| /* $Id: tif_getimage.c,v 1.90 2015-06-17 01:34:08 bfriesen Exp $ */ |
| |
| /* |
| * Copyright (c) 1991-1997 Sam Leffler |
| * Copyright (c) 1991-1997 Silicon Graphics, Inc. |
| * |
| * Permission to use, copy, modify, distribute, and sell this software and |
| * its documentation for any purpose is hereby granted without fee, provided |
| * that (i) the above copyright notices and this permission notice appear in |
| * all copies of the software and related documentation, and (ii) the names of |
| * Sam Leffler and Silicon Graphics may not be used in any advertising or |
| * publicity relating to the software without the specific, prior written |
| * permission of Sam Leffler and Silicon Graphics. |
| * |
| * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY |
| * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. |
| * |
| * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR |
| * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, |
| * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, |
| * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF |
| * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE |
| * OF THIS SOFTWARE. |
| */ |
| |
| /* |
| * TIFF Library |
| * |
| * Read and return a packed RGBA image. |
| */ |
| #include "tiffiop.h" |
| #include <stdio.h> |
| |
| static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); |
| static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); |
| static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); |
| static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); |
| static int PickContigCase(TIFFRGBAImage*); |
| static int PickSeparateCase(TIFFRGBAImage*); |
| |
| static int BuildMapUaToAa(TIFFRGBAImage* img); |
| static int BuildMapBitdepth16To8(TIFFRGBAImage* img); |
| |
| static const char photoTag[] = "PhotometricInterpretation"; |
| |
| /* |
| * Helper constants used in Orientation tag handling |
| */ |
| #define FLIP_VERTICALLY 0x01 |
| #define FLIP_HORIZONTALLY 0x02 |
| |
| /* |
| * Color conversion constants. We will define display types here. |
| */ |
| |
| static const TIFFDisplay display_sRGB = { |
| { /* XYZ -> luminance matrix */ |
| { 3.2410F, -1.5374F, -0.4986F }, |
| { -0.9692F, 1.8760F, 0.0416F }, |
| { 0.0556F, -0.2040F, 1.0570F } |
| }, |
| 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */ |
| 255, 255, 255, /* Pixel values for ref. white */ |
| 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */ |
| 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */ |
| }; |
| |
| /* |
| * Check the image to see if TIFFReadRGBAImage can deal with it. |
| * 1/0 is returned according to whether or not the image can |
| * be handled. If 0 is returned, emsg contains the reason |
| * why it is being rejected. |
| */ |
| int |
| TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) |
| { |
| TIFFDirectory* td = &tif->tif_dir; |
| uint16 photometric; |
| int colorchannels; |
| |
| if (!tif->tif_decodestatus) { |
| sprintf(emsg, "Sorry, requested compression method is not configured"); |
| return (0); |
| } |
| switch (td->td_bitspersample) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| case 16: |
| break; |
| default: |
| sprintf(emsg, "Sorry, can not handle images with %d-bit samples", |
| td->td_bitspersample); |
| return (0); |
| } |
| colorchannels = td->td_samplesperpixel - td->td_extrasamples; |
| if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { |
| switch (colorchannels) { |
| case 1: |
| photometric = PHOTOMETRIC_MINISBLACK; |
| break; |
| case 3: |
| photometric = PHOTOMETRIC_RGB; |
| break; |
| default: |
| sprintf(emsg, "Missing needed %s tag", photoTag); |
| return (0); |
| } |
| } |
| switch (photometric) { |
| case PHOTOMETRIC_MINISWHITE: |
| case PHOTOMETRIC_MINISBLACK: |
| case PHOTOMETRIC_PALETTE: |
| if (td->td_planarconfig == PLANARCONFIG_CONTIG |
| && td->td_samplesperpixel != 1 |
| && td->td_bitspersample < 8 ) { |
| sprintf(emsg, |
| "Sorry, can not handle contiguous data with %s=%d, " |
| "and %s=%d and Bits/Sample=%d", |
| photoTag, photometric, |
| "Samples/pixel", td->td_samplesperpixel, |
| td->td_bitspersample); |
| return (0); |
| } |
| /* |
| * We should likely validate that any extra samples are either |
| * to be ignored, or are alpha, and if alpha we should try to use |
| * them. But for now we won't bother with this. |
| */ |
| break; |
| case PHOTOMETRIC_YCBCR: |
| /* |
| * TODO: if at all meaningful and useful, make more complete |
| * support check here, or better still, refactor to let supporting |
| * code decide whether there is support and what meaningfull |
| * error to return |
| */ |
| break; |
| case PHOTOMETRIC_RGB: |
| if (colorchannels < 3) { |
| sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", |
| "Color channels", colorchannels); |
| return (0); |
| } |
| break; |
| case PHOTOMETRIC_SEPARATED: |
| { |
| uint16 inkset; |
| TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); |
| if (inkset != INKSET_CMYK) { |
| sprintf(emsg, |
| "Sorry, can not handle separated image with %s=%d", |
| "InkSet", inkset); |
| return 0; |
| } |
| if (td->td_samplesperpixel < 4) { |
| sprintf(emsg, |
| "Sorry, can not handle separated image with %s=%d", |
| "Samples/pixel", td->td_samplesperpixel); |
| return 0; |
| } |
| break; |
| } |
| case PHOTOMETRIC_LOGL: |
| if (td->td_compression != COMPRESSION_SGILOG) { |
| sprintf(emsg, "Sorry, LogL data must have %s=%d", |
| "Compression", COMPRESSION_SGILOG); |
| return (0); |
| } |
| break; |
| case PHOTOMETRIC_LOGLUV: |
| if (td->td_compression != COMPRESSION_SGILOG && |
| td->td_compression != COMPRESSION_SGILOG24) { |
| sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", |
| "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); |
| return (0); |
| } |
| if (td->td_planarconfig != PLANARCONFIG_CONTIG) { |
| sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", |
| "Planarconfiguration", td->td_planarconfig); |
| return (0); |
| } |
| if( td->td_samplesperpixel != 3 ) |
| { |
| sprintf(emsg, |
| "Sorry, can not handle image with %s=%d", |
| "Samples/pixel", td->td_samplesperpixel); |
| return 0; |
| } |
| break; |
| case PHOTOMETRIC_CIELAB: |
| if( td->td_samplesperpixel != 3 || td->td_bitspersample != 8 ) |
| { |
| sprintf(emsg, |
| "Sorry, can not handle image with %s=%d and %s=%d", |
| "Samples/pixel", td->td_samplesperpixel, |
| "Bits/sample", td->td_bitspersample); |
| return 0; |
| } |
| break; |
| default: |
| sprintf(emsg, "Sorry, can not handle image with %s=%d", |
| photoTag, photometric); |
| return (0); |
| } |
| return (1); |
| } |
| |
| void |
| TIFFRGBAImageEnd(TIFFRGBAImage* img) |
| { |
| if (img->Map) |
| _TIFFfree(img->Map), img->Map = NULL; |
| if (img->BWmap) |
| _TIFFfree(img->BWmap), img->BWmap = NULL; |
| if (img->PALmap) |
| _TIFFfree(img->PALmap), img->PALmap = NULL; |
| if (img->ycbcr) |
| _TIFFfree(img->ycbcr), img->ycbcr = NULL; |
| if (img->cielab) |
| _TIFFfree(img->cielab), img->cielab = NULL; |
| if (img->UaToAa) |
| _TIFFfree(img->UaToAa), img->UaToAa = NULL; |
| if (img->Bitdepth16To8) |
| _TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL; |
| |
| if( img->redcmap ) { |
| _TIFFfree( img->redcmap ); |
| _TIFFfree( img->greencmap ); |
| _TIFFfree( img->bluecmap ); |
| img->redcmap = img->greencmap = img->bluecmap = NULL; |
| } |
| } |
| |
| static int |
| isCCITTCompression(TIFF* tif) |
| { |
| uint16 compress; |
| TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); |
| return (compress == COMPRESSION_CCITTFAX3 || |
| compress == COMPRESSION_CCITTFAX4 || |
| compress == COMPRESSION_CCITTRLE || |
| compress == COMPRESSION_CCITTRLEW); |
| } |
| |
| int |
| TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) |
| { |
| uint16* sampleinfo; |
| uint16 extrasamples; |
| uint16 planarconfig; |
| uint16 compress; |
| int colorchannels; |
| uint16 *red_orig, *green_orig, *blue_orig; |
| int n_color; |
| |
| /* Initialize to normal values */ |
| img->row_offset = 0; |
| img->col_offset = 0; |
| img->redcmap = NULL; |
| img->greencmap = NULL; |
| img->bluecmap = NULL; |
| img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ |
| |
| img->tif = tif; |
| img->stoponerr = stop; |
| TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); |
| switch (img->bitspersample) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| case 16: |
| break; |
| default: |
| sprintf(emsg, "Sorry, can not handle images with %d-bit samples", |
| img->bitspersample); |
| goto fail_return; |
| } |
| img->alpha = 0; |
| TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); |
| TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, |
| &extrasamples, &sampleinfo); |
| if (extrasamples >= 1) |
| { |
| switch (sampleinfo[0]) { |
| case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */ |
| if (img->samplesperpixel > 3) /* correct info about alpha channel */ |
| img->alpha = EXTRASAMPLE_ASSOCALPHA; |
| break; |
| case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */ |
| case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */ |
| img->alpha = sampleinfo[0]; |
| break; |
| } |
| } |
| |
| #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA |
| if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) |
| img->photometric = PHOTOMETRIC_MINISWHITE; |
