Damien Miller | 8a56dc2 | 2013-12-18 17:48:11 +1100 | [diff] [blame] | 1 | /* $OpenBSD: ge25519.c,v 1.3 2013/12/09 11:03:45 markus Exp $ */ |
Damien Miller | 5be9d9e | 2013-12-07 11:24:01 +1100 | [diff] [blame] | 2 | |
Damien Miller | 8a56dc2 | 2013-12-18 17:48:11 +1100 | [diff] [blame] | 3 | /* |
| 4 | * Public Domain, Authors: Daniel J. Bernstein, Niels Duif, Tanja Lange, |
| 5 | * Peter Schwabe, Bo-Yin Yang. |
| 6 | * Copied from supercop-20130419/crypto_sign/ed25519/ref/ge25519.c |
| 7 | */ |
Damien Miller | 5be9d9e | 2013-12-07 11:24:01 +1100 | [diff] [blame] | 8 | |
Darren Tucker | f45f78a | 2014-01-17 12:43:43 +1100 | [diff] [blame] | 9 | #include "includes.h" |
| 10 | |
Damien Miller | 5be9d9e | 2013-12-07 11:24:01 +1100 | [diff] [blame] | 11 | #include "fe25519.h" |
| 12 | #include "sc25519.h" |
| 13 | #include "ge25519.h" |
| 14 | |
| 15 | /* |
| 16 | * Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2 |
| 17 | * with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555 |
| 18 | * Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960); |
| 19 | */ |
| 20 | |
| 21 | /* d */ |
| 22 | static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00, |
| 23 | 0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}}; |
| 24 | /* 2*d */ |
| 25 | static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00, |
| 26 | 0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}}; |
| 27 | /* sqrt(-1) */ |
| 28 | static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F, |
| 29 | 0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}}; |
| 30 | |
| 31 | #define ge25519_p3 ge25519 |
| 32 | |
| 33 | typedef struct |
| 34 | { |
| 35 | fe25519 x; |
| 36 | fe25519 z; |
| 37 | fe25519 y; |
| 38 | fe25519 t; |
| 39 | } ge25519_p1p1; |
| 40 | |
| 41 | typedef struct |
| 42 | { |
| 43 | fe25519 x; |
| 44 | fe25519 y; |
| 45 | fe25519 z; |
| 46 | } ge25519_p2; |
| 47 | |
| 48 | typedef struct |
| 49 | { |
| 50 | fe25519 x; |
| 51 | fe25519 y; |
| 52 | } ge25519_aff; |
| 53 | |
| 54 | |
| 55 | /* Packed coordinates of the base point */ |
| 56 | const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69, |
| 57 | 0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}}, |
| 58 | {{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, |
| 59 | 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}}, |
| 60 | {{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 61 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}}, |
| 62 | {{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20, |
| 63 | 0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}}; |
| 64 | |
| 65 | /* Multiples of the base point in affine representation */ |
| 66 | static const ge25519_aff ge25519_base_multiples_affine[425] = { |
| 67 | #include "ge25519_base.data" |
| 68 | }; |
| 69 | |
| 70 | static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p) |
| 71 | { |
| 72 | fe25519_mul(&r->x, &p->x, &p->t); |
| 73 | fe25519_mul(&r->y, &p->y, &p->z); |
| 74 | fe25519_mul(&r->z, &p->z, &p->t); |
| 75 | } |
| 76 | |
| 77 | static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p) |
| 78 | { |
| 79 | p1p1_to_p2((ge25519_p2 *)r, p); |
| 80 | fe25519_mul(&r->t, &p->x, &p->y); |
| 81 | } |
| 82 | |
| 83 | static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q) |
| 84 | { |
| 85 | fe25519 a,b,t1,t2,c,d,e,f,g,h,qt; |
| 86 | fe25519_mul(&qt, &q->x, &q->y); |
| 87 | fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */ |
| 88 | fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */ |
| 89 | fe25519_sub(&t1, &q->y, &q->x); |
| 90 | fe25519_add(&t2, &q->y, &q->x); |
| 91 | fe25519_mul(&a, &a, &t1); |
| 92 | fe25519_mul(&b, &b, &t2); |
| 93 | fe25519_sub(&e, &b, &a); /* E = B-A */ |
| 94 | fe25519_add(&h, &b, &a); /* H = B+A */ |
| 95 | fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */ |
| 96 | fe25519_mul(&c, &c, &ge25519_ec2d); |
| 97 | fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */ |
| 98 | fe25519_sub(&f, &d, &c); /* F = D-C */ |
| 99 | fe25519_add(&g, &d, &c); /* G = D+C */ |
| 100 | fe25519_mul(&r->x, &e, &f); |
| 101 | fe25519_mul(&r->y, &h, &g); |
| 102 | fe25519_mul(&r->z, &g, &f); |
| 103 | fe25519_mul(&r->t, &e, &h); |
| 104 | } |
| 105 | |
| 106 | static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q) |
