blob: 7b6a7b89f37c99fd37c7149c59cbc4a2070a488a [file] [log] [blame]
Damien Millere7a1e5c2006-08-05 11:34:19 +10001/* $OpenBSD: moduli.c,v 1.16 2006/07/26 13:57:17 stevesk Exp $ */
Darren Tuckerb2f9d412003-08-02 23:51:38 +10002/*
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Two-step process to generate safe primes for DHGEX
31 *
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
35 *
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
38 */
39
40#include "includes.h"
Damien Miller5598b4f2006-07-24 14:09:40 +100041
42#include <sys/types.h>
Darren Tuckerb2f9d412003-08-02 23:51:38 +100043
44#include <openssl/bn.h>
45
Damien Millere7a1e5c2006-08-05 11:34:19 +100046#include <stdlib.h>
Damien Millere3476ed2006-07-24 14:13:33 +100047#include <string.h>
Damien Miller5598b4f2006-07-24 14:09:40 +100048#include <time.h>
49
50#include "xmalloc.h"
51#include "log.h"
52
Darren Tuckerb2f9d412003-08-02 23:51:38 +100053/*
54 * File output defines
55 */
56
57/* need line long enough for largest moduli plus headers */
Darren Tuckerfc959702004-07-17 16:12:08 +100058#define QLINESIZE (100+8192)
Darren Tuckerb2f9d412003-08-02 23:51:38 +100059
60/* Type: decimal.
61 * Specifies the internal structure of the prime modulus.
62 */
Darren Tuckerfc959702004-07-17 16:12:08 +100063#define QTYPE_UNKNOWN (0)
64#define QTYPE_UNSTRUCTURED (1)
65#define QTYPE_SAFE (2)
Darren Tuckerf0e792e2005-01-20 11:02:26 +110066#define QTYPE_SCHNORR (3)
Darren Tuckerfc959702004-07-17 16:12:08 +100067#define QTYPE_SOPHIE_GERMAIN (4)
68#define QTYPE_STRONG (5)
Darren Tuckerb2f9d412003-08-02 23:51:38 +100069
70/* Tests: decimal (bit field).
71 * Specifies the methods used in checking for primality.
72 * Usually, more than one test is used.
73 */
Darren Tuckerfc959702004-07-17 16:12:08 +100074#define QTEST_UNTESTED (0x00)
75#define QTEST_COMPOSITE (0x01)
76#define QTEST_SIEVE (0x02)
77#define QTEST_MILLER_RABIN (0x04)
78#define QTEST_JACOBI (0x08)
79#define QTEST_ELLIPTIC (0x10)
Darren Tuckerb2f9d412003-08-02 23:51:38 +100080
Darren Tucker06930c72003-12-31 11:34:51 +110081/*
82 * Size: decimal.
Darren Tuckerb2f9d412003-08-02 23:51:38 +100083 * Specifies the number of the most significant bit (0 to M).
Darren Tucker06930c72003-12-31 11:34:51 +110084 * WARNING: internally, usually 1 to N.
Darren Tuckerb2f9d412003-08-02 23:51:38 +100085 */
Darren Tuckerfc959702004-07-17 16:12:08 +100086#define QSIZE_MINIMUM (511)
Darren Tuckerb2f9d412003-08-02 23:51:38 +100087
88/*
89 * Prime sieving defines
90 */
91
92/* Constant: assuming 8 bit bytes and 32 bit words */
Darren Tuckerfc959702004-07-17 16:12:08 +100093#define SHIFT_BIT (3)
94#define SHIFT_BYTE (2)
95#define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
96#define SHIFT_MEGABYTE (20)
97#define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
Darren Tuckerb2f9d412003-08-02 23:51:38 +100098
99/*
Darren Tucker770fc012004-05-13 16:24:32 +1000100 * Using virtual memory can cause thrashing. This should be the largest
101 * number that is supported without a large amount of disk activity --
102 * that would increase the run time from hours to days or weeks!
