blob: de4c18e066c82d6a77a04f5bf23f888d7490e362 [file] [log] [blame]
Bo Xu8ad00402014-12-02 13:06:22 -08001// Copyright 2014 PDFium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Original code by Matt McCutchen, see the LICENSE file.
6
7#ifndef BIGUNSIGNED_H
8#define BIGUNSIGNED_H
9
10#include "NumberlikeArray.hh"
11
12/* A BigUnsigned object represents a nonnegative integer of size limited only by
13 * available memory. BigUnsigneds support most mathematical operators and can
14 * be converted to and from most primitive integer types.
15 *
16 * The number is stored as a NumberlikeArray of unsigned longs as if it were
17 * written in base 256^sizeof(unsigned long). The least significant block is
18 * first, and the length is such that the most significant block is nonzero. */
19class BigUnsigned : protected NumberlikeArray<unsigned long> {
20
21public:
22 // Enumeration for the result of a comparison.
23 enum CmpRes { less = -1, equal = 0, greater = 1 };
24
25 // BigUnsigneds are built with a Blk type of unsigned long.
26 typedef unsigned long Blk;
27
28 typedef NumberlikeArray<Blk>::Index Index;
29 using NumberlikeArray<Blk>::N;
30
31protected:
32 // Creates a BigUnsigned with a capacity; for internal use.
33 BigUnsigned(int, Index c) : NumberlikeArray<Blk>(0, c) {}
34
35 // Decreases len to eliminate any leading zero blocks.
36 void zapLeadingZeros() {
37 while (len > 0 && blk[len - 1] == 0)
38 len--;
39 }
40
41public:
42 // Constructs zero.
43 BigUnsigned() : NumberlikeArray<Blk>() {}
44
45 // Copy constructor
46 BigUnsigned(const BigUnsigned &x) : NumberlikeArray<Blk>(x) {}
47
48 // Assignment operator
49 void operator=(const BigUnsigned &x) {
50 NumberlikeArray<Blk>::operator =(x);
51 }
52
53 // Constructor that copies from a given array of blocks.
54 BigUnsigned(const Blk *b, Index blen) : NumberlikeArray<Blk>(b, blen) {
55 // Eliminate any leading zeros we may have been passed.
56 zapLeadingZeros();
57 }
58
59 // Destructor. NumberlikeArray does the delete for us.
60 ~BigUnsigned() {}
61
62 // Constructors from primitive integer types
63 BigUnsigned(unsigned long x);
64 BigUnsigned( long x);
65 BigUnsigned(unsigned int x);
66 BigUnsigned( int x);
67 BigUnsigned(unsigned short x);
68 BigUnsigned( short x);
69protected:
70 // Helpers
71 template <class X> void initFromPrimitive (X x);
72 template <class X> void initFromSignedPrimitive(X x);
73public:
74
75 /* Converters to primitive integer types
76 * The implicit conversion operators caused trouble, so these are now
77 * named. */
78 unsigned long toUnsignedLong () const;
79 long toLong () const;
80 unsigned int toUnsignedInt () const;
81 int toInt () const;
82 unsigned short toUnsignedShort() const;
83 short toShort () const;
84protected:
85 // Helpers
86 template <class X> X convertToSignedPrimitive() const;
87 template <class X> X convertToPrimitive () const;
88public:
89
90 // BIT/BLOCK ACCESSORS
91
92 // Expose these from NumberlikeArray directly.
93 using NumberlikeArray<Blk>::getCapacity;
94 using NumberlikeArray<Blk>::getLength;
95
96 /* Returns the requested block, or 0 if it is beyond the length (as if
97 * the number had 0s infinitely to the left). */
98 Blk getBlock(Index i) const { return i >= len ? 0 : blk[i]; }
99 /* Sets the requested block. The number grows or shrinks as necessary. */
100 void setBlock(Index i, Blk newBlock);
101
102 // The number is zero if and only if the canonical length is zero.
