blob: 1be16cdfc27aec9a2f642d4fbc9d5b3af7e348ca [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "perfetto/ext/base/unix_socket.h"
#include <errno.h>
#include <fcntl.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>
#include <algorithm>
#include <memory>
#include "perfetto/base/build_config.h"
#include "perfetto/base/logging.h"
#include "perfetto/base/task_runner.h"
#include "perfetto/ext/base/string_utils.h"
#include "perfetto/ext/base/utils.h"
#if PERFETTO_BUILDFLAG(PERFETTO_OS_APPLE)
#include <sys/ucred.h>
#endif
namespace perfetto {
namespace base {
// The CMSG_* macros use NULL instead of nullptr.
#pragma GCC diagnostic push
#if !PERFETTO_BUILDFLAG(PERFETTO_OS_APPLE)
#pragma GCC diagnostic ignored "-Wzero-as-null-pointer-constant"
#endif
namespace {
// MSG_NOSIGNAL is not supported on Mac OS X, but in that case the socket is
// created with SO_NOSIGPIPE (See InitializeSocket()).
#if PERFETTO_BUILDFLAG(PERFETTO_OS_APPLE)
constexpr int kNoSigPipe = 0;
#else
constexpr int kNoSigPipe = MSG_NOSIGNAL;
#endif
// Android takes an int instead of socklen_t for the control buffer size.
#if PERFETTO_BUILDFLAG(PERFETTO_OS_ANDROID)
using CBufLenType = size_t;
#else
using CBufLenType = socklen_t;
#endif
// A wrapper around variable-size sockaddr structs.
// This is solving the following problem: when calling connect() or bind(), the
// caller needs to take care to allocate the right struct (sockaddr_un for
// AF_UNIX, sockaddr_in for AF_INET). Those structs have different sizes and,
// more importantly, are bigger than the base struct sockaddr.
struct SockaddrAny {
SockaddrAny() : size() {}
SockaddrAny(const void* addr, socklen_t sz) : data(new char[sz]), size(sz) {
memcpy(data.get(), addr, static_cast<size_t>(size));
}
const struct sockaddr* addr() const {
return reinterpret_cast<const struct sockaddr*>(data.get());
}
std::unique_ptr<char[]> data;
socklen_t size;
};
inline int GetSockFamily(SockFamily family) {
switch (family) {
case SockFamily::kUnix:
return AF_UNIX;
case SockFamily::kInet:
return AF_INET;
case SockFamily::kInet6:
return AF_INET6;
}
PERFETTO_CHECK(false); // For GCC.
}
inline int GetSockType(SockType type) {
#ifdef SOCK_CLOEXEC
constexpr int kSockCloExec = SOCK_CLOEXEC;
#else
constexpr int kSockCloExec = 0;
#endif
switch (type) {
case SockType::kStream:
return SOCK_STREAM | kSockCloExec;
case SockType::kDgram:
return SOCK_DGRAM | kSockCloExec;
case SockType::kSeqPacket:
return SOCK_SEQPACKET | kSockCloExec;
}
PERFETTO_CHECK(false); // For GCC.
