blob: 78d84766c49fbc120c98eee74f6046e82a448c4d [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "perfetto/tracing/core/shared_memory_abi.h"
#include "gtest/gtest.h"
#include "perfetto/tracing/core/basic_types.h"
#include "src/tracing/test/aligned_buffer_test.h"
namespace perfetto {
namespace {
using testing::ValuesIn;
using Chunk = SharedMemoryABI::Chunk;
using ChunkHeader = SharedMemoryABI::ChunkHeader;
using SharedMemoryABITest = AlignedBufferTest;
size_t const kPageSizes[] = {4096, 8192, 16384, 32768, 65536};
INSTANTIATE_TEST_CASE_P(PageSize, SharedMemoryABITest, ValuesIn(kPageSizes));
TEST_P(SharedMemoryABITest, NominalCases) {
SharedMemoryABI abi(buf(), buf_size(), page_size());
ASSERT_EQ(buf(), abi.start());
ASSERT_EQ(buf() + buf_size(), abi.end());
ASSERT_EQ(buf_size(), abi.size());
ASSERT_EQ(page_size(), abi.page_size());
ASSERT_EQ(kNumPages, abi.num_pages());
for (size_t i = 0; i < kNumPages; i++) {
ASSERT_TRUE(abi.is_page_free(i));
ASSERT_FALSE(abi.is_page_complete(i));
// GetFreeChunks() should return 0 for an unpartitioned page.
ASSERT_EQ(0u, abi.GetFreeChunks(i));
}
ASSERT_TRUE(abi.TryPartitionPage(0, SharedMemoryABI::kPageDiv1));
ASSERT_EQ(0x01u, abi.GetFreeChunks(0));
ASSERT_TRUE(abi.TryPartitionPage(1, SharedMemoryABI::kPageDiv2));
ASSERT_EQ(0x03u, abi.GetFreeChunks(1));
ASSERT_TRUE(abi.TryPartitionPage(2, SharedMemoryABI::kPageDiv4));
ASSERT_EQ(0x0fu, abi.GetFreeChunks(2));
ASSERT_TRUE(abi.TryPartitionPage(3, SharedMemoryABI::kPageDiv7));
ASSERT_EQ(0x7fu, abi.GetFreeChunks(3));
ASSERT_TRUE(abi.TryPartitionPage(4, SharedMemoryABI::kPageDiv14));
ASSERT_EQ(0x3fffu, abi.GetFreeChunks(4));
// Repartitioning an existing page must fail.
ASSERT_FALSE(abi.TryPartitionPage(0, SharedMemoryABI::kPageDiv1));
ASSERT_FALSE(abi.TryPartitionPage(4, SharedMemoryABI::kPageDiv14));
for (size_t i = 0; i <= 4; i++) {
ASSERT_FALSE(abi.is_page_free(i));
ASSERT_FALSE(abi.is_page_complete(i));
}
uint16_t last_chunk_id = 0;
uint16_t last_writer_id = 0;
uint8_t* last_chunk_begin = nullptr;
uint8_t* last_chunk_end = nullptr;
for (size_t page_idx = 0; page_idx <= 4; page_idx++) {
uint8_t* const page_start = buf() + page_idx * page_size();
uint8_t* const page_end = page_start + page_size();
const size_t num_chunks =
SharedMemoryABI::GetNumChunksForLayout(abi.page_layout_dbg(page_idx));
Chunk chunks[14];
for (size_t chunk_idx = 0; chunk_idx < num_chunks; chunk_idx++) {
Chunk& chunk = chunks[chunk_idx];
ChunkHeader header{};
ASSERT_EQ(SharedMemoryABI::kChunkFree,
abi.GetChunkState(page_idx, chunk_idx));
uint16_t chunk_id = ++last_chunk_id;
last_writer_id = (last_writer_id + 1) & kMaxWriterID;
uint16_t writer_id = last_writer_id;
header.chunk_id.store(chunk_id);
header.writer_id.store(writer_id);
uint16_t packets_count = static_cast<uint16_t>(chunk_idx * 10);
const uint8_t kFlagsMask = (1 << 6) - 1;
uint8_t flags = static_cast<uint8_t>((0xffu - chunk_idx) & kFlagsMask);
header.packets.store({packets_count, flags});
chunk = abi.TryAcquireChunkForWriting(page_idx, chunk_idx, &header);
ASSERT_TRUE(chunk.is_valid());
ASSERT_EQ(SharedMemoryABI::kChunkBeingWritten,
abi.GetChunkState(page_idx, chunk_idx));
// Sanity check chunk bounds.