103 */
Darren Tuckerfc959702004-07-17 16:12:08 +1000104#define LARGE_MINIMUM (8UL) /* megabytes */
Darren Tucker770fc012004-05-13 16:24:32 +1000105
106/*
107 * Do not increase this number beyond the unsigned integer bit size.
108 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
109 */
Darren Tuckerfc959702004-07-17 16:12:08 +1000110#define LARGE_MAXIMUM (127UL) /* megabytes */
Darren Tucker770fc012004-05-13 16:24:32 +1000111
112/*
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000113 * Constant: when used with 32-bit integers, the largest sieve prime
114 * has to be less than 2**32.
115 */
Darren Tuckerfc959702004-07-17 16:12:08 +1000116#define SMALL_MAXIMUM (0xffffffffUL)
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000117
118/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
Darren Tuckerfc959702004-07-17 16:12:08 +1000119#define TINY_NUMBER (1UL<<16)
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000120
121/* Ensure enough bit space for testing 2*q. */
Damien Miller0dc1bef2005-07-17 17:22:45 +1000122#define TEST_MAXIMUM (1UL<<16)
123#define TEST_MINIMUM (QSIZE_MINIMUM + 1)
124/* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
125#define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000126
127/* bit operations on 32-bit words */
Damien Miller0dc1bef2005-07-17 17:22:45 +1000128#define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
129#define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
130#define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000131
132/*
133 * Prime testing defines
134 */
135
Darren Tucker770fc012004-05-13 16:24:32 +1000136/* Minimum number of primality tests to perform */
Damien Miller0dc1bef2005-07-17 17:22:45 +1000137#define TRIAL_MINIMUM (4)
Darren Tucker770fc012004-05-13 16:24:32 +1000138
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000139/*
140 * Sieving data (XXX - move to struct)
141 */
142
143/* sieve 2**16 */
144static u_int32_t *TinySieve, tinybits;
145
146/* sieve 2**30 in 2**16 parts */
147static u_int32_t *SmallSieve, smallbits, smallbase;
148
149/* sieve relative to the initial value */
150static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
151static u_int32_t largebits, largememory; /* megabytes */
152static BIGNUM *largebase;
153
Damien Millerb089fb52005-05-26 12:16:18 +1000154int gen_candidates(FILE *, u_int32_t, u_int32_t, BIGNUM *);
Darren Tuckere4ab1152004-05-24 10:14:24 +1000155int prime_test(FILE *, FILE *, u_int32_t, u_int32_t);
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000156
157/*
158 * print moduli out in consistent form,
159 */
160static int
161qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
162 u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
163{
164 struct tm *gtm;
165 time_t time_now;
166 int res;
167
168 time(&time_now);
169 gtm = gmtime(&time_now);
Damien Miller787b2ec2003-11-21 23:56:47 +1100170
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000171 res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
172 gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
173 gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
174 otype, otests, otries, osize, ogenerator);
175
176 if (res < 0)
177 return (-1);
178
179 if (BN_print_fp(ofile, omodulus) < 1)
180 return (-1);
181
182 res = fprintf(ofile, "\n");
183 fflush(ofile);
184
185 return (res > 0 ? 0 : -1);
186}
187
188
189/*
190 ** Sieve p's and q's with small factors
191 */
192static void
193sieve_large(u_int32_t s)
194{
195 u_int32_t r, u;
196