}
SockaddrAny MakeSockAddr(SockFamily family, const std::string& socket_name) {
switch (family) {
case SockFamily::kUnix: {
struct sockaddr_un saddr {};
const size_t name_len = socket_name.size();
if (name_len >= sizeof(saddr.sun_path)) {
errno = ENAMETOOLONG;
return SockaddrAny();
}
memcpy(saddr.sun_path, socket_name.data(), name_len);
if (saddr.sun_path[0] == '@')
saddr.sun_path[0] = '\0';
saddr.sun_family = AF_UNIX;
auto size = static_cast<socklen_t>(
__builtin_offsetof(sockaddr_un, sun_path) + name_len + 1);
PERFETTO_CHECK(static_cast<size_t>(size) <= sizeof(saddr));
return SockaddrAny(&saddr, size);
}
case SockFamily::kInet: {
auto parts = SplitString(socket_name, ":");
PERFETTO_CHECK(parts.size() == 2);
struct addrinfo* addr_info = nullptr;
struct addrinfo hints {};
hints.ai_family = AF_INET;
PERFETTO_CHECK(getaddrinfo(parts[0].c_str(), parts[1].c_str(), &hints,
&addr_info) == 0);
PERFETTO_CHECK(addr_info->ai_family == AF_INET);
SockaddrAny res(addr_info->ai_addr, addr_info->ai_addrlen);
freeaddrinfo(addr_info);
return res;
}
case SockFamily::kInet6: {
auto parts = SplitString(socket_name, "]");
PERFETTO_CHECK(parts.size() == 2);
auto address = SplitString(parts[0], "[");
PERFETTO_CHECK(address.size() == 1);
auto port = SplitString(parts[1], ":");
PERFETTO_CHECK(port.size() == 1);
struct addrinfo* addr_info = nullptr;
struct addrinfo hints {};
hints.ai_family = AF_INET6;
PERFETTO_CHECK(getaddrinfo(address[0].c_str(), port[0].c_str(), &hints,
&addr_info) == 0);
PERFETTO_CHECK(addr_info->ai_family == AF_INET6);
SockaddrAny res(addr_info->ai_addr, addr_info->ai_addrlen);
freeaddrinfo(addr_info);
return res;
}
}
PERFETTO_CHECK(false); // For GCC.
}
} // namespace
// +-----------------------+
// | UnixSocketRaw methods |
// +-----------------------+
// static
void UnixSocketRaw::ShiftMsgHdr(size_t n, struct msghdr* msg) {
using LenType = decltype(msg->msg_iovlen); // Mac and Linux don't agree.
for (LenType i = 0; i < msg->msg_iovlen; ++i) {
struct iovec* vec = &msg->msg_iov[i];
if (n < vec->iov_len) {
// We sent a part of this iovec.
vec->iov_base = reinterpret_cast<char*>(vec->iov_base) + n;
vec->iov_len -= n;
msg->msg_iov = vec;
msg->msg_iovlen -= i;
return;
}
// We sent the whole iovec.
n -= vec->iov_len;
}
// We sent all the iovecs.
PERFETTO_CHECK(n == 0);
msg->msg_iovlen = 0;
msg->msg_iov = nullptr;
}
// static
UnixSocketRaw UnixSocketRaw::CreateMayFail(SockFamily family, SockType type) {
auto fd = ScopedFile(socket(GetSockFamily(family), GetSockType(type), 0));
if (!fd) {
return UnixSocketRaw();
}
return UnixSocketRaw(std::move(fd), family, type);
}
// static
std::pair<UnixSocketRaw, UnixSocketRaw> UnixSocketRaw::CreatePair(
SockFamily family,
SockType type) {
int fds[2];
if (socketpair(GetSockFamily(family), GetSockType(type), 0, fds) != 0)
return std::make_pair(UnixSocketRaw(), UnixSocketRaw());
return std::make_pair(UnixSocketRaw(ScopedFile(fds[0]), family, type),
UnixSocketRaw(ScopedFile(fds[1]), family, type));
}
UnixSocketRaw::UnixSocketRaw() = default;
UnixSocketRaw::UnixSocketRaw(SockFamily family, SockType type)
: UnixSocketRaw(
ScopedFile(socket(GetSockFamily(family), GetSockType(type), 0)),
family,
type) {}
UnixSocketRaw::UnixSocketRaw(ScopedFile fd, SockFamily family, SockType type)
: fd_(std::move(fd)), family_(family), type_(type) {
PERFETTO_CHECK(fd_);
#if PERFETTO_BUILDFLAG(PERFETTO_OS_APPLE)
const int no_sigpipe = 1;
setsockopt(*fd_, SOL_SOCKET, SO_NOSIGPIPE, &no_sigpipe, sizeof(no_sigpipe));
#endif
if (family == SockFamily::kInet || family == SockFamily::kInet6) {
int flag = 1;
PERFETTO_CHECK(
!setsockopt(*fd_, SOL_SOCKET, SO_REUSEADDR, &flag, sizeof(flag)));
flag = 1;
// Disable Nagle's algorithm, optimize for low-latency.