size_t expected_chunk_size =
(page_size() - sizeof(SharedMemoryABI::PageHeader)) / num_chunks;
expected_chunk_size = expected_chunk_size - (expected_chunk_size % 4);
ASSERT_EQ(expected_chunk_size, chunk.size());
ASSERT_EQ(expected_chunk_size - sizeof(SharedMemoryABI::ChunkHeader),
chunk.payload_size());
ASSERT_GT(chunk.begin(), page_start);
ASSERT_GT(chunk.begin(), last_chunk_begin);
ASSERT_GE(chunk.begin(), last_chunk_end);
ASSERT_LE(chunk.end(), page_end);
ASSERT_GT(chunk.end(), chunk.begin());
ASSERT_EQ(chunk.end(), chunk.begin() + chunk.size());
last_chunk_begin = chunk.begin();
last_chunk_end = chunk.end();
ASSERT_EQ(chunk_id, chunk.header()->chunk_id.load());
ASSERT_EQ(writer_id, chunk.header()->writer_id.load());
ASSERT_EQ(packets_count, chunk.header()->packets.load().count);
ASSERT_EQ(flags, chunk.header()->packets.load().flags);
ASSERT_EQ(std::make_pair(packets_count, flags),
chunk.GetPacketCountAndFlags());
chunk.IncrementPacketCount();
ASSERT_EQ(packets_count + 1, chunk.header()->packets.load().count);
chunk.IncrementPacketCount();
ASSERT_EQ(packets_count + 2, chunk.header()->packets.load().count);
chunk.SetFlag(
SharedMemoryABI::ChunkHeader::kLastPacketContinuesOnNextChunk);
ASSERT_TRUE(
chunk.header()->packets.load().flags &
SharedMemoryABI::ChunkHeader::kLastPacketContinuesOnNextChunk);
// Reacquiring the same chunk should fail.
ASSERT_FALSE(abi.TryAcquireChunkForWriting(page_idx, chunk_idx, &header)
.is_valid());
}
// Now release chunks and check the Release() logic.
for (size_t chunk_idx = 0; chunk_idx < num_chunks; chunk_idx++) {
Chunk& chunk = chunks[chunk_idx];
size_t res = abi.ReleaseChunkAsComplete(std::move(chunk));
ASSERT_EQ(page_idx, res);
ASSERT_EQ(chunk_idx == num_chunks - 1, abi.is_page_complete(page_idx));
ASSERT_EQ(SharedMemoryABI::kChunkComplete,
abi.GetChunkState(page_idx, chunk_idx));
}
// Now acquire all chunks for reading.
for (size_t chunk_idx = 0; chunk_idx < num_chunks; chunk_idx++) {
Chunk& chunk = chunks[chunk_idx];
chunk = abi.TryAcquireChunkForReading(page_idx, chunk_idx);
ASSERT_TRUE(chunk.is_valid());
ASSERT_EQ(SharedMemoryABI::kChunkBeingRead,
abi.GetChunkState(page_idx, chunk_idx));
}
// Finally release all chunks as free.
for (size_t chunk_idx = 0; chunk_idx < num_chunks; chunk_idx++) {
Chunk& chunk = chunks[chunk_idx];
// If this was the last chunk in the page, the full page should be marked
// as free.
size_t res = abi.ReleaseChunkAsFree(std::move(chunk));
ASSERT_EQ(page_idx, res);
ASSERT_EQ(chunk_idx == num_chunks - 1, abi.is_page_free(page_idx));
ASSERT_EQ(SharedMemoryABI::kChunkFree,
abi.GetChunkState(page_idx, chunk_idx));
}
}
}
TEST_P(SharedMemoryABITest, BatchAcquireAndRelease) {
SharedMemoryABI abi(buf(), buf_size(), page_size());
ChunkHeader header{};
// TryAcquire on a non-partitioned page should fail.