| |
| if( extrasamples == 0 |
| && img->samplesperpixel == 4 |
| && img->photometric == PHOTOMETRIC_RGB ) |
| { |
| img->alpha = EXTRASAMPLE_ASSOCALPHA; |
| extrasamples = 1; |
| } |
| #endif |
| |
| colorchannels = img->samplesperpixel - extrasamples; |
| TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); |
| TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); |
| if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { |
| switch (colorchannels) { |
| case 1: |
| if (isCCITTCompression(tif)) |
| img->photometric = PHOTOMETRIC_MINISWHITE; |
| else |
| img->photometric = PHOTOMETRIC_MINISBLACK; |
| break; |
| case 3: |
| img->photometric = PHOTOMETRIC_RGB; |
| break; |
| default: |
| sprintf(emsg, "Missing needed %s tag", photoTag); |
| goto fail_return; |
| } |
| } |
| switch (img->photometric) { |
| case PHOTOMETRIC_PALETTE: |
| if (!TIFFGetField(tif, TIFFTAG_COLORMAP, |
| &red_orig, &green_orig, &blue_orig)) { |
| sprintf(emsg, "Missing required \"Colormap\" tag"); |
| goto fail_return; |
| } |
| |
| /* copy the colormaps so we can modify them */ |
| n_color = (1L << img->bitspersample); |
| img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); |
| img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); |
| img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); |
| if( !img->redcmap || !img->greencmap || !img->bluecmap ) { |
| sprintf(emsg, "Out of memory for colormap copy"); |
| goto fail_return; |
| } |
| |
| _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 ); |
| _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 ); |
| _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 ); |
| |
| /* fall thru... */ |
| case PHOTOMETRIC_MINISWHITE: |
| case PHOTOMETRIC_MINISBLACK: |
| if (planarconfig == PLANARCONFIG_CONTIG |
| && img->samplesperpixel != 1 |
| && img->bitspersample < 8 ) { |
| sprintf(emsg, |
| "Sorry, can not handle contiguous data with %s=%d, " |
| "and %s=%d and Bits/Sample=%d", |
| photoTag, img->photometric, |
| "Samples/pixel", img->samplesperpixel, |
| img->bitspersample); |
| goto fail_return; |
| } |
| break; |
| case PHOTOMETRIC_YCBCR: |
| /* It would probably be nice to have a reality check here. */ |
| if (planarconfig == PLANARCONFIG_CONTIG) |
| /* can rely on libjpeg to convert to RGB */ |
| /* XXX should restore current state on exit */ |
| switch (compress) { |
| case COMPRESSION_JPEG: |
| /* |
| * TODO: when complete tests verify complete desubsampling |
| * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in |
| * favor of tif_getimage.c native handling |
| */ |
| TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); |
| img->photometric = PHOTOMETRIC_RGB; |
| break; |
| default: |
| /* do nothing */; |
| break; |
| } |
| /* |
| * TODO: if at all meaningful and useful, make more complete |
| * support check here, or better still, refactor to let supporting |
| * code decide whether there is support and what meaningfull |
| * error to return |
| */ |
| break; |
| case PHOTOMETRIC_RGB: |
| if (colorchannels < 3) { |
| sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", |
| "Color channels", colorchannels); |
| goto fail_return; |
| } |
| break; |
| case PHOTOMETRIC_SEPARATED: |
| { |
| uint16 inkset; |
| TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); |
| if (inkset != INKSET_CMYK) { |
| sprintf(emsg, "Sorry, can not handle separated image with %s=%d", |
| "InkSet", inkset); |
| goto fail_return; |
| } |
| if (img->samplesperpixel < 4) { |
| sprintf(emsg, "Sorry, can not handle separated image with %s=%d", |
| "Samples/pixel", img->samplesperpixel); |
| goto fail_return; |
| } |
| } |
| break; |
| case PHOTOMETRIC_LOGL: |
| if (compress != COMPRESSION_SGILOG) { |
| sprintf(emsg, "Sorry, LogL data must have %s=%d", |
| "Compression", COMPRESSION_SGILOG); |
| goto fail_return; |
| } |
| TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); |
| img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */ |
| img->bitspersample = 8; |
| break; |
| case PHOTOMETRIC_LOGLUV: |
| if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) { |
| sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", |
| "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); |
| goto fail_return; |
| } |
| if (planarconfig != PLANARCONFIG_CONTIG) { |
| sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", |
| "Planarconfiguration", planarconfig); |
| return (0); |
| } |
| TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); |
| img->photometric = PHOTOMETRIC_RGB; /* little white lie */ |
| img->bitspersample = 8; |
| break; |
| case PHOTOMETRIC_CIELAB: |
| break; |
| default: |
| sprintf(emsg, "Sorry, can not handle image with %s=%d", |
| photoTag, img->photometric); |
| goto fail_return; |
| } |
| img->Map = NULL; |
| img->BWmap = NULL; |
| img->PALmap = NULL; |
| img->ycbcr = NULL; |
| img->cielab = NULL; |
| img->UaToAa = NULL; |
| img->Bitdepth16To8 = NULL; |
| TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); |
| TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); |
| TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); |
| img->isContig = |
| !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1); |
| if (img->isContig) { |
| if (!PickContigCase(img)) { |
| sprintf(emsg, "Sorry, can not handle image"); |
| goto fail_return; |
| } |
| } else { |
| if (!PickSeparateCase(img)) { |
| sprintf(emsg, "Sorry, can not handle image"); |
| goto fail_return; |
| } |
| } |
| return 1; |
| |
| fail_return: |
| _TIFFfree( img->redcmap ); |
| _TIFFfree( img->greencmap ); |
| _TIFFfree( img->bluecmap ); |
| img->redcmap = img->greencmap = img->bluecmap = NULL; |
| return 0; |
| } |
| |
| int |
| TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
| { |
| if (img->get == NULL) { |
| TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup"); |
| return (0); |
| } |
| if (img->put.any == NULL) { |
| TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), |
| "No \"put\" routine setupl; probably can not handle image format"); |
| return (0); |
| } |
| return (*img->get)(img, raster, w, h); |
| } |
| |
| /* |
| * Read the specified image into an ABGR-format rastertaking in account |
| * specified orientation. |
| */ |
| int |
| TIFFReadRGBAImageOriented(TIFF* tif, |
| uint32 rwidth, uint32 rheight, uint32* raster, |
| int orientation, int stop) |
| { |
| char emsg[1024] = ""; |
| TIFFRGBAImage img; |
| int ok; |
| |
| if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) { |
| img.req_orientation = orientation; |
| /* XXX verify rwidth and rheight against width and height */ |
| ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, |
| rwidth, img.height); |
| TIFFRGBAImageEnd(&img); |
| } else { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); |
| ok = 0; |
| } |
| return (ok); |
| } |
| |
| /* |
| * Read the specified image into an ABGR-format raster. Use bottom left |
| * origin for raster by default. |
| */ |
| int |
| TIFFReadRGBAImage(TIFF* tif, |
| uint32 rwidth, uint32 rheight, uint32* raster, int stop) |
| { |
| return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, |
| ORIENTATION_BOTLEFT, stop); |
| } |
| |
| static int |
| setorientation(TIFFRGBAImage* img) |
| { |
| switch (img->orientation) { |
| case ORIENTATION_TOPLEFT: |
| case ORIENTATION_LEFTTOP: |
| if (img->req_orientation == ORIENTATION_TOPRIGHT || |
| img->req_orientation == ORIENTATION_RIGHTTOP) |
| return FLIP_HORIZONTALLY; |
| else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
| img->req_orientation == ORIENTATION_RIGHTBOT) |
| return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
| else if (img->req_orientation == ORIENTATION_BOTLEFT || |
| img->req_orientation == ORIENTATION_LEFTBOT) |
| return FLIP_VERTICALLY; |
| else |
| return 0; |
| case ORIENTATION_TOPRIGHT: |
| case ORIENTATION_RIGHTTOP: |
| if (img->req_orientation == ORIENTATION_TOPLEFT || |
| img->req_orientation == ORIENTATION_LEFTTOP) |
| return FLIP_HORIZONTALLY; |
| else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
| img->req_orientation == ORIENTATION_RIGHTBOT) |
| return FLIP_VERTICALLY; |
| else if (img->req_orientation == ORIENTATION_BOTLEFT || |
| img->req_orientation == ORIENTATION_LEFTBOT) |
| return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
| else |
| return 0; |
| case ORIENTATION_BOTRIGHT: |
| case ORIENTATION_RIGHTBOT: |
| if (img->req_orientation == ORIENTATION_TOPLEFT || |
| img->req_orientation == ORIENTATION_LEFTTOP) |
| return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
| else if (img->req_orientation == ORIENTATION_TOPRIGHT || |
| img->req_orientation == ORIENTATION_RIGHTTOP) |
| return FLIP_VERTICALLY; |
| else if (img->req_orientation == ORIENTATION_BOTLEFT || |
| img->req_orientation == ORIENTATION_LEFTBOT) |
| return FLIP_HORIZONTALLY; |
| else |
| return 0; |
| case ORIENTATION_BOTLEFT: |
| case ORIENTATION_LEFTBOT: |
| if (img->req_orientation == ORIENTATION_TOPLEFT || |
| img->req_orientation == ORIENTATION_LEFTTOP) |
| return FLIP_VERTICALLY; |
| else if (img->req_orientation == ORIENTATION_TOPRIGHT || |
| img->req_orientation == ORIENTATION_RIGHTTOP) |
| return FLIP_HORIZONTALLY | FLIP_VERTICALLY; |
| else if (img->req_orientation == ORIENTATION_BOTRIGHT || |
| img->req_orientation == ORIENTATION_RIGHTBOT) |