// See https://github.com/google/perfetto/issues/70.
setsockopt(*fd_, IPPROTO_TCP, TCP_NODELAY, &flag, sizeof(flag));
}
// There is no reason why a socket should outlive the process in case of
// exec() by default, this is just working around a broken unix design.
int fcntl_res = fcntl(*fd_, F_SETFD, FD_CLOEXEC);
PERFETTO_CHECK(fcntl_res == 0);
}
void UnixSocketRaw::SetBlocking(bool is_blocking) {
PERFETTO_DCHECK(fd_);
int flags = fcntl(*fd_, F_GETFL, 0);
if (!is_blocking) {
flags |= O_NONBLOCK;
} else {
flags &= ~static_cast<int>(O_NONBLOCK);
}
bool fcntl_res = fcntl(*fd_, F_SETFL, flags);
PERFETTO_CHECK(fcntl_res == 0);
}
void UnixSocketRaw::RetainOnExec() {
PERFETTO_DCHECK(fd_);
int flags = fcntl(*fd_, F_GETFD, 0);
flags &= ~static_cast<int>(FD_CLOEXEC);
bool fcntl_res = fcntl(*fd_, F_SETFD, flags);
PERFETTO_CHECK(fcntl_res == 0);
}
bool UnixSocketRaw::IsBlocking() const {
PERFETTO_DCHECK(fd_);
return (fcntl(*fd_, F_GETFL, 0) & O_NONBLOCK) == 0;
}
bool UnixSocketRaw::Bind(const std::string& socket_name) {
PERFETTO_DCHECK(fd_);
SockaddrAny addr = MakeSockAddr(family_, socket_name);
if (addr.size == 0)
return false;
if (bind(*fd_, addr.addr(), addr.size)) {
PERFETTO_DPLOG("bind(%s)", socket_name.c_str());
return false;
}
return true;
}
bool UnixSocketRaw::Listen() {
PERFETTO_DCHECK(fd_);
PERFETTO_DCHECK(type_ == SockType::kStream || type_ == SockType::kSeqPacket);
return listen(*fd_, SOMAXCONN) == 0;
}
bool UnixSocketRaw::Connect(const std::string& socket_name) {
PERFETTO_DCHECK(fd_);
SockaddrAny addr = MakeSockAddr(family_, socket_name);
if (addr.size == 0)
return false;
int res = PERFETTO_EINTR(connect(*fd_, addr.addr(), addr.size));
if (res && errno != EINPROGRESS)
return false;
return true;
}
void UnixSocketRaw::Shutdown() {
shutdown(*fd_, SHUT_RDWR);
fd_.reset();
}
// For the interested reader, Linux kernel dive to verify this is not only a
// theoretical possibility: sock_stream_sendmsg, if sock_alloc_send_pskb returns
// NULL [1] (which it does when it gets interrupted [2]), returns early with the
// amount of bytes already sent.
//
// [1]:
// https://elixir.bootlin.com/linux/v4.18.10/source/net/unix/af_unix.c#L1872
// [2]: https://elixir.bootlin.com/linux/v4.18.10/source/net/core/sock.c#L2101
ssize_t UnixSocketRaw::SendMsgAll(struct msghdr* msg) {
// This does not make sense on non-blocking sockets.
