash, idx_leaf, sig_msg, &(params->xmss_par), pub_seed, node_addr); |
| 1082 | |
| 1083 | sig_msg += tree_h*n; |
| 1084 | sig_msg_len -= tree_h*n; |
| 1085 | |
| 1086 | } |
| 1087 | |
| 1088 | for (i = 0; i < n; i++) |
| 1089 | if (root[i] != pk[i]) |
| 1090 | goto fail; |
| 1091 | |
| 1092 | *msglen = sig_msg_len; |
| 1093 | for (i = 0; i < *msglen; i++) |
| 1094 | msg[i] = sig_msg[i]; |
| 1095 | |
| 1096 | return 0; |
| 1097 | |
| 1098 | |
| 1099 | fail: |
| 1100 | *msglen = sig_msg_len; |
| 1101 | for (i = 0; i < *msglen; i++) |
| 1102 | msg[i] = 0; |
| 1103 | *msglen = -1; |
| 1104 | return -1; |
| 1105 | } |
Darren Tucker | a10d855 | 2018-02-27 14:45:17 +1100 | [diff] [blame] | 1106 | #endif /* WITH_XMSS */ |