| return FLIP_HORIZONTALLY; |
| else |
| return 0; |
| default: /* NOTREACHED */ |
| return 0; |
| } |
| } |
| |
| /* |
| * Get an tile-organized image that has |
| * PlanarConfiguration contiguous if SamplesPerPixel > 1 |
| * or |
| * SamplesPerPixel == 1 |
| */ |
| static int |
| gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
| { |
| TIFF* tif = img->tif; |
| tileContigRoutine put = img->put.contig; |
| uint32 col, row, y, rowstoread; |
| tmsize_t pos; |
| uint32 tw, th; |
| unsigned char* buf; |
| int32 fromskew, toskew; |
| uint32 nrow; |
| int ret = 1, flip; |
| uint32 this_tw, tocol; |
| int32 this_toskew, leftmost_toskew; |
| int32 leftmost_fromskew; |
| uint32 leftmost_tw; |
| |
| buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif)); |
| if (buf == 0) { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer"); |
| return (0); |
| } |
| _TIFFmemset(buf, 0, TIFFTileSize(tif)); |
| TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); |
| TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); |
| |
| flip = setorientation(img); |
| if (flip & FLIP_VERTICALLY) { |
| y = h - 1; |
| toskew = -(int32)(tw + w); |
| } |
| else { |
| y = 0; |
| toskew = -(int32)(tw - w); |
| } |
| |
| /* |
| * Leftmost tile is clipped on left side if col_offset > 0. |
| */ |
| leftmost_fromskew = img->col_offset % tw; |
| leftmost_tw = tw - leftmost_fromskew; |
| leftmost_toskew = toskew + leftmost_fromskew; |
| for (row = 0; row < h; row += nrow) |
| { |
| rowstoread = th - (row + img->row_offset) % th; |
| nrow = (row + rowstoread > h ? h - row : rowstoread); |
| fromskew = leftmost_fromskew; |
| this_tw = leftmost_tw; |
| this_toskew = leftmost_toskew; |
| tocol = 0; |
| col = img->col_offset; |
| while (tocol < w) |
| { |
| if (TIFFReadTile(tif, buf, col, |
| row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \ |
| ((tmsize_t) fromskew * img->samplesperpixel); |
| if (tocol + this_tw > w) |
| { |
| /* |
| * Rightmost tile is clipped on right side. |
| */ |
| fromskew = tw - (w - tocol); |
| this_tw = tw - fromskew; |
| this_toskew = toskew + fromskew; |
| } |
| (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, buf + pos); |
| tocol += this_tw; |
| col += this_tw; |
| /* |
| * After the leftmost tile, tiles are no longer clipped on left side. |
| */ |
| fromskew = 0; |
| this_tw = tw; |
| this_toskew = toskew; |
| } |
| |
| y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); |
| } |
| _TIFFfree(buf); |
| |
| if (flip & FLIP_HORIZONTALLY) { |
| uint32 line; |
| |
| for (line = 0; line < h; line++) { |
| uint32 *left = raster + (line * w); |
| uint32 *right = left + w - 1; |
| |
| while ( left < right ) { |
| uint32 temp = *left; |
| *left = *right; |
| *right = temp; |
| left++, right--; |
| } |
| } |
| } |
| |
| return (ret); |
| } |
| |
| /* |
| * Get an tile-organized image that has |
| * SamplesPerPixel > 1 |
| * PlanarConfiguration separated |
| * We assume that all such images are RGB. |
| */ |
| static int |
| gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
| { |
| TIFF* tif = img->tif; |
| tileSeparateRoutine put = img->put.separate; |
| uint32 col, row, y, rowstoread; |
| tmsize_t pos; |
| uint32 tw, th; |
| unsigned char* buf; |
| unsigned char* p0; |
| unsigned char* p1; |
| unsigned char* p2; |
| unsigned char* pa; |
| tmsize_t tilesize; |
| tmsize_t bufsize; |
| int32 fromskew, toskew; |
| int alpha = img->alpha; |
| uint32 nrow; |
| int ret = 1, flip; |
| int colorchannels; |
| uint32 this_tw, tocol; |
| int32 this_toskew, leftmost_toskew; |
| int32 leftmost_fromskew; |
| uint32 leftmost_tw; |
| |
| tilesize = TIFFTileSize(tif); |
| bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize); |
| if (bufsize == 0) { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate"); |
| return (0); |
| } |
| buf = (unsigned char*) _TIFFmalloc(bufsize); |
| if (buf == 0) { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer"); |
| return (0); |
| } |
| _TIFFmemset(buf, 0, bufsize); |
| p0 = buf; |
| p1 = p0 + tilesize; |
| p2 = p1 + tilesize; |
| pa = (alpha?(p2+tilesize):NULL); |
| TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); |
| TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); |
| |
| flip = setorientation(img); |
| if (flip & FLIP_VERTICALLY) { |
| y = h - 1; |
| toskew = -(int32)(tw + w); |
| } |
| else { |
| y = 0; |
| toskew = -(int32)(tw - w); |
| } |
| |
| switch( img->photometric ) |
| { |
| case PHOTOMETRIC_MINISWHITE: |
| case PHOTOMETRIC_MINISBLACK: |
| case PHOTOMETRIC_PALETTE: |
| colorchannels = 1; |
| p2 = p1 = p0; |
| break; |
| |
| default: |
| colorchannels = 3; |
| break; |
| } |
| |
| /* |
| * Leftmost tile is clipped on left side if col_offset > 0. |
| */ |
| leftmost_fromskew = img->col_offset % tw; |
| leftmost_tw = tw - leftmost_fromskew; |
| leftmost_toskew = toskew + leftmost_fromskew; |
| for (row = 0; row < h; row += nrow) |
| { |
| rowstoread = th - (row + img->row_offset) % th; |
| nrow = (row + rowstoread > h ? h - row : rowstoread); |
| fromskew = leftmost_fromskew; |
| this_tw = leftmost_tw; |
| this_toskew = leftmost_toskew; |
| tocol = 0; |
| col = img->col_offset; |
| while (tocol < w) |
| { |
| if (TIFFReadTile(tif, p0, col, |
| row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| if (colorchannels > 1 |
| && TIFFReadTile(tif, p1, col, |
| row+img->row_offset,0,1) == (tmsize_t)(-1) |
| && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| if (colorchannels > 1 |
| && TIFFReadTile(tif, p2, col, |
| row+img->row_offset,0,2) == (tmsize_t)(-1) |
| && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| if (alpha |
| && TIFFReadTile(tif,pa,col, |
| row+img->row_offset,0,colorchannels) == (tmsize_t)(-1) |
| && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| |
| pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif) + \ |
| ((tmsize_t) fromskew * img->samplesperpixel); |
| if (tocol + this_tw > w) |
| { |
| /* |
| * Rightmost tile is clipped on right side. |
| */ |
| fromskew = tw - (w - tocol); |
| this_tw = tw - fromskew; |
| this_toskew = toskew + fromskew; |
| } |
| (*put)(img, raster+y*w+tocol, tocol, y, this_tw, nrow, fromskew, this_toskew, \ |
| p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL)); |
| tocol += this_tw; |
| col += this_tw; |
| /* |
| * After the leftmost tile, tiles are no longer clipped on left side. |
| */ |
| fromskew = 0; |
| this_tw = tw; |
| this_toskew = toskew; |
| } |
| |
| y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow); |
| } |
| |
| if (flip & FLIP_HORIZONTALLY) { |
| uint32 line; |
| |
| for (line = 0; line < h; line++) { |
| uint32 *left = raster + (line * w); |
| uint32 *right = left + w - 1; |
| |
| while ( left < right ) { |
| uint32 temp = *left; |
| *left = *right; |
| *right = temp; |
| left++, right--; |
| } |
| } |
| } |
| |
| _TIFFfree(buf); |
| return (ret); |
| } |
| |
| /* |
| * Get a strip-organized image that has |
| * PlanarConfiguration contiguous if SamplesPerPixel > 1 |
| * or |
| * SamplesPerPixel == 1 |
| */ |
| static int |
| gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
| { |
| TIFF* tif = img->tif; |
| tileContigRoutine put = img->put.contig; |
| uint32 row, y, nrow, nrowsub, rowstoread; |
| tmsize_t pos; |
| unsigned char* buf; |
| uint32 rowsperstrip; |
| uint16 subsamplinghor,subsamplingver; |
| uint32 imagewidth = img->width; |
| tmsize_t scanline; |
| int32 fromskew, toskew; |
| int ret = 1, flip; |
| |
| TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver); |
| if( subsamplingver == 0 ) { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Invalid vertical YCbCr subsampling"); |
| return (0); |
| } |
| |
| buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif)); |
| if (buf == 0) { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer"); |
| return (0); |
| } |
| _TIFFmemset(buf, 0, TIFFStripSize(tif)); |
| |
| flip = setorientation(img); |
| if (flip & FLIP_VERTICALLY) { |
| y = h - 1; |
| toskew = -(int32)(w + w); |
| } else { |
| y = 0; |
| toskew = -(int32)(w - w); |
| } |
| |
| TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
| |
| scanline = TIFFScanlineSize(tif); |
| fromskew = (w < imagewidth ? imagewidth - w : 0); |
| for (row = 0; row < h; row += nrow) |
| { |
| rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; |
| nrow = (row + rowstoread > h ? h - row : rowstoread); |
| nrowsub = nrow; |
| if ((nrowsub%subsamplingver)!=0) |
| nrowsub+=subsamplingver-nrowsub%subsamplingver; |
| if (TIFFReadEncodedStrip(tif, |
| TIFFComputeStrip(tif,row+img->row_offset, 0), |
| buf, |
| ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1) |
| && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| |
| pos = ((row + img->row_offset) % rowsperstrip) * scanline + \ |
| ((tmsize_t) img->col_offset * img->samplesperpixel); |
| (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos); |
| y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); |
| } |
| |
| if (flip & FLIP_HORIZONTALLY) { |
| uint32 line; |
| |
| for (line = 0; line < h; line++) { |
| uint32 *left = raster + (line * w); |
| uint32 *right = left + w - 1; |
| |
| while ( left < right ) { |
| uint32 temp = *left; |
| *left = *right; |
| *right = temp; |
| left++, right--; |
| } |
| } |
| } |