| 107 | { |
| 108 | fe25519 a, b, c, d, t; |
| 109 | |
| 110 | fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */ |
| 111 | fe25519_sub(&t, &q->y, &q->x); |
| 112 | fe25519_mul(&a, &a, &t); |
| 113 | fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */ |
| 114 | fe25519_add(&t, &q->x, &q->y); |
| 115 | fe25519_mul(&b, &b, &t); |
| 116 | fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */ |
| 117 | fe25519_mul(&c, &c, &ge25519_ec2d); |
| 118 | fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */ |
| 119 | fe25519_add(&d, &d, &d); |
| 120 | fe25519_sub(&r->x, &b, &a); /* E = B-A */ |
| 121 | fe25519_sub(&r->t, &d, &c); /* F = D-C */ |
| 122 | fe25519_add(&r->z, &d, &c); /* G = D+C */ |
| 123 | fe25519_add(&r->y, &b, &a); /* H = B+A */ |
| 124 | } |
| 125 | |
| 126 | /* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */ |
| 127 | static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p) |
| 128 | { |
| 129 | fe25519 a,b,c,d; |
| 130 | fe25519_square(&a, &p->x); |
| 131 | fe25519_square(&b, &p->y); |
| 132 | fe25519_square(&c, &p->z); |
| 133 | fe25519_add(&c, &c, &c); |
| 134 | fe25519_neg(&d, &a); |
| 135 | |
| 136 | fe25519_add(&r->x, &p->x, &p->y); |
| 137 | fe25519_square(&r->x, &r->x); |
| 138 | fe25519_sub(&r->x, &r->x, &a); |
| 139 | fe25519_sub(&r->x, &r->x, &b); |
| 140 | fe25519_add(&r->z, &d, &b); |
| 141 | fe25519_sub(&r->t, &r->z, &c); |
| 142 | fe25519_sub(&r->y, &d, &b); |
| 143 | } |
| 144 | |
| 145 | /* Constant-time version of: if(b) r = p */ |
| 146 | static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b) |
| 147 | { |
| 148 | fe25519_cmov(&r->x, &p->x, b); |
| 149 | fe25519_cmov(&r->y, &p->y, b); |
| 150 | } |
| 151 | |
| 152 | static unsigned char equal(signed char b,signed char c) |
| 153 | { |
| 154 | unsigned char ub = b; |
| 155 | unsigned char uc = c; |
| 156 | unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */ |
| 157 | crypto_uint32 y = x; /* 0: yes; 1..255: no */ |
| 158 | y -= 1; /* 4294967295: yes; 0..254: no */ |
| 159 | y >>= 31; /* 1: yes; 0: no */ |
| 160 | return y; |
| 161 | } |
| 162 | |
| 163 | static unsigned char negative(signed char b) |
| 164 | { |
| 165 | unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */ |
| 166 | x >>= 63; /* 1: yes; 0: no */ |
| 167 | return x; |
| 168 | } |
| 169 | |
| 170 | static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b) |
| 171 | { |
| 172 | /* constant time */ |
| 173 | fe25519 v; |
| 174 | *t = ge25519_base_multiples_affine[5*pos+0]; |
| 175 | cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1)); |
| 176 | cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2)); |
| 177 | cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3)); |
| 178 | cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4)); |
| 179 | fe25519_neg(&v, &t->x); |
| 180 | fe25519_cmov(&t->x, &v, negative(b)); |
| 181 | } |
| 182 | |
| 183 | static void setneutral(ge25519 *r) |
| 184 | { |
| 185 | fe25519_setzero(&r->x); |
| 186 | fe25519_setone(&r->y); |
| 187 | fe25519_setone(&r->z); |
| 188 | fe25519_setzero(&r->t); |
| 189 | } |
| 190 | |
| 191 | /* ******************************************************************** |
| 192 | * EXPORTED FUNCTIONS |
| 193 | ******************************************************************** */ |
| 194 | |
| 195 | /* return 0 on success, -1 otherwise */ |
| 196 | int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32]) |
| 197 | { |
| 198 | unsigned char par; |
| 199 | fe25519 t, chk, num, den, den2, den4, den6; |
| 200 | fe25519_setone(&r->z); |
| 201 | par = p[31] >> 7; |
| 202 | fe25519_unpack(&r->y, p); |
| 203 | fe25519_square(&num, &r->y); /* x = y^2 */ |
| 204 | fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */ |
| 205 | fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */ |
| 206 | fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */ |
| 207 | |
| 208 | /* Computation of sqrt(num/den) */ |
| 209 | /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */ |
| 210 | fe25519_square(&den2, &den); |
| 211 | fe25519_square(&den4, &den2); |
| 212 | fe25519_mul(&den6, &den4, &den2); |
| 213 | fe25519_mul(&t, &den6, &num); |
| 214 | fe25519_mul(&t, &t, &den); |
| 215 | |
| 216 | fe25519_pow2523(&t, &t); |