PERFETTO_DCHECK(fd_);
ssize_t total_sent = 0;
while (msg->msg_iov) {
ssize_t sent = PERFETTO_EINTR(sendmsg(*fd_, msg, kNoSigPipe));
if (sent <= 0) {
if (sent == -1 && IsAgain(errno))
return total_sent;
return sent;
}
total_sent += sent;
ShiftMsgHdr(static_cast<size_t>(sent), msg);
// Only send the ancillary data with the first sendmsg call.
msg->msg_control = nullptr;
msg->msg_controllen = 0;
}
return total_sent;
}
ssize_t UnixSocketRaw::Send(const void* msg,
size_t len,
const int* send_fds,
size_t num_fds) {
PERFETTO_DCHECK(fd_);
msghdr msg_hdr = {};
iovec iov = {const_cast<void*>(msg), len};
msg_hdr.msg_iov = &iov;
msg_hdr.msg_iovlen = 1;
alignas(cmsghdr) char control_buf[256];
if (num_fds > 0) {
const auto raw_ctl_data_sz = num_fds * sizeof(int);
const CBufLenType control_buf_len =
static_cast<CBufLenType>(CMSG_SPACE(raw_ctl_data_sz));
PERFETTO_CHECK(control_buf_len <= sizeof(control_buf));
memset(control_buf, 0, sizeof(control_buf));
msg_hdr.msg_control = control_buf;
msg_hdr.msg_controllen = control_buf_len; // used by CMSG_FIRSTHDR
struct cmsghdr* cmsg = CMSG_FIRSTHDR(&msg_hdr);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = static_cast<CBufLenType>(CMSG_LEN(raw_ctl_data_sz));
memcpy(CMSG_DATA(cmsg), send_fds, num_fds * sizeof(int));
// note: if we were to send multiple cmsghdr structures, then
// msg_hdr.msg_controllen would need to be adjusted, see "man 3 cmsg".
}
return SendMsgAll(&msg_hdr);
}
ssize_t UnixSocketRaw::Receive(void* msg,
size_t len,
ScopedFile* fd_vec,
size_t max_files) {
PERFETTO_DCHECK(fd_);
msghdr msg_hdr = {};
iovec iov = {msg, len};
msg_hdr.msg_iov = &iov;
msg_hdr.msg_iovlen = 1;
alignas(cmsghdr) char control_buf[256];
if (max_files > 0) {
msg_hdr.msg_control = control_buf;
msg_hdr.msg_controllen =
static_cast<CBufLenType>(CMSG_SPACE(max_files * sizeof(int)));
PERFETTO_CHECK(msg_hdr.msg_controllen <= sizeof(control_buf));
}
const ssize_t sz = PERFETTO_EINTR(recvmsg(*fd_, &msg_hdr, 0));
if (sz <= 0) {
return sz;
}
PERFETTO_CHECK(static_cast<size_t>(sz) <= len);
int* fds = nullptr;
uint32_t fds_len = 0;
if (max_files > 0) {
for (cmsghdr* cmsg = CMSG_FIRSTHDR(&msg_hdr); cmsg;
cmsg = CMSG_NXTHDR(&msg_hdr, cmsg)) {
const size_t payload_len = cmsg->cmsg_len - CMSG_LEN(0);
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
PERFETTO_DCHECK(payload_len % sizeof(int) == 0u);
PERFETTO_CHECK(fds == nullptr);
fds = reinterpret_cast<int*>(CMSG_DATA(cmsg));
fds_len = static_cast<uint32_t>(payload_len / sizeof(int));
}
}
}
if (msg_hdr.msg_flags & MSG_TRUNC || msg_hdr.msg_flags & MSG_CTRUNC) {
for (size_t i = 0; fds && i < fds_len; ++i)
close(fds[i]);
errno = EMSGSIZE;
return -1;
}
for (size_t i = 0; fds && i < fds_len; ++i) {
if (i < max_files)
fd_vec[i].reset(fds[i]);
else
close(fds[i]);
}
return sz;
}
bool UnixSocketRaw::SetTxTimeout(uint32_t timeout_ms) {
PERFETTO_DCHECK(fd_);
struct timeval timeout {};
uint32_t timeout_sec = timeout_ms / 1000;
timeout.tv_sec = static_cast<decltype(timeout.tv_sec)>(timeout_sec);