103 bool isZero() const { return NumberlikeArray<Blk>::isEmpty(); }
104
105 /* Returns the length of the number in bits, i.e., zero if the number
106 * is zero and otherwise one more than the largest value of bi for
107 * which getBit(bi) returns true. */
108 Index bitLength() const;
109 /* Get the state of bit bi, which has value 2^bi. Bits beyond the
110 * number's length are considered to be 0. */
111 bool getBit(Index bi) const {
112 return (getBlock(bi / N) & (Blk(1) << (bi % N))) != 0;
113 }
114 /* Sets the state of bit bi to newBit. The number grows or shrinks as
115 * necessary. */
116 void setBit(Index bi, bool newBit);
117
118 // COMPARISONS
119
120 // Compares this to x like Perl's <=>
121 CmpRes compareTo(const BigUnsigned &x) const;
122
123 // Ordinary comparison operators
124 bool operator ==(const BigUnsigned &x) const {
125 return NumberlikeArray<Blk>::operator ==(x);
126 }
127 bool operator !=(const BigUnsigned &x) const {
128 return NumberlikeArray<Blk>::operator !=(x);
129 }
130 bool operator < (const BigUnsigned &x) const { return compareTo(x) == less ; }
131 bool operator <=(const BigUnsigned &x) const { return compareTo(x) != greater; }
132 bool operator >=(const BigUnsigned &x) const { return compareTo(x) != less ; }
133 bool operator > (const BigUnsigned &x) const { return compareTo(x) == greater; }
134
135 /*
136 * BigUnsigned and BigInteger both provide three kinds of operators.
137 * Here ``big-integer'' refers to BigInteger or BigUnsigned.
138 *
139 * (1) Overloaded ``return-by-value'' operators:
140 * +, -, *, /, %, unary -, &, |, ^, <<, >>.
141 * Big-integer code using these operators looks identical to code using
142 * the primitive integer types. These operators take one or two
143 * big-integer inputs and return a big-integer result, which can then
144 * be assigned to a BigInteger variable or used in an expression.
145 * Example:
146 * BigInteger a(1), b = 1;
147 * BigInteger c = a + b;
148 *
149 * (2) Overloaded assignment operators:
150 * +=, -=, *=, /=, %=, flipSign, &=, |=, ^=, <<=, >>=, ++, --.
151 * Again, these are used on big integers just like on ints. They take
152 * one writable big integer that both provides an operand and receives a
153 * result. Most also take a second read-only operand.
154 * Example:
155 * BigInteger a(1), b(1);
156 * a += b;
157 *
158 * (3) Copy-less operations: `add', `subtract', etc.
159 * These named methods take operands as arguments and store the result
160 * in the receiver (*this), avoiding unnecessary copies and allocations.
161 * `divideWithRemainder' is special: it both takes the dividend from and
162 * stores the remainder into the receiver, and it takes a separate
163 * object in which to store the quotient. NOTE: If you are wondering
164 * why these don't return a value, you probably mean to use the
165 * overloaded return-by-value operators instead.
166 *
167 * Examples:
168 * BigInteger a(43), b(7), c, d;
169 *
170 * c = a + b; // Now c == 50.
171 * c.add(a, b); // Same effect but without the two copies.
172 *
173 * c.divideWithRemainder(b, d);
174 * // 50 / 7; now d == 7 (quotient) and c == 1 (remainder).
175 *
176 * // ``Aliased'' calls now do the right thing using a temporary
177 * // copy, but see note on `divideWithRemainder'.
178 * a.add(a, b);
179 */
180
181 // COPY-LESS OPERATIONS
182
183 // These 8: Arguments are read-only operands, result is saved in *this.
184 void add(const BigUnsigned &a, const BigUnsigned &b);
185 void subtract(const BigUnsigned &a, const BigUnsigned &b);
186 void multiply(const BigUnsigned &a, const BigUnsigned &b);
187 void bitAnd(const BigUnsigned &a, const BigUnsigned &b);
188 void bitOr(const BigUnsigned &a, const BigUnsigned &b);
189 void bitXor(const BigUnsigned &a, const BigUnsigned &b);
190 /* Negative shift amounts translate to opposite-direction shifts,
191 * except for -2^(8*sizeof(int)-1) which is unimplemented. */
192 void bitShiftLeft(const BigUnsigned &a, int b);
193 void bitShiftRight(const BigUnsigned &a, int b);
194
195 /* `a.divideWithRemainder(b, q)' is like `q = a / b, a %= b'.
196 * / and % use semantics similar to Knuth's, which differ from the
197 * primitive integer semantics under division by zero. See the
198 * implementation in BigUnsigned.cc for details.