| |
| _TIFFfree(buf); |
| return (ret); |
| } |
| |
| /* |
| * Get a strip-organized image with |
| * SamplesPerPixel > 1 |
| * PlanarConfiguration separated |
| * We assume that all such images are RGB. |
| */ |
| static int |
| gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) |
| { |
| TIFF* tif = img->tif; |
| tileSeparateRoutine put = img->put.separate; |
| unsigned char *buf; |
| unsigned char *p0, *p1, *p2, *pa; |
| uint32 row, y, nrow, rowstoread; |
| tmsize_t pos; |
| tmsize_t scanline; |
| uint32 rowsperstrip, offset_row; |
| uint32 imagewidth = img->width; |
| tmsize_t stripsize; |
| tmsize_t bufsize; |
| int32 fromskew, toskew; |
| int alpha = img->alpha; |
| int ret = 1, flip, colorchannels; |
| |
| stripsize = TIFFStripSize(tif); |
| bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize); |
| if (bufsize == 0) { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate"); |
| return (0); |
| } |
| p0 = buf = (unsigned char *)_TIFFmalloc(bufsize); |
| if (buf == 0) { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer"); |
| return (0); |
| } |
| _TIFFmemset(buf, 0, bufsize); |
| p1 = p0 + stripsize; |
| p2 = p1 + stripsize; |
| pa = (alpha?(p2+stripsize):NULL); |
| |
| flip = setorientation(img); |
| if (flip & FLIP_VERTICALLY) { |
| y = h - 1; |
| toskew = -(int32)(w + w); |
| } |
| else { |
| y = 0; |
| toskew = -(int32)(w - w); |
| } |
| |
| switch( img->photometric ) |
| { |
| case PHOTOMETRIC_MINISWHITE: |
| case PHOTOMETRIC_MINISBLACK: |
| case PHOTOMETRIC_PALETTE: |
| colorchannels = 1; |
| p2 = p1 = p0; |
| break; |
| |
| default: |
| colorchannels = 3; |
| break; |
| } |
| |
| TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
| scanline = TIFFScanlineSize(tif); |
| fromskew = (w < imagewidth ? imagewidth - w : 0); |
| for (row = 0; row < h; row += nrow) |
| { |
| rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; |
| nrow = (row + rowstoread > h ? h - row : rowstoread); |
| offset_row = row + img->row_offset; |
| if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), |
| p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) |
| && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| if (colorchannels > 1 |
| && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), |
| p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) |
| && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| if (colorchannels > 1 |
| && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), |
| p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) |
| && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| if (alpha) |
| { |
| if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels), |
| pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) |
| && img->stoponerr) |
| { |
| ret = 0; |
| break; |
| } |
| } |
| |
| pos = ((row + img->row_offset) % rowsperstrip) * scanline + \ |
| ((tmsize_t) img->col_offset * img->samplesperpixel); |
| (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos, |
| p2 + pos, (alpha?(pa+pos):NULL)); |
| y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); |
| } |
| |
| if (flip & FLIP_HORIZONTALLY) { |
| uint32 line; |
| |
| for (line = 0; line < h; line++) { |
| uint32 *left = raster + (line * w); |
| uint32 *right = left + w - 1; |
| |
| while ( left < right ) { |
| uint32 temp = *left; |
| *left = *right; |
| *right = temp; |
| left++, right--; |
| } |
| } |
| } |
| |
| _TIFFfree(buf); |
| return (ret); |
| } |
| |
| /* |
| * The following routines move decoded data returned |
| * from the TIFF library into rasters filled with packed |
| * ABGR pixels (i.e. suitable for passing to lrecwrite.) |
| * |
| * The routines have been created according to the most |
| * important cases and optimized. PickContigCase and |
| * PickSeparateCase analyze the parameters and select |
| * the appropriate "get" and "put" routine to use. |
| */ |
| #define REPEAT8(op) REPEAT4(op); REPEAT4(op) |
| #define REPEAT4(op) REPEAT2(op); REPEAT2(op) |
| #define REPEAT2(op) op; op |
| #define CASE8(x,op) \ |
| switch (x) { \ |
| case 7: op; case 6: op; case 5: op; \ |
| case 4: op; case 3: op; case 2: op; \ |
| case 1: op; \ |
| } |
| #define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; } |
| #define NOP |
| |
| #define UNROLL8(w, op1, op2) { \ |
| uint32 _x; \ |
| for (_x = w; _x >= 8; _x -= 8) { \ |
| op1; \ |
| REPEAT8(op2); \ |
| } \ |
| if (_x > 0) { \ |
| op1; \ |
| CASE8(_x,op2); \ |
| } \ |
| } |
| #define UNROLL4(w, op1, op2) { \ |
| uint32 _x; \ |
| for (_x = w; _x >= 4; _x -= 4) { \ |
| op1; \ |
| REPEAT4(op2); \ |
| } \ |
| if (_x > 0) { \ |
| op1; \ |
| CASE4(_x,op2); \ |
| } \ |
| } |
| #define UNROLL2(w, op1, op2) { \ |
| uint32 _x; \ |
| for (_x = w; _x >= 2; _x -= 2) { \ |
| op1; \ |
| REPEAT2(op2); \ |
| } \ |
| if (_x) { \ |
| op1; \ |
| op2; \ |
| } \ |
| } |
| |
| #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } |
| #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } |
| |
| #define A1 (((uint32)0xffL)<<24) |
| #define PACK(r,g,b) \ |
| ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) |
| #define PACK4(r,g,b,a) \ |
| ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) |
| #define W2B(v) (((v)>>8)&0xff) |
| /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */ |
| #define PACKW(r,g,b) \ |
| ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) |
| #define PACKW4(r,g,b,a) \ |
| ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24)) |
| |
| #define DECLAREContigPutFunc(name) \ |
| static void name(\ |
| TIFFRGBAImage* img, \ |
| uint32* cp, \ |
| uint32 x, uint32 y, \ |
| uint32 w, uint32 h, \ |
| int32 fromskew, int32 toskew, \ |
| unsigned char* pp \ |
| ) |
| |
| /* |
| * 8-bit palette => colormap/RGB |
| */ |
| DECLAREContigPutFunc(put8bitcmaptile) |
| { |
| uint32** PALmap = img->PALmap; |
| int samplesperpixel = img->samplesperpixel; |
| |
| (void) y; |
| while (h-- > 0) { |
| for (x = w; x-- > 0;) |
| { |
| *cp++ = PALmap[*pp][0]; |
| pp += samplesperpixel; |
| } |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 4-bit palette => colormap/RGB |
| */ |
| DECLAREContigPutFunc(put4bitcmaptile) |
| { |
| uint32** PALmap = img->PALmap; |
| |
| (void) x; (void) y; |
| fromskew /= 2; |
| while (h-- > 0) { |
| uint32* bw; |
| UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 2-bit palette => colormap/RGB |
| */ |
| DECLAREContigPutFunc(put2bitcmaptile) |
| { |
| uint32** PALmap = img->PALmap; |
| |
| (void) x; (void) y; |
| fromskew /= 4; |
| while (h-- > 0) { |
| uint32* bw; |
| UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 1-bit palette => colormap/RGB |
| */ |
| DECLAREContigPutFunc(put1bitcmaptile) |
| { |
| uint32** PALmap = img->PALmap; |
| |
| (void) x; (void) y; |
| fromskew /= 8; |
| while (h-- > 0) { |
| uint32* bw; |
| UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 8-bit greyscale => colormap/RGB |
| */ |
| DECLAREContigPutFunc(putgreytile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| uint32** BWmap = img->BWmap; |
| |
| (void) y; |
| while (h-- > 0) { |
| for (x = w; x-- > 0;) |
| { |
| *cp++ = BWmap[*pp][0]; |
| pp += samplesperpixel; |
| } |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 8-bit greyscale with associated alpha => colormap/RGBA |
| */ |
| DECLAREContigPutFunc(putagreytile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| uint32** BWmap = img->BWmap; |
| |
| (void) y; |
| while (h-- > 0) { |
| for (x = w; x-- > 0;) |
| { |
| *cp++ = BWmap[*pp][0] & (*(pp+1) << 24 | ~A1); |
| pp += samplesperpixel; |
| } |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 16-bit greyscale => colormap/RGB |
| */ |
| DECLAREContigPutFunc(put16bitbwtile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| uint32** BWmap = img->BWmap; |
| |
| (void) y; |
| while (h-- > 0) { |
| uint16 *wp = (uint16 *) pp; |
| |
| for (x = w; x-- > 0;) |
| { |
| /* use high order byte of 16bit value */ |
| |
| *cp++ = BWmap[*wp >> 8][0]; |
| pp += 2 * samplesperpixel; |
| wp += samplesperpixel; |
| } |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 1-bit bilevel => colormap/RGB |
| */ |
| DECLAREContigPutFunc(put1bitbwtile) |
| { |
| uint32** BWmap = img->BWmap; |
| |
| (void) x; (void) y; |
| fromskew /= 8; |
| while (h-- > 0) { |
| uint32* bw; |
| UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 2-bit greyscale => colormap/RGB |
| */ |
| DECLAREContigPutFunc(put2bitbwtile) |
| { |
| uint32** BWmap = img->BWmap; |
| |
| (void) x; (void) y; |
| fromskew /= 4; |
| while (h-- > 0) { |
| uint32* bw; |
| UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 4-bit greyscale => colormap/RGB |
| */ |
| DECLAREContigPutFunc(put4bitbwtile) |
| { |
| uint32** BWmap = img->BWmap; |
| |
| (void) x; (void) y; |
| fromskew /= 2; |
| while (h-- > 0) { |
| uint32* bw; |
| UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 8-bit packed samples, no Map => RGB |
| */ |
| DECLAREContigPutFunc(putRGBcontig8bittile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| |
| (void) x; (void) y; |
| fromskew *= samplesperpixel; |
| while (h-- > 0) { |
| UNROLL8(w, NOP, |
| *cp++ = PACK(pp[0], pp[1], pp[2]); |
| pp += samplesperpixel); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 8-bit packed samples => RGBA w/ associated alpha |
| * (known to have Map == NULL) |