ASSERT_FALSE(abi.TryAcquireChunkForWriting(0, 0, &header).is_valid());
ASSERT_FALSE(abi.TryAcquireChunkForReading(0, 0).is_valid());
// Now partition the page in one whole chunk.
ASSERT_TRUE(abi.TryPartitionPage(0, SharedMemoryABI::kPageDiv1));
Chunk chunk = abi.TryAcquireChunkForWriting(0, 0, &header);
ASSERT_TRUE(chunk.is_valid());
// TryAcquireAllChunksForReading() should fail, as the chunk is being written.
ASSERT_FALSE(abi.TryAcquireAllChunksForReading(0));
ASSERT_EQ(0u, abi.ReleaseChunkAsComplete(std::move(chunk)));
// TryAcquireAllChunksForReading() should succeed given that the page has only
// one chunk and is now complete.
ASSERT_TRUE(abi.TryAcquireAllChunksForReading(0));
// Release the one chunk and check that the page is freed up.
abi.ReleaseAllChunksAsFree(0);
ASSERT_TRUE(abi.is_page_free(0));
// Now repartition the page into four chunks and try some trickier cases.
ASSERT_TRUE(abi.TryPartitionPage(0, SharedMemoryABI::kPageDiv4));
// Acquire only the first and last chunks.
Chunk chunk0 = abi.TryAcquireChunkForWriting(0, 0, &header);
ASSERT_TRUE(chunk0.is_valid());
Chunk chunk3 = abi.TryAcquireChunkForWriting(0, 3, &header);
ASSERT_TRUE(chunk3.is_valid());
// TryAcquireAllChunksForReading() should fail, some chunks are being written.
ASSERT_FALSE(abi.TryAcquireAllChunksForReading(0));
// Mark only one chunks as complete and try again, it should still fail.
ASSERT_EQ(0u, abi.ReleaseChunkAsComplete(std::move(chunk0)));
ASSERT_EQ(SharedMemoryABI::kChunkComplete, abi.GetChunkState(0, 0));
ASSERT_EQ(SharedMemoryABI::kChunkFree, abi.GetChunkState(0, 1));
ASSERT_EQ(SharedMemoryABI::kChunkFree, abi.GetChunkState(0, 2));
ASSERT_EQ(SharedMemoryABI::kChunkBeingWritten, abi.GetChunkState(0, 3));
ASSERT_FALSE(abi.TryAcquireAllChunksForReading(0));
// Now release also the last chunk as complete and try again the
// TryAcquireAllChunksForReading(). This time it should succeed.
ASSERT_EQ(0u, abi.ReleaseChunkAsComplete(std::move(chunk3)));
ASSERT_EQ(SharedMemoryABI::kChunkComplete, abi.GetChunkState(0, 0));
ASSERT_EQ(SharedMemoryABI::kChunkFree, abi.GetChunkState(0, 1));
ASSERT_EQ(SharedMemoryABI::kChunkFree, abi.GetChunkState(0, 2));
ASSERT_EQ(SharedMemoryABI::kChunkComplete, abi.GetChunkState(0, 3));
ASSERT_TRUE(abi.TryAcquireAllChunksForReading(0));
// At this point the two outer chunks should transition into the
// kChunkBeingRead state, while the middle ones should stay free.
ASSERT_EQ(SharedMemoryABI::kChunkBeingRead, abi.GetChunkState(0, 0));
ASSERT_EQ(SharedMemoryABI::kChunkFree, abi.GetChunkState(0, 1));
ASSERT_EQ(SharedMemoryABI::kChunkFree, abi.GetChunkState(0, 2));
ASSERT_EQ(SharedMemoryABI::kChunkBeingRead, abi.GetChunkState(0, 3));
// Release only one chunk as free.
abi.ReleaseChunkAsFree(abi.GetChunkUnchecked(0, abi.page_layout_dbg(0), 0));
ASSERT_EQ(SharedMemoryABI::kChunkFree, abi.GetChunkState(0, 0));
ASSERT_EQ(SharedMemoryABI::kChunkBeingRead, abi.GetChunkState(0, 3));
// Release the last chunk as free, the full page should be freed.
abi.ReleaseChunkAsFree(abi.GetChunkUnchecked(0, abi.page_layout_dbg(0), 3));
ASSERT_TRUE(abi.is_page_free(0));
}
} // namespace
} // namespace perfetto