199 * `a.divideWithRemainder(b, a)' throws an exception: it doesn't make
200 * sense to write quotient and remainder into the same variable. */
201 void divideWithRemainder(const BigUnsigned &b, BigUnsigned &q);
202
203 /* `divide' and `modulo' are no longer offered. Use
204 * `divideWithRemainder' instead. */
205
206 // OVERLOADED RETURN-BY-VALUE OPERATORS
207 BigUnsigned operator +(const BigUnsigned &x) const;
208 BigUnsigned operator -(const BigUnsigned &x) const;
209 BigUnsigned operator *(const BigUnsigned &x) const;
210 BigUnsigned operator /(const BigUnsigned &x) const;
211 BigUnsigned operator %(const BigUnsigned &x) const;
212 /* OK, maybe unary minus could succeed in one case, but it really
213 * shouldn't be used, so it isn't provided. */
214 BigUnsigned operator &(const BigUnsigned &x) const;
215 BigUnsigned operator |(const BigUnsigned &x) const;
216 BigUnsigned operator ^(const BigUnsigned &x) const;
217 BigUnsigned operator <<(int b) const;
218 BigUnsigned operator >>(int b) const;
219
220 // OVERLOADED ASSIGNMENT OPERATORS
221 void operator +=(const BigUnsigned &x);
222 void operator -=(const BigUnsigned &x);
223 void operator *=(const BigUnsigned &x);
224 void operator /=(const BigUnsigned &x);
225 void operator %=(const BigUnsigned &x);
226 void operator &=(const BigUnsigned &x);
227 void operator |=(const BigUnsigned &x);
228 void operator ^=(const BigUnsigned &x);
229 void operator <<=(int b);
230 void operator >>=(int b);
231
232 /* INCREMENT/DECREMENT OPERATORS
233 * To discourage messy coding, these do not return *this, so prefix
234 * and postfix behave the same. */
235 void operator ++( );
236 void operator ++(int);
237 void operator --( );
238 void operator --(int);
239
240 // Helper function that needs access to BigUnsigned internals
241 friend Blk getShiftedBlock(const BigUnsigned &num, Index x,
242 unsigned int y);
243
244 // See BigInteger.cc.
245 template <class X>
246 friend X convertBigUnsignedToPrimitiveAccess(const BigUnsigned &a);
247};
248
249/* Implementing the return-by-value and assignment operators in terms of the
250 * copy-less operations. The copy-less operations are responsible for making
251 * any necessary temporary copies to work around aliasing. */
252
253inline BigUnsigned BigUnsigned::operator +(const BigUnsigned &x) const {
254 BigUnsigned ans;
255 ans.add(*this, x);
256 return ans;
257}
258inline BigUnsigned BigUnsigned::operator -(const BigUnsigned &x) const {
259 BigUnsigned ans;
260 ans.subtract(*this, x);
261 return ans;
262}
263inline BigUnsigned BigUnsigned::operator *(const BigUnsigned &x) const {
264 BigUnsigned ans;
265 ans.multiply(*this, x);
266 return ans;
267}
268inline BigUnsigned BigUnsigned::operator /(const BigUnsigned &x) const {
269 if (x.isZero())
Bo Xu8ad00402014-12-02 13:06:22 -0800270 abort();
Bo Xu8ad00402014-12-02 13:06:22 -0800271 BigUnsigned q, r;
272 r = *this;
273 r.divideWithRemainder(x, q);
274 return q;
275}
276inline BigUnsigned BigUnsigned::operator %(const BigUnsigned &x) const {
277 if (x.isZero())
Bo Xu8ad00402014-12-02 13:06:22 -0800278 abort();
Bo Xu8ad00402014-12-02 13:06:22 -0800279 BigUnsigned q, r;
280 r = *this;
281 r.divideWithRemainder(x, q);
282 return r;
283}
284inline BigUnsigned BigUnsigned::operator &(const BigUnsigned &x) const {
285 BigUnsigned ans;
286 ans.bitAnd(*this, x);
287 return ans;
288}
289inline BigUnsigned BigUnsigned::operator |(const BigUnsigned &x) const {
290 BigUnsigned ans;
291 ans.bitOr(*this, x);
292 return ans;
293}
294inline BigUnsigned BigUnsigned::operator ^(const BigUnsigned &x) const {
295 BigUnsigned ans;
296 ans.bitXor(*this, x);
297 return ans;
298}
299inline BigUnsigned BigUnsigned::operator <<(int b) const {
300 BigUnsigned ans;
301 ans.bitShiftLeft(*this, b);
302 return ans;
303}
304inline BigUnsigned BigUnsigned::operator >>(int b) const {
305 BigUnsigned ans;
306 ans.bitShiftRight(*this, b);
307 return ans;
308}
309
310inline void BigUnsigned::operator +=(const BigUnsigned &x) {
311 add(*this, x);
312}
313inline void BigUnsigned::operator -=(const BigUnsigned &x) {
314 subtract(*this, x);
315}
316inline void BigUnsigned::operator *=(const BigUnsigned &x) {
317 multiply(*this, x);
318}
319inline void BigUnsigned::operator /=(const BigUnsigned &x) {
320 if (x.isZero())
Bo Xu8ad00402014-12-02 13:06:22 -0800321 abort();
Bo Xu8ad00402014-12-02 13:06:22 -0800322 /* The following technique is slightly faster than copying *this first
323 * when x is large. */
324 BigUnsigned q;
325 divideWithRemainder(x, q);
326 // *this contains the remainder, but we overwrite it with the quotient.