Darren Tucker06930c72003-12-31 11:34:51 +1100197 debug3("sieve_large %u", s);
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000198 largetries++;
199 /* r = largebase mod s */
200 r = BN_mod_word(largebase, s);
201 if (r == 0)
202 u = 0; /* s divides into largebase exactly */
203 else
204 u = s - r; /* largebase+u is first entry divisible by s */
205
206 if (u < largebits * 2) {
207 /*
208 * The sieve omits p's and q's divisible by 2, so ensure that
209 * largebase+u is odd. Then, step through the sieve in
210 * increments of 2*s
211 */
212 if (u & 0x1)
213 u += s; /* Make largebase+u odd, and u even */
214
215 /* Mark all multiples of 2*s */
216 for (u /= 2; u < largebits; u += s)
217 BIT_SET(LargeSieve, u);
218 }
219
220 /* r = p mod s */
221 r = (2 * r + 1) % s;
222 if (r == 0)
223 u = 0; /* s divides p exactly */
224 else
225 u = s - r; /* p+u is first entry divisible by s */
226
227 if (u < largebits * 4) {
228 /*
229 * The sieve omits p's divisible by 4, so ensure that
230 * largebase+u is not. Then, step through the sieve in
231 * increments of 4*s
232 */
233 while (u & 0x3) {
234 if (SMALL_MAXIMUM - u < s)
235 return;
236 u += s;
237 }
238
239 /* Mark all multiples of 4*s */
240 for (u /= 4; u < largebits; u += s)
241 BIT_SET(LargeSieve, u);
242 }
243}
244
245/*
Darren Tucker47abce42004-05-02 22:09:00 +1000246 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000247 * to standard output.
248 * The list is checked against small known primes (less than 2**30).
249 */
250int
Damien Millerb089fb52005-05-26 12:16:18 +1000251gen_candidates(FILE *out, u_int32_t memory, u_int32_t power, BIGNUM *start)
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000252{
253 BIGNUM *q;
254 u_int32_t j, r, s, t;
255 u_int32_t smallwords = TINY_NUMBER >> 6;
256 u_int32_t tinywords = TINY_NUMBER >> 6;
257 time_t time_start, time_stop;
Damien Millerb089fb52005-05-26 12:16:18 +1000258 u_int32_t i;
259 int ret = 0;
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000260
261 largememory = memory;
262
Darren Tucker770fc012004-05-13 16:24:32 +1000263 if (memory != 0 &&
Damien Miller0dc1bef2005-07-17 17:22:45 +1000264 (memory < LARGE_MINIMUM || memory > LARGE_MAXIMUM)) {
Darren Tucker770fc012004-05-13 16:24:32 +1000265 error("Invalid memory amount (min %ld, max %ld)",
266 LARGE_MINIMUM, LARGE_MAXIMUM);
267 return (-1);
268 }
269
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000270 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100271 * Set power to the length in bits of the prime to be generated.
272 * This is changed to 1 less than the desired safe prime moduli p.
273 */
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000274 if (power > TEST_MAXIMUM) {
275 error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
276 return (-1);
277 } else if (power < TEST_MINIMUM) {
278 error("Too few bits: %u < %u", power, TEST_MINIMUM);
279 return (-1);
280 }
281 power--; /* decrement before squaring */
282
283 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100284 * The density of ordinary primes is on the order of 1/bits, so the
285 * density of safe primes should be about (1/bits)**2. Set test range
286 * to something well above bits**2 to be reasonably sure (but not
287 * guaranteed) of catching at least one safe prime.
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000288 */
289 largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));
290
291 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100292 * Need idea of how much memory is available. We don't have to use all
293 * of it.