| */ |
| DECLAREContigPutFunc(putRGBAAcontig8bittile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| |
| (void) x; (void) y; |
| fromskew *= samplesperpixel; |
| while (h-- > 0) { |
| UNROLL8(w, NOP, |
| *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); |
| pp += samplesperpixel); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 8-bit packed samples => RGBA w/ unassociated alpha |
| * (known to have Map == NULL) |
| */ |
| DECLAREContigPutFunc(putRGBUAcontig8bittile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| (void) y; |
| fromskew *= samplesperpixel; |
| while (h-- > 0) { |
| uint32 r, g, b, a; |
| uint8* m; |
| for (x = w; x-- > 0;) { |
| a = pp[3]; |
| m = img->UaToAa+(a<<8); |
| r = m[pp[0]]; |
| g = m[pp[1]]; |
| b = m[pp[2]]; |
| *cp++ = PACK4(r,g,b,a); |
| pp += samplesperpixel; |
| } |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 16-bit packed samples => RGB |
| */ |
| DECLAREContigPutFunc(putRGBcontig16bittile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| uint16 *wp = (uint16 *)pp; |
| (void) y; |
| fromskew *= samplesperpixel; |
| while (h-- > 0) { |
| for (x = w; x-- > 0;) { |
| *cp++ = PACK(img->Bitdepth16To8[wp[0]], |
| img->Bitdepth16To8[wp[1]], |
| img->Bitdepth16To8[wp[2]]); |
| wp += samplesperpixel; |
| } |
| cp += toskew; |
| wp += fromskew; |
| } |
| } |
| |
| /* |
| * 16-bit packed samples => RGBA w/ associated alpha |
| * (known to have Map == NULL) |
| */ |
| DECLAREContigPutFunc(putRGBAAcontig16bittile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| uint16 *wp = (uint16 *)pp; |
| (void) y; |
| fromskew *= samplesperpixel; |
| while (h-- > 0) { |
| for (x = w; x-- > 0;) { |
| *cp++ = PACK4(img->Bitdepth16To8[wp[0]], |
| img->Bitdepth16To8[wp[1]], |
| img->Bitdepth16To8[wp[2]], |
| img->Bitdepth16To8[wp[3]]); |
| wp += samplesperpixel; |
| } |
| cp += toskew; |
| wp += fromskew; |
| } |
| } |
| |
| /* |
| * 16-bit packed samples => RGBA w/ unassociated alpha |
| * (known to have Map == NULL) |
| */ |
| DECLAREContigPutFunc(putRGBUAcontig16bittile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| uint16 *wp = (uint16 *)pp; |
| (void) y; |
| fromskew *= samplesperpixel; |
| while (h-- > 0) { |
| uint32 r,g,b,a; |
| uint8* m; |
| for (x = w; x-- > 0;) { |
| a = img->Bitdepth16To8[wp[3]]; |
| m = img->UaToAa+(a<<8); |
| r = m[img->Bitdepth16To8[wp[0]]]; |
| g = m[img->Bitdepth16To8[wp[1]]]; |
| b = m[img->Bitdepth16To8[wp[2]]]; |
| *cp++ = PACK4(r,g,b,a); |
| wp += samplesperpixel; |
| } |
| cp += toskew; |
| wp += fromskew; |
| } |
| } |
| |
| /* |
| * 8-bit packed CMYK samples w/o Map => RGB |
| * |
| * NB: The conversion of CMYK->RGB is *very* crude. |
| */ |
| DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| uint16 r, g, b, k; |
| |
| (void) x; (void) y; |
| fromskew *= samplesperpixel; |
| while (h-- > 0) { |
| UNROLL8(w, NOP, |
| k = 255 - pp[3]; |
| r = (k*(255-pp[0]))/255; |
| g = (k*(255-pp[1]))/255; |
| b = (k*(255-pp[2]))/255; |
| *cp++ = PACK(r, g, b); |
| pp += samplesperpixel); |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * 8-bit packed CMYK samples w/Map => RGB |
| * |
| * NB: The conversion of CMYK->RGB is *very* crude. |
| */ |
| DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) |
| { |
| int samplesperpixel = img->samplesperpixel; |
| TIFFRGBValue* Map = img->Map; |
| uint16 r, g, b, k; |
| |
| (void) y; |
| fromskew *= samplesperpixel; |
| while (h-- > 0) { |
| for (x = w; x-- > 0;) { |
| k = 255 - pp[3]; |
| r = (k*(255-pp[0]))/255; |
| g = (k*(255-pp[1]))/255; |
| b = (k*(255-pp[2]))/255; |
| *cp++ = PACK(Map[r], Map[g], Map[b]); |
| pp += samplesperpixel; |
| } |
| pp += fromskew; |
| cp += toskew; |
| } |
| } |
| |
| #define DECLARESepPutFunc(name) \ |
| static void name(\ |
| TIFFRGBAImage* img,\ |
| uint32* cp,\ |
| uint32 x, uint32 y, \ |
| uint32 w, uint32 h,\ |
| int32 fromskew, int32 toskew,\ |
| unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\ |
| ) |
| |
| /* |
| * 8-bit unpacked samples => RGB |
| */ |
| DECLARESepPutFunc(putRGBseparate8bittile) |
| { |
| (void) img; (void) x; (void) y; (void) a; |
| while (h-- > 0) { |
| UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); |
| SKEW(r, g, b, fromskew); |
| cp += toskew; |
| } |
| } |
| |
| /* |
| * 8-bit unpacked samples => RGBA w/ associated alpha |
| */ |
| DECLARESepPutFunc(putRGBAAseparate8bittile) |
| { |
| (void) img; (void) x; (void) y; |
| while (h-- > 0) { |
| UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); |
| SKEW4(r, g, b, a, fromskew); |
| cp += toskew; |
| } |
| } |
| |
| /* |
| * 8-bit unpacked CMYK samples => RGBA |
| */ |
| DECLARESepPutFunc(putCMYKseparate8bittile) |
| { |
| (void) img; (void) y; |
| while (h-- > 0) { |
| uint32 rv, gv, bv, kv; |
| for (x = w; x-- > 0;) { |
| kv = 255 - *a++; |
| rv = (kv*(255-*r++))/255; |
| gv = (kv*(255-*g++))/255; |
| bv = (kv*(255-*b++))/255; |
| *cp++ = PACK4(rv,gv,bv,255); |
| } |
| SKEW4(r, g, b, a, fromskew); |
| cp += toskew; |
| } |
| } |
| |
| /* |
| * 8-bit unpacked samples => RGBA w/ unassociated alpha |
| */ |
| DECLARESepPutFunc(putRGBUAseparate8bittile) |
| { |
| (void) img; (void) y; |
| while (h-- > 0) { |
| uint32 rv, gv, bv, av; |
| uint8* m; |
| for (x = w; x-- > 0;) { |
| av = *a++; |
| m = img->UaToAa+(av<<8); |
| rv = m[*r++]; |
| gv = m[*g++]; |
| bv = m[*b++]; |
| *cp++ = PACK4(rv,gv,bv,av); |
| } |
| SKEW4(r, g, b, a, fromskew); |
| cp += toskew; |
| } |
| } |
| |
| /* |
| * 16-bit unpacked samples => RGB |
| */ |
| DECLARESepPutFunc(putRGBseparate16bittile) |
| { |
| uint16 *wr = (uint16*) r; |
| uint16 *wg = (uint16*) g; |
| uint16 *wb = (uint16*) b; |
| (void) img; (void) y; (void) a; |
| while (h-- > 0) { |
| for (x = 0; x < w; x++) |
| *cp++ = PACK(img->Bitdepth16To8[*wr++], |
| img->Bitdepth16To8[*wg++], |
| img->Bitdepth16To8[*wb++]); |
| SKEW(wr, wg, wb, fromskew); |
| cp += toskew; |
| } |
| } |
| |
| /* |
| * 16-bit unpacked samples => RGBA w/ associated alpha |
| */ |
| DECLARESepPutFunc(putRGBAAseparate16bittile) |
| { |
| uint16 *wr = (uint16*) r; |
| uint16 *wg = (uint16*) g; |
| uint16 *wb = (uint16*) b; |
| uint16 *wa = (uint16*) a; |
| (void) img; (void) y; |
| while (h-- > 0) { |
| for (x = 0; x < w; x++) |
| *cp++ = PACK4(img->Bitdepth16To8[*wr++], |
| img->Bitdepth16To8[*wg++], |
| img->Bitdepth16To8[*wb++], |
| img->Bitdepth16To8[*wa++]); |
| SKEW4(wr, wg, wb, wa, fromskew); |
| cp += toskew; |
| } |
| } |
| |
| /* |
| * 16-bit unpacked samples => RGBA w/ unassociated alpha |
| */ |
| DECLARESepPutFunc(putRGBUAseparate16bittile) |
| { |
| uint16 *wr = (uint16*) r; |
| uint16 *wg = (uint16*) g; |
| uint16 *wb = (uint16*) b; |
| uint16 *wa = (uint16*) a; |
| (void) img; (void) y; |
| while (h-- > 0) { |
| uint32 r,g,b,a; |
| uint8* m; |
| for (x = w; x-- > 0;) { |
| a = img->Bitdepth16To8[*wa++]; |
| m = img->UaToAa+(a<<8); |
| r = m[img->Bitdepth16To8[*wr++]]; |
| g = m[img->Bitdepth16To8[*wg++]]; |
| b = m[img->Bitdepth16To8[*wb++]]; |
| *cp++ = PACK4(r,g,b,a); |
| } |
| SKEW4(wr, wg, wb, wa, fromskew); |
| cp += toskew; |
| } |
| } |
| |
| /* |
| * 8-bit packed CIE L*a*b 1976 samples => RGB |
| */ |
| DECLAREContigPutFunc(putcontig8bitCIELab) |
| { |
| float X, Y, Z; |
| uint32 r, g, b; |
| (void) y; |
| fromskew *= 3; |
| while (h-- > 0) { |
| for (x = w; x-- > 0;) { |
| TIFFCIELabToXYZ(img->cielab, |
| (unsigned char)pp[0], |
| (signed char)pp[1], |
| (signed char)pp[2], |
| &X, &Y, &Z); |
| TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); |
| *cp++ = PACK(r, g, b); |
| pp += 3; |
| } |
| cp += toskew; |
| pp += fromskew; |
| } |
| } |
| |
| /* |
| * YCbCr -> RGB conversion and packing routines. |
| */ |
| |
| #define YCbCrtoRGB(dst, Y) { \ |
| uint32 r, g, b; \ |
| TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ |
| dst = PACK(r, g, b); \ |
| } |
| |
| /* |
| * 8-bit packed YCbCr samples => RGB |
| * This function is generic for different sampling sizes, |
| * and can handle blocks sizes that aren't multiples of the |
| * sampling size. However, it is substantially less optimized |
| * than the specific sampling cases. It is used as a fallback |
| * for difficult blocks. |
| */ |
| #ifdef notdef |
| static void putcontig8bitYCbCrGenericTile( |
| TIFFRGBAImage* img, |
| uint32* cp, |
| uint32 x, uint32 y, |
| uint32 w, uint32 h, |
| int32 fromskew, int32 toskew, |
| unsigned char* pp, |
| int h_group, |
| int v_group ) |
| |
| { |
| uint32* cp1 = cp+w+toskew; |
| uint32* cp2 = cp1+w+toskew; |
| uint32* cp3 = cp2+w+toskew; |
| int32 incr = 3*w+4*toskew; |
| int32 Cb, Cr; |
| int group_size = v_group * h_group + 2; |
| |
| (void) y; |
| fromskew = (fromskew * group_size) / h_group; |
| |
| for( yy = 0; yy < h; yy++ ) |
| { |
| unsigned char *pp_line; |
| int y_line_group = yy / v_group; |
| int y_remainder = yy - y_line_group * v_group; |
| |
| pp_line = pp + v_line_group * |
| |
| |
| for( xx = 0; xx < w; xx++ ) |
| { |
| Cb = pp |
| } |
| } |
| for (; h >= 4; h -= 4) { |
| x = w>>2; |
| do { |
| Cb = pp[16]; |
| Cr = pp[17]; |
| |
| YCbCrtoRGB(cp [0], pp[ 0]); |
| YCbCrtoRGB(cp [1], pp[ 1]); |
| YCbCrtoRGB(cp [2], pp[ 2]); |
| YCbCrtoRGB(cp [3], pp[ 3]); |
| YCbCrtoRGB(cp1[0], pp[ 4]); |
| YCbCrtoRGB(cp1[1], pp[ 5]); |
| YCbCrtoRGB(cp1[2], pp[ 6]); |
| YCbCrtoRGB(cp1[3], pp[ 7]); |
