blob: 6237e5be38adfbaa10ea4c7625b1f29a8deea6ce [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/trace_processor/sched_slice_table.h"
#include "src/trace_processor/process_tracker.h"
#include "src/trace_processor/proto_trace_parser.h"
#include "src/trace_processor/sched_tracker.h"
#include "src/trace_processor/trace_processor_context.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "src/trace_processor/scoped_db.h"
namespace perfetto {
namespace trace_processor {
namespace {
using Column = SchedSliceTable::Column;
class SchedSliceTableIntegrationTest : public ::testing::Test {
public:
SchedSliceTableIntegrationTest() {
sqlite3* db = nullptr;
PERFETTO_CHECK(sqlite3_open(":memory:", &db) == SQLITE_OK);
db_.reset(db);
context_.storage.reset(new TraceStorage());
context_.process_tracker.reset(new ProcessTracker(&context_));
context_.sched_tracker.reset(new SchedTracker(&context_));
SchedSliceTable::RegisterTable(db_.get(), context_.storage.get());
}
void PrepareValidStatement(const std::string& sql) {
int size = static_cast<int>(sql.size());
sqlite3_stmt* stmt;
ASSERT_EQ(sqlite3_prepare_v2(*db_, sql.c_str(), size, &stmt, nullptr),
SQLITE_OK);
stmt_.reset(stmt);
}
~SchedSliceTableIntegrationTest() override {
context_.storage->ResetStorage();
}
protected:
TraceProcessorContext context_;
ScopedDb db_;
ScopedStmt stmt_;
};
TEST_F(SchedSliceTableIntegrationTest, RowsReturnedInCorrectOrderWithinCpu) {
uint32_t cpu = 3;
uint64_t timestamp = 100;
uint32_t pid_1 = 2;
uint32_t prev_state = 32;
static const char kCommProc1[] = "process1";
static const char kCommProc2[] = "process2";
uint32_t pid_2 = 4;
context_.sched_tracker->PushSchedSwitch(cpu, timestamp, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu, timestamp + 3, pid_2, prev_state,
kCommProc2, pid_1);
context_.sched_tracker->PushSchedSwitch(cpu, timestamp + 4, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu, timestamp + 10, pid_2,
prev_state, kCommProc2, pid_1);
PrepareValidStatement("SELECT dur, ts, cpu FROM sched ORDER BY dur");
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 1 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp + 3);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 3 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 6 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp + 4);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_DONE);
}
TEST_F(SchedSliceTableIntegrationTest, RowsReturnedInCorrectOrderBetweenCpu) {
uint32_t cpu_1 = 3;
uint32_t cpu_2 = 8;
uint32_t cpu_3 = 4;
uint64_t timestamp = 100;
uint32_t pid_1 = 2;
uint32_t prev_state = 32;
static const char kCommProc1[] = "process1";
static const char kCommProc2[] = "process2";
uint32_t pid_2 = 4;
context_.sched_tracker->PushSchedSwitch(cpu_3, timestamp - 2, pid_1,
prev_state, kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_3, timestamp - 1, pid_2,
prev_state, kCommProc2, pid_1);
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 3, pid_2,
prev_state, kCommProc2, pid_1);
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp + 4, pid_1,
prev_state, kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 10, pid_2,
prev_state, kCommProc2, pid_1);
PrepareValidStatement("SELECT dur, ts, cpu FROM sched ORDER BY dur desc");
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 7 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp + 3);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_2);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 4 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_1);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 1 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp - 2);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_3);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_DONE);
}
TEST_F(SchedSliceTableIntegrationTest, FilterCpus) {
uint32_t cpu_1 = 3;
uint32_t cpu_2 = 8;
uint64_t timestamp = 100;
uint32_t pid_1 = 2;
uint32_t prev_state = 32;
static const char kCommProc1[] = "process1";
static const char kCommProc2[] = "process2";
uint32_t pid_2 = 4;
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 3, pid_2,
prev_state, kCommProc2, pid_1);
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp + 4, pid_1,
prev_state, kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 10, pid_2,
prev_state, kCommProc2, pid_1);
PrepareValidStatement("SELECT dur, ts, cpu FROM sched WHERE cpu = 3");
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 4 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_1);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_DONE);
}
TEST_F(SchedSliceTableIntegrationTest, QuanitsiationCpuNativeOrder) {
uint32_t cpu_1 = 3;
uint32_t cpu_2 = 8;
uint64_t timestamp = 100;
uint32_t pid_1 = 2;
uint32_t prev_state = 32;
static const char kCommProc1[] = "process1";
static const char kCommProc2[] = "process2";
uint32_t pid_2 = 4;
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp + 3, pid_2,
prev_state, kCommProc2, pid_1);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 4, pid_1,
prev_state, kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp + 10, pid_2,
prev_state, kCommProc2, pid_1);
PrepareValidStatement(
"SELECT dur, ts, cpu FROM sched WHERE _quantum MATCH 5 ORDER BY cpu");
// Event at ts + 3 sliced off at quantum boundary (105).