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000294 */
295 if (largememory > LARGE_MAXIMUM) {
296 logit("Limited memory: %u MB; limit %lu MB",
297 largememory, LARGE_MAXIMUM);
298 largememory = LARGE_MAXIMUM;
299 }
300
301 if (largewords <= (largememory << SHIFT_MEGAWORD)) {
302 logit("Increased memory: %u MB; need %u bytes",
303 largememory, (largewords << SHIFT_BYTE));
304 largewords = (largememory << SHIFT_MEGAWORD);
305 } else if (largememory > 0) {
306 logit("Decreased memory: %u MB; want %u bytes",
307 largememory, (largewords << SHIFT_BYTE));
308 largewords = (largememory << SHIFT_MEGAWORD);
309 }
310
Damien Miller07d86be2006-03-26 14:19:21 +1100311 TinySieve = xcalloc(tinywords, sizeof(u_int32_t));
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000312 tinybits = tinywords << SHIFT_WORD;
313
Damien Miller07d86be2006-03-26 14:19:21 +1100314 SmallSieve = xcalloc(smallwords, sizeof(u_int32_t));
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000315 smallbits = smallwords << SHIFT_WORD;
316
317 /*
318 * dynamically determine available memory
319 */
320 while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
321 largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */
322
323 largebits = largewords << SHIFT_WORD;
324 largenumbers = largebits * 2; /* even numbers excluded */
325
326 /* validation check: count the number of primes tried */
327 largetries = 0;
328 q = BN_new();
329
330 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100331 * Generate random starting point for subprime search, or use
332 * specified parameter.
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000333 */
334 largebase = BN_new();
335 if (start == NULL)
336 BN_rand(largebase, power, 1, 1);
337 else
338 BN_copy(largebase, start);
339
340 /* ensure odd */
341 BN_set_bit(largebase, 0);
342
343 time(&time_start);
344
Damien Millera8e06ce2003-11-21 23:48:55 +1100345 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000346 largenumbers, power);
347 debug2("start point: 0x%s", BN_bn2hex(largebase));
348
349 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100350 * TinySieve
351 */
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000352 for (i = 0; i < tinybits; i++) {
353 if (BIT_TEST(TinySieve, i))
354 continue; /* 2*i+3 is composite */
355
356 /* The next tiny prime */
357 t = 2 * i + 3;
358
359 /* Mark all multiples of t */
360 for (j = i + t; j < tinybits; j += t)
361 BIT_SET(TinySieve, j);
362
363 sieve_large(t);
364 }
365
366 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100367 * Start the small block search at the next possible prime. To avoid
368 * fencepost errors, the last pass is skipped.
369 */
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000370 for (smallbase = TINY_NUMBER + 3;
Damien Miller0dc1bef2005-07-17 17:22:45 +1000371 smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
372 smallbase += TINY_NUMBER) {
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000373 for (i = 0; i < tinybits; i++) {
374 if (BIT_TEST(TinySieve, i))
375 continue; /* 2*i+3 is composite */
376
377 /* The next tiny prime */
378 t = 2 * i + 3;
379 r = smallbase % t;
380
381 if (r == 0) {
382 s = 0; /* t divides into smallbase exactly */
383 } else {
384 /* smallbase+s is first entry divisible by t */
385 s = t - r;
386 }
387
388 /*
389 * The sieve omits even numbers, so ensure that
390 * smallbase+s is odd. Then, step through the sieve
391 * in increments of 2*t
392 */
393 if (s & 1)
394 s += t; /* Make smallbase+s odd, and s even */
395
396 /* Mark all multiples of 2*t */
397 for (s /= 2; s < smallbits; s += t)
398 BIT_SET(SmallSieve, s);
399 }
400
401 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100402 * SmallSieve
403 */
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000404 for (i = 0; i < smallbits; i++) {
405 if (BIT_TEST(SmallSieve, i))
406 continue; /* 2*i+smallbase is composite */
407
408 /* The next small prime */