327 *this = q;
328}
329inline void BigUnsigned::operator %=(const BigUnsigned &x) {
330 if (x.isZero())
Bo Xu8ad00402014-12-02 13:06:22 -0800331 abort();
Bo Xu8ad00402014-12-02 13:06:22 -0800332 BigUnsigned q;
333 // Mods *this by x. Don't care about quotient left in q.
334 divideWithRemainder(x, q);
335}
336inline void BigUnsigned::operator &=(const BigUnsigned &x) {
337 bitAnd(*this, x);
338}
339inline void BigUnsigned::operator |=(const BigUnsigned &x) {
340 bitOr(*this, x);
341}
342inline void BigUnsigned::operator ^=(const BigUnsigned &x) {
343 bitXor(*this, x);
344}
345inline void BigUnsigned::operator <<=(int b) {
346 bitShiftLeft(*this, b);
347}
348inline void BigUnsigned::operator >>=(int b) {
349 bitShiftRight(*this, b);
350}
351
352/* Templates for conversions of BigUnsigned to and from primitive integers.
353 * BigInteger.cc needs to instantiate convertToPrimitive, and the uses in
354 * BigUnsigned.cc didn't do the trick; I think g++ inlined convertToPrimitive
355 * instead of generating linkable instantiations. So for consistency, I put
356 * all the templates here. */
357
358// CONSTRUCTION FROM PRIMITIVE INTEGERS
359
360/* Initialize this BigUnsigned from the given primitive integer. The same
361 * pattern works for all primitive integer types, so I put it into a template to
362 * reduce code duplication. (Don't worry: this is protected and we instantiate
363 * it only with primitive integer types.) Type X could be signed, but x is
364 * known to be nonnegative. */
365template <class X>
366void BigUnsigned::initFromPrimitive(X x) {
367 if (x == 0)
368 ; // NumberlikeArray already initialized us to zero.
369 else {
370 // Create a single block. blk is NULL; no need to delete it.
371 cap = 1;
372 blk = new Blk[1];
373 len = 1;
374 blk[0] = Blk(x);
375 }
376}
377
378/* Ditto, but first check that x is nonnegative. I could have put the check in
379 * initFromPrimitive and let the compiler optimize it out for unsigned-type
380 * instantiations, but I wanted to avoid the warning stupidly issued by g++ for
381 * a condition that is constant in *any* instantiation, even if not in all. */
382template <class X>
383void BigUnsigned::initFromSignedPrimitive(X x) {
384 if (x < 0)
Bo Xu8ad00402014-12-02 13:06:22 -0800385 abort();
Bo Xu8ad00402014-12-02 13:06:22 -0800386 else
387 initFromPrimitive(x);
388}
389
390// CONVERSION TO PRIMITIVE INTEGERS
391
392/* Template with the same idea as initFromPrimitive. This might be slightly
393 * slower than the previous version with the masks, but it's much shorter and
394 * clearer, which is the library's stated goal. */
395template <class X>
396X BigUnsigned::convertToPrimitive() const {
397 if (len == 0)
398 // The number is zero; return zero.
399 return 0;
400 else if (len == 1) {
401 // The single block might fit in an X. Try the conversion.
402 X x = X(blk[0]);
403 // Make sure the result accurately represents the block.
404 if (Blk(x) == blk[0])
405 // Successful conversion.
406 return x;
407 // Otherwise fall through.
408 }
Bo Xu8ad00402014-12-02 13:06:22 -0800409 abort();
Bo Xu8ad00402014-12-02 13:06:22 -0800410}
411
412/* Wrap the above in an x >= 0 test to make sure we got a nonnegative result,
413 * not a negative one that happened to convert back into the correct nonnegative
414 * one. (E.g., catch incorrect conversion of 2^31 to the long -2^31.) Again,
415 * separated to avoid a g++ warning. */
416template <class X>
417X BigUnsigned::convertToSignedPrimitive() const {
418 X x = convertToPrimitive<X>();
419 if (x >= 0)
420 return x;
421 else
Bo Xu8ad00402014-12-02 13:06:22 -0800422 abort();
Bo Xu8ad00402014-12-02 13:06:22 -0800423}
424
425#endif