| YCbCrtoRGB(cp2[0], pp[ 8]); |
| YCbCrtoRGB(cp2[1], pp[ 9]); |
| YCbCrtoRGB(cp2[2], pp[10]); |
| YCbCrtoRGB(cp2[3], pp[11]); |
| YCbCrtoRGB(cp3[0], pp[12]); |
| YCbCrtoRGB(cp3[1], pp[13]); |
| YCbCrtoRGB(cp3[2], pp[14]); |
| YCbCrtoRGB(cp3[3], pp[15]); |
| |
| cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; |
| pp += 18; |
| } while (--x); |
| cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; |
| pp += fromskew; |
| } |
| } |
| #endif |
| |
| /* |
| * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB |
| */ |
| DECLAREContigPutFunc(putcontig8bitYCbCr44tile) |
| { |
| uint32* cp1 = cp+w+toskew; |
| uint32* cp2 = cp1+w+toskew; |
| uint32* cp3 = cp2+w+toskew; |
| int32 incr = 3*w+4*toskew; |
| |
| (void) y; |
| /* adjust fromskew */ |
| fromskew = (fromskew * 18) / 4; |
| if ((h & 3) == 0 && (w & 3) == 0) { |
| for (; h >= 4; h -= 4) { |
| x = w>>2; |
| do { |
| int32 Cb = pp[16]; |
| int32 Cr = pp[17]; |
| |
| YCbCrtoRGB(cp [0], pp[ 0]); |
| YCbCrtoRGB(cp [1], pp[ 1]); |
| YCbCrtoRGB(cp [2], pp[ 2]); |
| YCbCrtoRGB(cp [3], pp[ 3]); |
| YCbCrtoRGB(cp1[0], pp[ 4]); |
| YCbCrtoRGB(cp1[1], pp[ 5]); |
| YCbCrtoRGB(cp1[2], pp[ 6]); |
| YCbCrtoRGB(cp1[3], pp[ 7]); |
| YCbCrtoRGB(cp2[0], pp[ 8]); |
| YCbCrtoRGB(cp2[1], pp[ 9]); |
| YCbCrtoRGB(cp2[2], pp[10]); |
| YCbCrtoRGB(cp2[3], pp[11]); |
| YCbCrtoRGB(cp3[0], pp[12]); |
| YCbCrtoRGB(cp3[1], pp[13]); |
| YCbCrtoRGB(cp3[2], pp[14]); |
| YCbCrtoRGB(cp3[3], pp[15]); |
| |
| cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; |
| pp += 18; |
| } while (--x); |
| cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; |
| pp += fromskew; |
| } |
| } else { |
| while (h > 0) { |
| for (x = w; x > 0;) { |
| int32 Cb = pp[16]; |
| int32 Cr = pp[17]; |
| switch (x) { |
| default: |
| switch (h) { |
| default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ |
| case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ |
| case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ |
| case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ |
| } /* FALLTHROUGH */ |
| case 3: |
| switch (h) { |
| default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ |
| case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ |
| case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ |
| case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ |
| } /* FALLTHROUGH */ |
| case 2: |
| switch (h) { |
| default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ |
| case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ |
| case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ |
| case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ |
| } /* FALLTHROUGH */ |
| case 1: |
| switch (h) { |
| default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ |
| case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ |
| case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ |
| case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ |
| } /* FALLTHROUGH */ |
| } |
| if (x < 4) { |
| cp += x; cp1 += x; cp2 += x; cp3 += x; |
| x = 0; |
| } |
| else { |
| cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; |
| x -= 4; |
| } |
| pp += 18; |
| } |
| if (h <= 4) |
| break; |
| h -= 4; |
| cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; |
| pp += fromskew; |
| } |
| } |
| } |
| |
| /* |
| * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB |
| */ |
| DECLAREContigPutFunc(putcontig8bitYCbCr42tile) |
| { |
| uint32* cp1 = cp+w+toskew; |
| int32 incr = 2*toskew+w; |
| |
| (void) y; |
| fromskew = (fromskew * 10) / 4; |
| if ((w & 3) == 0 && (h & 1) == 0) { |
| for (; h >= 2; h -= 2) { |
| x = w>>2; |
| do { |
| int32 Cb = pp[8]; |
| int32 Cr = pp[9]; |
| |
| YCbCrtoRGB(cp [0], pp[0]); |
| YCbCrtoRGB(cp [1], pp[1]); |
| YCbCrtoRGB(cp [2], pp[2]); |
| YCbCrtoRGB(cp [3], pp[3]); |
| YCbCrtoRGB(cp1[0], pp[4]); |
| YCbCrtoRGB(cp1[1], pp[5]); |
| YCbCrtoRGB(cp1[2], pp[6]); |
| YCbCrtoRGB(cp1[3], pp[7]); |
| |
| cp += 4, cp1 += 4; |
| pp += 10; |
| } while (--x); |
| cp += incr, cp1 += incr; |
| pp += fromskew; |
| } |
| } else { |
| while (h > 0) { |
| for (x = w; x > 0;) { |
| int32 Cb = pp[8]; |
| int32 Cr = pp[9]; |
| switch (x) { |
| default: |
| switch (h) { |
| default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ |
| case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ |
| } /* FALLTHROUGH */ |
| case 3: |
| switch (h) { |
| default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ |
| case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ |
| } /* FALLTHROUGH */ |
| case 2: |
| switch (h) { |
| default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ |
| case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ |
| } /* FALLTHROUGH */ |
| case 1: |
| switch (h) { |
| default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ |
| case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ |
| } /* FALLTHROUGH */ |
| } |
| if (x < 4) { |
| cp += x; cp1 += x; |
| x = 0; |
| } |
| else { |
| cp += 4; cp1 += 4; |
| x -= 4; |
| } |
| pp += 10; |
| } |
| if (h <= 2) |
| break; |
| h -= 2; |
| cp += incr, cp1 += incr; |
| pp += fromskew; |
| } |
| } |
| } |
| |
| /* |
| * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB |
| */ |
| DECLAREContigPutFunc(putcontig8bitYCbCr41tile) |
| { |
| (void) y; |
| /* XXX adjust fromskew */ |
| do { |
| x = w>>2; |
| while(x>0) { |
| int32 Cb = pp[4]; |
| int32 Cr = pp[5]; |
| |
| YCbCrtoRGB(cp [0], pp[0]); |
| YCbCrtoRGB(cp [1], pp[1]); |
| YCbCrtoRGB(cp [2], pp[2]); |
| YCbCrtoRGB(cp [3], pp[3]); |
| |
| cp += 4; |
| pp += 6; |
| x--; |
| } |
| |
| if( (w&3) != 0 ) |
| { |
| int32 Cb = pp[4]; |
| int32 Cr = pp[5]; |
| |
| switch( (w&3) ) { |
| case 3: YCbCrtoRGB(cp [2], pp[2]); |
| case 2: YCbCrtoRGB(cp [1], pp[1]); |
| case 1: YCbCrtoRGB(cp [0], pp[0]); |
| case 0: break; |
| } |
| |
| cp += (w&3); |
| pp += 6; |
| } |
| |
| cp += toskew; |
| pp += fromskew; |
| } while (--h); |
| |
| } |
| |
| /* |
| * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB |
| */ |
| DECLAREContigPutFunc(putcontig8bitYCbCr22tile) |
| { |
| uint32* cp2; |
| int32 incr = 2*toskew+w; |
| (void) y; |
| fromskew = (fromskew / 2) * 6; |
| cp2 = cp+w+toskew; |
| while (h>=2) { |
| x = w; |
| while (x>=2) { |
| uint32 Cb = pp[4]; |
| uint32 Cr = pp[5]; |
| YCbCrtoRGB(cp[0], pp[0]); |
| YCbCrtoRGB(cp[1], pp[1]); |
| YCbCrtoRGB(cp2[0], pp[2]); |
| YCbCrtoRGB(cp2[1], pp[3]); |
| cp += 2; |
| cp2 += 2; |
| pp += 6; |
| x -= 2; |
| } |
| if (x==1) { |
| uint32 Cb = pp[4]; |
| uint32 Cr = pp[5]; |
| YCbCrtoRGB(cp[0], pp[0]); |
| YCbCrtoRGB(cp2[0], pp[2]); |
| cp ++ ; |
| cp2 ++ ; |
| pp += 6; |
| } |
| cp += incr; |
| cp2 += incr; |
| pp += fromskew; |
| h-=2; |
| } |
| if (h==1) { |
| x = w; |
| while (x>=2) { |
| uint32 Cb = pp[4]; |
| uint32 Cr = pp[5]; |
| YCbCrtoRGB(cp[0], pp[0]); |
| YCbCrtoRGB(cp[1], pp[1]); |
| cp += 2; |
| cp2 += 2; |
| pp += 6; |
| x -= 2; |
| } |
| if (x==1) { |
| uint32 Cb = pp[4]; |
| uint32 Cr = pp[5]; |
| YCbCrtoRGB(cp[0], pp[0]); |
| } |
| } |
| } |
| |
| /* |
| * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB |
| */ |
| DECLAREContigPutFunc(putcontig8bitYCbCr21tile) |
| { |
| (void) y; |
| fromskew = (fromskew * 4) / 2; |
| do { |
| x = w>>1; |
| while(x>0) { |
| int32 Cb = pp[2]; |
| int32 Cr = pp[3]; |
| |
| YCbCrtoRGB(cp[0], pp[0]); |
| YCbCrtoRGB(cp[1], pp[1]); |
| |
| cp += 2; |
| pp += 4; |
| x --; |
| } |
| |
| if( (w&1) != 0 ) |
| { |
| int32 Cb = pp[2]; |
| int32 Cr = pp[3]; |
| |
| YCbCrtoRGB(cp[0], pp[0]); |
| |
| cp += 1; |
| pp += 4; |
| } |
| |
| cp += toskew; |
| pp += fromskew; |
| } while (--h); |
| } |
| |
| /* |
| * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB |
| */ |
| DECLAREContigPutFunc(putcontig8bitYCbCr12tile) |
| { |
| uint32* cp2; |
| int32 incr = 2*toskew+w; |
| (void) y; |
| fromskew = (fromskew / 2) * 4; |
| cp2 = cp+w+toskew; |
| while (h>=2) { |
| x = w; |
| do { |
| uint32 Cb = pp[2]; |
| uint32 Cr = pp[3]; |
| YCbCrtoRGB(cp[0], pp[0]); |
| YCbCrtoRGB(cp2[0], pp[1]); |
| cp ++; |
| cp2 ++; |
| pp += 4; |
| } while (--x); |
| cp += incr; |
| cp2 += incr; |
| pp += fromskew; |
| h-=2; |
| } |
| if (h==1) { |
| x = w; |
| do { |
| uint32 Cb = pp[2]; |
| uint32 Cr = pp[3]; |
| YCbCrtoRGB(cp[0], pp[0]); |
| cp ++; |
| pp += 4; |
| } while (--x); |
| } |
| } |
| |
| /* |
| * 8-bit packed YCbCr samples w/ no subsampling => RGB |
| */ |
| DECLAREContigPutFunc(putcontig8bitYCbCr11tile) |
| { |
| (void) y; |
| fromskew *= 3; |
| do { |
| x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ |
| do { |
| int32 Cb = pp[1]; |
| int32 Cr = pp[2]; |
| |
| YCbCrtoRGB(*cp++, pp[0]); |
| |
| pp += 3; |
| } while (--x); |
| cp += toskew; |
| pp += fromskew; |
| } while (--h); |
| } |
| |
| /* |
| * 8-bit packed YCbCr samples w/ no subsampling => RGB |
| */ |
| DECLARESepPutFunc(putseparate8bitYCbCr11tile) |
| { |
| (void) y; |
| (void) a; |
| /* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */ |
| while (h-- > 0) { |
| x = w; |
| do { |
| uint32 dr, dg, db; |
| TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db); |
| *cp++ = PACK(dr,dg,db); |
| } while (--x); |
| SKEW(r, g, b, fromskew); |
| cp += toskew; |
| } |
| } |
| #undef YCbCrtoRGB |
| |
| static int |
| initYCbCrConversion(TIFFRGBAImage* img) |