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 2 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp + 3);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_1);
// Remainder of event at ts + 3 after quantum boundary (105 onwards).
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 5 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp + 5);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_1);
// Full event at ts.
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 4 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_2);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_DONE);
}
TEST_F(SchedSliceTableIntegrationTest, QuantizationSqliteDurationOrder) {
uint32_t cpu_1 = 3;
uint32_t cpu_2 = 8;
uint64_t timestamp = 100;
uint32_t pid_1 = 2;
uint32_t prev_state = 32;
static const char kCommProc1[] = "process1";
static const char kCommProc2[] = "process2";
uint32_t pid_2 = 4;
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 3, pid_2,
prev_state, kCommProc2, pid_1);
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp + 4, pid_1,
prev_state, kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 10, pid_2,
prev_state, kCommProc2, pid_1);
PrepareValidStatement(
"SELECT dur, ts, cpu FROM sched WHERE _quantum match 5 ORDER BY dur");
// Event at ts + 3 sliced off at quantum boundary (105).
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 2 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp + 3);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_2);
// Full event at ts.
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 4 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_1);
// Remainder of event at ts + 3 after quantum boundary (105 onwards).
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 5 /* duration */);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 1), timestamp + 5);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 2), cpu_2);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_DONE);
}
TEST_F(SchedSliceTableIntegrationTest, QuantizationGroupAndSum) {
uint32_t cpu_1 = 3;
uint32_t cpu_2 = 8;
uint64_t timestamp = 100;
uint32_t pid_1 = 2;
uint32_t prev_state = 32;
static const char kCommProc1[] = "process1";
static const char kCommProc2[] = "process2";
uint32_t pid_2 = 4;
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 3, pid_2,
prev_state, kCommProc2, pid_1);
context_.sched_tracker->PushSchedSwitch(cpu_1, timestamp + 4, pid_1,
prev_state, kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu_2, timestamp + 10, pid_2,
prev_state, kCommProc2, pid_1);
PrepareValidStatement(
"SELECT SUM(dur) as sum_dur "
"FROM sched "
"WHERE _quantum match 5 "
"GROUP BY quantized_group "
"ORDER BY sum_dur");
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 5 /* SUM(duration) */);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 6 /* SUM(duration) */);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_DONE);
}
TEST_F(SchedSliceTableIntegrationTest, UtidTest) {
uint32_t cpu = 3;
uint64_t timestamp = 100;
uint32_t pid_1 = 2;
uint32_t prev_state = 32;
static const char kCommProc1[] = "process1";
static const char kCommProc2[] = "process2";
uint32_t pid_2 = 4;
context_.sched_tracker->PushSchedSwitch(cpu, timestamp, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu, timestamp + 3, pid_2, prev_state,
kCommProc2, pid_1);
context_.sched_tracker->PushSchedSwitch(cpu, timestamp + 4, pid_1, prev_state,
kCommProc1, pid_2);
context_.sched_tracker->PushSchedSwitch(cpu, timestamp + 10, pid_2,
prev_state, kCommProc2, pid_1);
PrepareValidStatement("SELECT utid FROM sched ORDER BY utid");
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 1 /* duration */);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 1 /* duration */);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_ROW);
ASSERT_EQ(sqlite3_column_int64(*stmt_, 0), 2 /* duration */);
ASSERT_EQ(sqlite3_step(*stmt_), SQLITE_DONE);
}
} // namespace
} // namespace trace_processor
} // namespace perfetto