409 sieve_large((2 * i) + smallbase);
410 }
411
412 memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
413 }
414
415 time(&time_stop);
416
417 logit("%.24s Sieved with %u small primes in %ld seconds",
418 ctime(&time_stop), largetries, (long) (time_stop - time_start));
419
420 for (j = r = 0; j < largebits; j++) {
421 if (BIT_TEST(LargeSieve, j))
422 continue; /* Definitely composite, skip */
423
424 debug2("test q = largebase+%u", 2 * j);
425 BN_set_word(q, 2 * j);
426 BN_add(q, q, largebase);
Darren Tucker47abce42004-05-02 22:09:00 +1000427 if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000428 largetries, (power - 1) /* MSB */, (0), q) == -1) {
429 ret = -1;
430 break;
431 }
432
433 r++; /* count q */
434 }
435
436 time(&time_stop);
437
438 xfree(LargeSieve);
439 xfree(SmallSieve);
440 xfree(TinySieve);
441
442 logit("%.24s Found %u candidates", ctime(&time_stop), r);
443
444 return (ret);
445}
446
447/*
448 * perform a Miller-Rabin primality test
449 * on the list of candidates
450 * (checking both q and p)
451 * The result is a list of so-call "safe" primes
452 */
453int
Darren Tucker770fc012004-05-13 16:24:32 +1000454prime_test(FILE *in, FILE *out, u_int32_t trials, u_int32_t generator_wanted)
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000455{
456 BIGNUM *q, *p, *a;
457 BN_CTX *ctx;
458 char *cp, *lp;
459 u_int32_t count_in = 0, count_out = 0, count_possible = 0;
460 u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
461 time_t time_start, time_stop;
462 int res;
463
Darren Tucker770fc012004-05-13 16:24:32 +1000464 if (trials < TRIAL_MINIMUM) {
465 error("Minimum primality trials is %d", TRIAL_MINIMUM);
466 return (-1);
467 }
468
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000469 time(&time_start);
470
471 p = BN_new();
472 q = BN_new();
473 ctx = BN_CTX_new();
474
475 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
476 ctime(&time_start), trials, generator_wanted);
477
478 res = 0;
479 lp = xmalloc(QLINESIZE + 1);
480 while (fgets(lp, QLINESIZE, in) != NULL) {
481 int ll = strlen(lp);
482
483 count_in++;
484 if (ll < 14 || *lp == '!' || *lp == '#') {
485 debug2("%10u: comment or short line", count_in);
486 continue;
487 }
488
489 /* XXX - fragile parser */
490 /* time */
491 cp = &lp[14]; /* (skip) */
492
493 /* type */
494 in_type = strtoul(cp, &cp, 10);
495
496 /* tests */
497 in_tests = strtoul(cp, &cp, 10);
498
499 if (in_tests & QTEST_COMPOSITE) {
500 debug2("%10u: known composite", count_in);
501 continue;
502 }
Darren Tucker06930c72003-12-31 11:34:51 +1100503
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000504 /* tries */
505 in_tries = strtoul(cp, &cp, 10);
506
507 /* size (most significant bit) */
508 in_size = strtoul(cp, &cp, 10);
509
510 /* generator (hex) */
511 generator_known = strtoul(cp, &cp, 16);
512
513 /* Skip white space */
514 cp += strspn(cp, " ");
515
516 /* modulus (hex) */
517 switch (in_type) {
Darren Tucker47abce42004-05-02 22:09:00 +1000518 case QTYPE_SOPHIE_GERMAIN:
519 debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000520 a = q;
521 BN_hex2bn(&a, cp);
522 /* p = 2*q + 1 */
523 BN_lshift(p, q, 1);
524 BN_add_word(p, 1);
525 in_size += 1;
526 generator_known = 0;
527 break;
Darren Tucker06930c72003-12-31 11:34:51 +1100528 case QTYPE_UNSTRUCTURED:
529 case QTYPE_SAFE:
Darren Tuckerf0e792e2005-01-20 11:02:26 +1100530 case QTYPE_SCHNORR:
Darren Tucker06930c72003-12-31 11:34:51 +1100531 case QTYPE_STRONG:
532 case QTYPE_UNKNOWN:
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000533 debug2("%10u: (%u)", count_in, in_type);
534 a = p;
535 BN_hex2bn(&a, cp);
536 /* q = (p-1) / 2 */
537 BN_rshift(q, p, 1);
538 break;
Darren Tucker06930c72003-12-31 11:34:51 +1100539 default:
540 debug2("Unknown prime type");
541 break;
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000542 }
543
544 /*
545 * due to earlier inconsistencies in interpretation, check
546 * the proposed bit size.