| { |
| static const char module[] = "initYCbCrConversion"; |
| |
| float *luma, *refBlackWhite; |
| |
| if (img->ycbcr == NULL) { |
| img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( |
| TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long)) |
| + 4*256*sizeof (TIFFRGBValue) |
| + 2*256*sizeof (int) |
| + 3*256*sizeof (int32) |
| ); |
| if (img->ycbcr == NULL) { |
| TIFFErrorExt(img->tif->tif_clientdata, module, |
| "No space for YCbCr->RGB conversion state"); |
| return (0); |
| } |
| } |
| |
| TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); |
| TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, |
| &refBlackWhite); |
| if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) |
| return(0); |
| return (1); |
| } |
| |
| static tileContigRoutine |
| initCIELabConversion(TIFFRGBAImage* img) |
| { |
| static const char module[] = "initCIELabConversion"; |
| |
| float *whitePoint; |
| float refWhite[3]; |
| |
| if (!img->cielab) { |
| img->cielab = (TIFFCIELabToRGB *) |
| _TIFFmalloc(sizeof(TIFFCIELabToRGB)); |
| if (!img->cielab) { |
| TIFFErrorExt(img->tif->tif_clientdata, module, |
| "No space for CIE L*a*b*->RGB conversion state."); |
| return NULL; |
| } |
| } |
| |
| TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); |
| refWhite[1] = 100.0F; |
| refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; |
| refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) |
| / whitePoint[1] * refWhite[1]; |
| if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { |
| TIFFErrorExt(img->tif->tif_clientdata, module, |
| "Failed to initialize CIE L*a*b*->RGB conversion state."); |
| _TIFFfree(img->cielab); |
| return NULL; |
| } |
| |
| return putcontig8bitCIELab; |
| } |
| |
| /* |
| * Greyscale images with less than 8 bits/sample are handled |
| * with a table to avoid lots of shifts and masks. The table |
| * is setup so that put*bwtile (below) can retrieve 8/bitspersample |
| * pixel values simply by indexing into the table with one |
| * number. |
| */ |
| static int |
| makebwmap(TIFFRGBAImage* img) |
| { |
| TIFFRGBValue* Map = img->Map; |
| int bitspersample = img->bitspersample; |
| int nsamples = 8 / bitspersample; |
| int i; |
| uint32* p; |
| |
| if( nsamples == 0 ) |
| nsamples = 1; |
| |
| img->BWmap = (uint32**) _TIFFmalloc( |
| 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); |
| if (img->BWmap == NULL) { |
| TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table"); |
| return (0); |
| } |
| p = (uint32*)(img->BWmap + 256); |
| for (i = 0; i < 256; i++) { |
| TIFFRGBValue c; |
| img->BWmap[i] = p; |
| switch (bitspersample) { |
| #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); |
| case 1: |
| GREY(i>>7); |
| GREY((i>>6)&1); |
| GREY((i>>5)&1); |
| GREY((i>>4)&1); |
| GREY((i>>3)&1); |
| GREY((i>>2)&1); |
| GREY((i>>1)&1); |
| GREY(i&1); |
| break; |
| case 2: |
| GREY(i>>6); |
| GREY((i>>4)&3); |
| GREY((i>>2)&3); |
| GREY(i&3); |
| break; |
| case 4: |
| GREY(i>>4); |
| GREY(i&0xf); |
| break; |
| case 8: |
| case 16: |
| GREY(i); |
| break; |
| } |
| #undef GREY |
| } |
| return (1); |
| } |
| |
| /* |
| * Construct a mapping table to convert from the range |
| * of the data samples to [0,255] --for display. This |
| * process also handles inverting B&W images when needed. |
| */ |
| static int |
| setupMap(TIFFRGBAImage* img) |
| { |
| int32 x, range; |
| |
| range = (int32)((1L<<img->bitspersample)-1); |
| |
| /* treat 16 bit the same as eight bit */ |
| if( img->bitspersample == 16 ) |
| range = (int32) 255; |
| |
| img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); |
| if (img->Map == NULL) { |
| TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), |
| "No space for photometric conversion table"); |
| return (0); |
| } |
| if (img->photometric == PHOTOMETRIC_MINISWHITE) { |
| for (x = 0; x <= range; x++) |
| img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); |
| } else { |
| for (x = 0; x <= range; x++) |
| img->Map[x] = (TIFFRGBValue) ((x * 255) / range); |
| } |
| if (img->bitspersample <= 16 && |
| (img->photometric == PHOTOMETRIC_MINISBLACK || |
| img->photometric == PHOTOMETRIC_MINISWHITE)) { |
| /* |
| * Use photometric mapping table to construct |
| * unpacking tables for samples <= 8 bits. |
| */ |
| if (!makebwmap(img)) |
| return (0); |
| /* no longer need Map, free it */ |
| _TIFFfree(img->Map), img->Map = NULL; |
| } |
| return (1); |
| } |
| |
| static int |
| checkcmap(TIFFRGBAImage* img) |
| { |
| uint16* r = img->redcmap; |
| uint16* g = img->greencmap; |
| uint16* b = img->bluecmap; |
| long n = 1L<<img->bitspersample; |
| |
| while (n-- > 0) |
| if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) |
| return (16); |
| return (8); |
| } |
| |
| static void |
| cvtcmap(TIFFRGBAImage* img) |
| { |
| uint16* r = img->redcmap; |
| uint16* g = img->greencmap; |
| uint16* b = img->bluecmap; |
| long i; |
| |
| for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { |
| #define CVT(x) ((uint16)((x)>>8)) |
| r[i] = CVT(r[i]); |
| g[i] = CVT(g[i]); |
| b[i] = CVT(b[i]); |
| #undef CVT |
| } |
| } |
| |
| /* |
| * Palette images with <= 8 bits/sample are handled |
| * with a table to avoid lots of shifts and masks. The table |
| * is setup so that put*cmaptile (below) can retrieve 8/bitspersample |
| * pixel values simply by indexing into the table with one |
| * number. |
| */ |
| static int |
| makecmap(TIFFRGBAImage* img) |
| { |
| int bitspersample = img->bitspersample; |
| int nsamples = 8 / bitspersample; |
| uint16* r = img->redcmap; |
| uint16* g = img->greencmap; |
| uint16* b = img->bluecmap; |
| uint32 *p; |
| int i; |
| |
| img->PALmap = (uint32**) _TIFFmalloc( |
| 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); |
| if (img->PALmap == NULL) { |
| TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table"); |
| return (0); |
| } |
| p = (uint32*)(img->PALmap + 256); |
| for (i = 0; i < 256; i++) { |
| TIFFRGBValue c; |
| img->PALmap[i] = p; |
| #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff); |
| switch (bitspersample) { |
| case 1: |
| CMAP(i>>7); |
| CMAP((i>>6)&1); |
| CMAP((i>>5)&1); |
| CMAP((i>>4)&1); |
| CMAP((i>>3)&1); |
| CMAP((i>>2)&1); |
| CMAP((i>>1)&1); |
| CMAP(i&1); |
| break; |
| case 2: |
| CMAP(i>>6); |
| CMAP((i>>4)&3); |
| CMAP((i>>2)&3); |
| CMAP(i&3); |
| break; |
| case 4: |
| CMAP(i>>4); |
| CMAP(i&0xf); |
| break; |
| case 8: |
| CMAP(i); |
| break; |
| } |
| #undef CMAP |
| } |
| return (1); |
| } |
| |
| /* |
| * Construct any mapping table used |
| * by the associated put routine. |
| */ |
| static int |
| buildMap(TIFFRGBAImage* img) |
| { |
| switch (img->photometric) { |
| case PHOTOMETRIC_RGB: |
| case PHOTOMETRIC_YCBCR: |
| case PHOTOMETRIC_SEPARATED: |
| if (img->bitspersample == 8) |
| break; |
| /* fall thru... */ |
| case PHOTOMETRIC_MINISBLACK: |
| case PHOTOMETRIC_MINISWHITE: |
| if (!setupMap(img)) |
| return (0); |
| break; |
| case PHOTOMETRIC_PALETTE: |
| /* |
| * Convert 16-bit colormap to 8-bit (unless it looks |
| * like an old-style 8-bit colormap). |
| */ |
| if (checkcmap(img) == 16) |
| cvtcmap(img); |
| else |
| TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap"); |
| /* |
| * Use mapping table and colormap to construct |
| * unpacking tables for samples < 8 bits. |
| */ |
| if (img->bitspersample <= 8 && !makecmap(img)) |
| return (0); |
| break; |
| } |
| return (1); |
| } |
| |
| /* |
| * Select the appropriate conversion routine for packed data. |
| */ |
| static int |
| PickContigCase(TIFFRGBAImage* img) |
| { |
| img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig; |
| img->put.contig = NULL; |
| switch (img->photometric) { |
| case PHOTOMETRIC_RGB: |
| switch (img->bitspersample) { |
| case 8: |
| if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
| img->put.contig = putRGBAAcontig8bittile; |
| else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
| { |
| if (BuildMapUaToAa(img)) |
| img->put.contig = putRGBUAcontig8bittile; |
| } |
| else |
| img->put.contig = putRGBcontig8bittile; |
| break; |
| case 16: |
| if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
| { |
| if (BuildMapBitdepth16To8(img)) |
| img->put.contig = putRGBAAcontig16bittile; |
| } |
| else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
| { |
| if (BuildMapBitdepth16To8(img) && |
| BuildMapUaToAa(img)) |
| img->put.contig = putRGBUAcontig16bittile; |
| } |
| else |
| { |
| if (BuildMapBitdepth16To8(img)) |
| img->put.contig = putRGBcontig16bittile; |
| } |
| break; |
| } |
| break; |
| case PHOTOMETRIC_SEPARATED: |
| if (buildMap(img)) { |
| if (img->bitspersample == 8) { |
| if (!img->Map) |
| img->put.contig = putRGBcontig8bitCMYKtile; |
| else |
| img->put.contig = putRGBcontig8bitCMYKMaptile; |
| } |
| } |
| break; |
| case PHOTOMETRIC_PALETTE: |
| if (buildMap(img)) { |
| switch (img->bitspersample) { |
| case 8: |
| img->put.contig = put8bitcmaptile; |
| break; |
| case 4: |
| img->put.contig = put4bitcmaptile; |
| break; |
| case 2: |
| img->put.contig = put2bitcmaptile; |
| break; |
| case 1: |
| img->put.contig = put1bitcmaptile; |
| break; |
| } |
| } |
| break; |
| case PHOTOMETRIC_MINISWHITE: |
| case PHOTOMETRIC_MINISBLACK: |
| if (buildMap(img)) { |
| switch (img->bitspersample) { |