| 217 | /* 2. computation of r->x = t * num * den^3 */ |
| 218 | fe25519_mul(&t, &t, &num); |
| 219 | fe25519_mul(&t, &t, &den); |
| 220 | fe25519_mul(&t, &t, &den); |
| 221 | fe25519_mul(&r->x, &t, &den); |
| 222 | |
| 223 | /* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */ |
| 224 | fe25519_square(&chk, &r->x); |
| 225 | fe25519_mul(&chk, &chk, &den); |
| 226 | if (!fe25519_iseq_vartime(&chk, &num)) |
| 227 | fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1); |
| 228 | |
| 229 | /* 4. Now we have one of the two square roots, except if input was not a square */ |
| 230 | fe25519_square(&chk, &r->x); |
| 231 | fe25519_mul(&chk, &chk, &den); |
| 232 | if (!fe25519_iseq_vartime(&chk, &num)) |
| 233 | return -1; |
| 234 | |
| 235 | /* 5. Choose the desired square root according to parity: */ |
| 236 | if(fe25519_getparity(&r->x) != (1-par)) |
| 237 | fe25519_neg(&r->x, &r->x); |
| 238 | |
| 239 | fe25519_mul(&r->t, &r->x, &r->y); |
| 240 | return 0; |
| 241 | } |
| 242 | |
| 243 | void ge25519_pack(unsigned char r[32], const ge25519_p3 *p) |
| 244 | { |
| 245 | fe25519 tx, ty, zi; |
| 246 | fe25519_invert(&zi, &p->z); |
| 247 | fe25519_mul(&tx, &p->x, &zi); |
| 248 | fe25519_mul(&ty, &p->y, &zi); |
| 249 | fe25519_pack(r, &ty); |
| 250 | r[31] ^= fe25519_getparity(&tx) << 7; |
| 251 | } |
| 252 | |
| 253 | int ge25519_isneutral_vartime(const ge25519_p3 *p) |
| 254 | { |
| 255 | int ret = 1; |
| 256 | if(!fe25519_iszero(&p->x)) ret = 0; |
| 257 | if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0; |
| 258 | return ret; |
| 259 | } |
| 260 | |
| 261 | /* computes [s1]p1 + [s2]p2 */ |
| 262 | void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2) |
| 263 | { |
| 264 | ge25519_p1p1 tp1p1; |
| 265 | ge25519_p3 pre[16]; |
| 266 | unsigned char b[127]; |
| 267 | int i; |
| 268 | |
| 269 | /* precomputation s2 s1 */ |
| 270 | setneutral(pre); /* 00 00 */ |
| 271 | pre[1] = *p1; /* 00 01 */ |
| 272 | dbl_p1p1(&tp1p1,(ge25519_p2 *)p1); p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */ |
| 273 | add_p1p1(&tp1p1,&pre[1], &pre[2]); p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */ |
| 274 | pre[4] = *p2; /* 01 00 */ |
| 275 | add_p1p1(&tp1p1,&pre[1], &pre[4]); p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */ |
| 276 | add_p1p1(&tp1p1,&pre[2], &pre[4]); p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */ |
| 277 | add_p1p1(&tp1p1,&pre[3], &pre[4]); p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */ |
| 278 | dbl_p1p1(&tp1p1,(ge25519_p2 *)p2); p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */ |
| 279 | add_p1p1(&tp1p1,&pre[1], &pre[8]); p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */ |
| 280 | dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */ |
| 281 | add_p1p1(&tp1p1,&pre[3], &pre[8]); p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */ |
| 282 | add_p1p1(&tp1p1,&pre[4], &pre[8]); p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */ |
| 283 | add_p1p1(&tp1p1,&pre[1],&pre[12]); p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */ |
| 284 | add_p1p1(&tp1p1,&pre[2],&pre[12]); p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */ |
| 285 | add_p1p1(&tp1p1,&pre[3],&pre[12]); p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */ |
| 286 | |
| 287 | sc25519_2interleave2(b,s1,s2); |
| 288 | |
| 289 | /* scalar multiplication */ |
| 290 | *r = pre[b[126]]; |
| 291 | for(i=125;i>=0;i--) |
| 292 | { |
| 293 | dbl_p1p1(&tp1p1, (ge25519_p2 *)r); |
| 294 | p1p1_to_p2((ge25519_p2 *) r, &tp1p1); |
| 295 | dbl_p1p1(&tp1p1, (ge25519_p2 *)r); |
| 296 | if(b[i]!=0) |
| 297 | { |
| 298 | p1p1_to_p3(r, &tp1p1); |
| 299 | add_p1p1(&tp1p1, r, &pre[b[i]]); |
| 300 | } |
| 301 | if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1); |
| 302 | else p1p1_to_p3(r, &tp1p1); |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s) |
| 307 | { |
| 308 | signed char b[85]; |
| 309 | int i; |
| 310 | ge25519_aff t; |
| 311 | sc25519_window3(b,s); |
| 312 | |
| 313 | choose_t((ge25519_aff *)r, 0, b[0]); |
| 314 | fe25519_setone(&r->z); |
| 315 | fe25519_mul(&r->t, &r->x, &r->y); |
| 316 | for(i=1;i<85;i++) |
| 317 | { |
| 318 | choose_t(&t, (unsigned long long) i, b[i]); |
| 319 | ge25519_mixadd2(r, &t); |
| 320 | } |
| 321 | } |