547 */
Damien Millerb089fb52005-05-26 12:16:18 +1000548 if ((u_int32_t)BN_num_bits(p) != (in_size + 1)) {
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000549 debug2("%10u: bit size %u mismatch", count_in, in_size);
550 continue;
551 }
552 if (in_size < QSIZE_MINIMUM) {
553 debug2("%10u: bit size %u too short", count_in, in_size);
554 continue;
555 }
556
557 if (in_tests & QTEST_MILLER_RABIN)
558 in_tries += trials;
559 else
560 in_tries = trials;
Darren Tucker06930c72003-12-31 11:34:51 +1100561
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000562 /*
563 * guess unknown generator
564 */
565 if (generator_known == 0) {
566 if (BN_mod_word(p, 24) == 11)
567 generator_known = 2;
568 else if (BN_mod_word(p, 12) == 5)
569 generator_known = 3;
570 else {
571 u_int32_t r = BN_mod_word(p, 10);
572
Darren Tucker06930c72003-12-31 11:34:51 +1100573 if (r == 3 || r == 7)
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000574 generator_known = 5;
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000575 }
576 }
577 /*
578 * skip tests when desired generator doesn't match
579 */
580 if (generator_wanted > 0 &&
581 generator_wanted != generator_known) {
582 debug2("%10u: generator %d != %d",
583 count_in, generator_known, generator_wanted);
584 continue;
585 }
586
Darren Tucker5cd9d442003-12-10 00:54:38 +1100587 /*
588 * Primes with no known generator are useless for DH, so
589 * skip those.
590 */
591 if (generator_known == 0) {
592 debug2("%10u: no known generator", count_in);
593 continue;
594 }
595
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000596 count_possible++;
597
598 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100599 * The (1/4)^N performance bound on Miller-Rabin is
600 * extremely pessimistic, so don't spend a lot of time
601 * really verifying that q is prime until after we know
602 * that p is also prime. A single pass will weed out the
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000603 * vast majority of composite q's.
604 */
605 if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
Darren Tucker06930c72003-12-31 11:34:51 +1100606 debug("%10u: q failed first possible prime test",
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000607 count_in);
608 continue;
609 }
Damien Miller787b2ec2003-11-21 23:56:47 +1100610
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000611 /*
Damien Millera8e06ce2003-11-21 23:48:55 +1100612 * q is possibly prime, so go ahead and really make sure
613 * that p is prime. If it is, then we can go back and do
614 * the same for q. If p is composite, chances are that
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000615 * will show up on the first Rabin-Miller iteration so it
616 * doesn't hurt to specify a high iteration count.
617 */
618 if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
Darren Tucker06930c72003-12-31 11:34:51 +1100619 debug("%10u: p is not prime", count_in);
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000620 continue;
621 }
622 debug("%10u: p is almost certainly prime", count_in);
623
624 /* recheck q more rigorously */
625 if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
626 debug("%10u: q is not prime", count_in);
627 continue;
628 }
629 debug("%10u: q is almost certainly prime", count_in);
630
Damien Millera8e06ce2003-11-21 23:48:55 +1100631 if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000632 in_tries, in_size, generator_known, p)) {
633 res = -1;
634 break;
635 }
636
637 count_out++;
638 }
639
640 time(&time_stop);
641 xfree(lp);
642 BN_free(p);
643 BN_free(q);
644 BN_CTX_free(ctx);
645
646 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
Damien Millera8e06ce2003-11-21 23:48:55 +1100647 ctime(&time_stop), count_out, count_possible,
Darren Tuckerb2f9d412003-08-02 23:51:38 +1000648 (long) (time_stop - time_start));
649
650 return (res);
651}