| case 16: |
| img->put.contig = put16bitbwtile; |
| break; |
| case 8: |
| if (img->alpha && img->samplesperpixel == 2) |
| img->put.contig = putagreytile; |
| else |
| img->put.contig = putgreytile; |
| break; |
| case 4: |
| img->put.contig = put4bitbwtile; |
| break; |
| case 2: |
| img->put.contig = put2bitbwtile; |
| break; |
| case 1: |
| img->put.contig = put1bitbwtile; |
| break; |
| } |
| } |
| break; |
| case PHOTOMETRIC_YCBCR: |
| if ((img->bitspersample==8) && (img->samplesperpixel==3)) |
| { |
| if (initYCbCrConversion(img)!=0) |
| { |
| /* |
| * The 6.0 spec says that subsampling must be |
| * one of 1, 2, or 4, and that vertical subsampling |
| * must always be <= horizontal subsampling; so |
| * there are only a few possibilities and we just |
| * enumerate the cases. |
| * Joris: added support for the [1,2] case, nonetheless, to accommodate |
| * some OJPEG files |
| */ |
| uint16 SubsamplingHor; |
| uint16 SubsamplingVer; |
| TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer); |
| switch ((SubsamplingHor<<4)|SubsamplingVer) { |
| case 0x44: |
| img->put.contig = putcontig8bitYCbCr44tile; |
| break; |
| case 0x42: |
| img->put.contig = putcontig8bitYCbCr42tile; |
| break; |
| case 0x41: |
| img->put.contig = putcontig8bitYCbCr41tile; |
| break; |
| case 0x22: |
| img->put.contig = putcontig8bitYCbCr22tile; |
| break; |
| case 0x21: |
| img->put.contig = putcontig8bitYCbCr21tile; |
| break; |
| case 0x12: |
| img->put.contig = putcontig8bitYCbCr12tile; |
| break; |
| case 0x11: |
| img->put.contig = putcontig8bitYCbCr11tile; |
| break; |
| } |
| } |
| } |
| break; |
| case PHOTOMETRIC_CIELAB: |
| if (buildMap(img)) { |
| if (img->bitspersample == 8) |
| img->put.contig = initCIELabConversion(img); |
| break; |
| } |
| } |
| return ((img->get!=NULL) && (img->put.contig!=NULL)); |
| } |
| |
| /* |
| * Select the appropriate conversion routine for unpacked data. |
| * |
| * NB: we assume that unpacked single channel data is directed |
| * to the "packed routines. |
| */ |
| static int |
| PickSeparateCase(TIFFRGBAImage* img) |
| { |
| img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate; |
| img->put.separate = NULL; |
| switch (img->photometric) { |
| case PHOTOMETRIC_MINISWHITE: |
| case PHOTOMETRIC_MINISBLACK: |
| /* greyscale images processed pretty much as RGB by gtTileSeparate */ |
| case PHOTOMETRIC_RGB: |
| switch (img->bitspersample) { |
| case 8: |
| if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
| img->put.separate = putRGBAAseparate8bittile; |
| else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
| { |
| if (BuildMapUaToAa(img)) |
| img->put.separate = putRGBUAseparate8bittile; |
| } |
| else |
| img->put.separate = putRGBseparate8bittile; |
| break; |
| case 16: |
| if (img->alpha == EXTRASAMPLE_ASSOCALPHA) |
| { |
| if (BuildMapBitdepth16To8(img)) |
| img->put.separate = putRGBAAseparate16bittile; |
| } |
| else if (img->alpha == EXTRASAMPLE_UNASSALPHA) |
| { |
| if (BuildMapBitdepth16To8(img) && |
| BuildMapUaToAa(img)) |
| img->put.separate = putRGBUAseparate16bittile; |
| } |
| else |
| { |
| if (BuildMapBitdepth16To8(img)) |
| img->put.separate = putRGBseparate16bittile; |
| } |
| break; |
| } |
| break; |
| case PHOTOMETRIC_SEPARATED: |
| if (img->bitspersample == 8 && img->samplesperpixel == 4) |
| { |
| img->alpha = 1; // Not alpha, but seems like the only way to get 4th band |
| img->put.separate = putCMYKseparate8bittile; |
| } |
| break; |
| case PHOTOMETRIC_YCBCR: |
| if ((img->bitspersample==8) && (img->samplesperpixel==3)) |
| { |
| if (initYCbCrConversion(img)!=0) |
| { |
| uint16 hs, vs; |
| TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs); |
| switch ((hs<<4)|vs) { |
| case 0x11: |
| img->put.separate = putseparate8bitYCbCr11tile; |
| break; |
| /* TODO: add other cases here */ |
| } |
| } |
| } |
| break; |
| } |
| return ((img->get!=NULL) && (img->put.separate!=NULL)); |
| } |
| |
| static int |
| BuildMapUaToAa(TIFFRGBAImage* img) |
| { |
| static const char module[]="BuildMapUaToAa"; |
| uint8* m; |
| uint16 na,nv; |
| assert(img->UaToAa==NULL); |
| img->UaToAa=_TIFFmalloc(65536); |
| if (img->UaToAa==NULL) |
| { |
| TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); |
| return(0); |
| } |
| m=img->UaToAa; |
| for (na=0; na<256; na++) |
| { |
| for (nv=0; nv<256; nv++) |
| *m++=(nv*na+127)/255; |
| } |
| return(1); |
| } |
| |
| static int |
| BuildMapBitdepth16To8(TIFFRGBAImage* img) |
| { |
| static const char module[]="BuildMapBitdepth16To8"; |
| uint8* m; |
| uint32 n; |
| assert(img->Bitdepth16To8==NULL); |
| img->Bitdepth16To8=_TIFFmalloc(65536); |
| if (img->Bitdepth16To8==NULL) |
| { |
| TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); |
| return(0); |
| } |
| m=img->Bitdepth16To8; |
| for (n=0; n<65536; n++) |
| *m++=(n+128)/257; |
| return(1); |
| } |
| |
| |
| /* |
| * Read a whole strip off data from the file, and convert to RGBA form. |
| * If this is the last strip, then it will only contain the portion of |
| * the strip that is actually within the image space. The result is |
| * organized in bottom to top form. |
| */ |
| |
| |
| int |
| TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) |
| |
| { |
| char emsg[1024] = ""; |
| TIFFRGBAImage img; |
| int ok; |
| uint32 rowsperstrip, rows_to_read; |
| |
| if( TIFFIsTiled( tif ) ) |
| { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), |
| "Can't use TIFFReadRGBAStrip() with tiled file."); |
| return (0); |
| } |
| |
| TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); |
| if( (row % rowsperstrip) != 0 ) |
| { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), |
| "Row passed to TIFFReadRGBAStrip() must be first in a strip."); |
| return (0); |
| } |
| |
| if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) { |
| |
| img.row_offset = row; |
| img.col_offset = 0; |
| |
| if( row + rowsperstrip > img.height ) |
| rows_to_read = img.height - row; |
| else |
| rows_to_read = rowsperstrip; |
| |
| ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); |
| |
| TIFFRGBAImageEnd(&img); |
| } else { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); |
| ok = 0; |
| } |
| |
| return (ok); |
| } |
| |
| /* |
| * Read a whole tile off data from the file, and convert to RGBA form. |
| * The returned RGBA data is organized from bottom to top of tile, |
| * and may include zeroed areas if the tile extends off the image. |
| */ |
| |
| int |
| TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) |
| |
| { |
| char emsg[1024] = ""; |
| TIFFRGBAImage img; |
| int ok; |
| uint32 tile_xsize, tile_ysize; |
| uint32 read_xsize, read_ysize; |
| uint32 i_row; |
| |
| /* |
| * Verify that our request is legal - on a tile file, and on a |
| * tile boundary. |
| */ |
| |
| if( !TIFFIsTiled( tif ) ) |
| { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), |
| "Can't use TIFFReadRGBATile() with stripped file."); |
| return (0); |
| } |
| |
| TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); |
| TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); |
| if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) |
| { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), |
| "Row/col passed to TIFFReadRGBATile() must be top" |
| "left corner of a tile."); |
| return (0); |
| } |
| |
| /* |
| * Setup the RGBA reader. |
| */ |
| |
| if (!TIFFRGBAImageOK(tif, emsg) |
| || !TIFFRGBAImageBegin(&img, tif, 0, emsg)) { |
| TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); |
| return( 0 ); |
| } |
| |
| /* |
| * The TIFFRGBAImageGet() function doesn't allow us to get off the |
| * edge of the image, even to fill an otherwise valid tile. So we |
| * figure out how much we can read, and fix up the tile buffer to |
| * a full tile configuration afterwards. |
| */ |
| |
| if( row + tile_ysize > img.height ) |
| read_ysize = img.height - row; |
| else |
| read_ysize = tile_ysize; |
| |
| if( col + tile_xsize > img.width ) |
| read_xsize = img.width - col; |
| else |
| read_xsize = tile_xsize; |
| |
| /* |
| * Read the chunk of imagery. |
| */ |
| |
| img.row_offset = row; |
| img.col_offset = col; |
| |
| ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); |
| |
| TIFFRGBAImageEnd(&img); |
| |
| /* |
| * If our read was incomplete we will need to fix up the tile by |
| * shifting the data around as if a full tile of data is being returned. |
| * |
| * This is all the more complicated because the image is organized in |
| * bottom to top format. |
| */ |
| |
| if( read_xsize == tile_xsize && read_ysize == tile_ysize ) |
| return( ok ); |
| |
| for( i_row = 0; i_row < read_ysize; i_row++ ) { |
| memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, |
| raster + (read_ysize - i_row - 1) * read_xsize, |
| read_xsize * sizeof(uint32) ); |
| _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, |
| 0, sizeof(uint32) * (tile_xsize - read_xsize) ); |
| } |
| |
| for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { |
| _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, |
| 0, sizeof(uint32) * tile_xsize ); |
| } |
| |
| return (ok); |
| } |
| |
| /* vim: set ts=8 sts=8 sw=8 noet: */ |
| /* |
| * Local Variables: |
| * mode: c |
| * c-basic-offset: 8 |
| * fill-column: 78 |
| * End: |
| */ |