timeout.tv_usec = static_cast<decltype(timeout.tv_usec)>(
(timeout_ms - (timeout_sec * 1000)) * 1000);
return setsockopt(*fd_, SOL_SOCKET, SO_SNDTIMEO,
reinterpret_cast<const char*>(&timeout),
sizeof(timeout)) == 0;
}
bool UnixSocketRaw::SetRxTimeout(uint32_t timeout_ms) {
PERFETTO_DCHECK(fd_);
struct timeval timeout {};
uint32_t timeout_sec = timeout_ms / 1000;
timeout.tv_sec = static_cast<decltype(timeout.tv_sec)>(timeout_sec);
timeout.tv_usec = static_cast<decltype(timeout.tv_usec)>(
(timeout_ms - (timeout_sec * 1000)) * 1000);
return setsockopt(*fd_, SOL_SOCKET, SO_RCVTIMEO,
reinterpret_cast<const char*>(&timeout),
sizeof(timeout)) == 0;
}
#pragma GCC diagnostic pop
// +--------------------+
// | UnixSocket methods |
// +--------------------+
// TODO(primiano): Add ThreadChecker to methods of this class.
// static
std::unique_ptr<UnixSocket> UnixSocket::Listen(const std::string& socket_name,
EventListener* event_listener,
TaskRunner* task_runner,
SockFamily sock_family,
SockType sock_type) {
auto sock_raw = UnixSocketRaw::CreateMayFail(sock_family, sock_type);
if (!sock_raw || !sock_raw.Bind(socket_name))
return nullptr;
// Forward the call to the Listen() overload below.
return Listen(sock_raw.ReleaseFd(), event_listener, task_runner, sock_family,
sock_type);
}
// static
std::unique_ptr<UnixSocket> UnixSocket::Listen(ScopedFile fd,
EventListener* event_listener,
TaskRunner* task_runner,
SockFamily sock_family,
SockType sock_type) {
return std::unique_ptr<UnixSocket>(new UnixSocket(
event_listener, task_runner, std::move(fd), State::kListening,
sock_family, sock_type, SockPeerCredMode::kReadOnConnect));
}
// static
std::unique_ptr<UnixSocket> UnixSocket::Connect(
const std::string& socket_name,
EventListener* event_listener,
TaskRunner* task_runner,
SockFamily sock_family,
SockType sock_type,
SockPeerCredMode peer_cred_mode) {
std::unique_ptr<UnixSocket> sock(new UnixSocket(
event_listener, task_runner, sock_family, sock_type, peer_cred_mode));
sock->DoConnect(socket_name);
return sock;
}
// static
std::unique_ptr<UnixSocket> UnixSocket::AdoptConnected(
ScopedFile fd,
EventListener* event_listener,
TaskRunner* task_runner,
SockFamily sock_family,
SockType sock_type,
SockPeerCredMode peer_cred_mode) {
return std::unique_ptr<UnixSocket>(new UnixSocket(
event_listener, task_runner, std::move(fd), State::kConnected,
sock_family, sock_type, peer_cred_mode));
}
UnixSocket::UnixSocket(EventListener* event_listener,
TaskRunner* task_runner,
SockFamily sock_family,
SockType sock_type,
SockPeerCredMode peer_cred_mode)
: UnixSocket(event_listener,
task_runner,
ScopedFile(),
State::kDisconnected,
sock_family,
sock_type,
peer_cred_mode) {}
UnixSocket::UnixSocket(EventListener* event_listener,
TaskRunner* task_runner,
ScopedFile adopt_fd,
State adopt_state,
SockFamily sock_family,
SockType sock_type,
SockPeerCredMode peer_cred_mode)
: peer_cred_mode_(peer_cred_mode),
event_listener_(event_listener),
task_runner_(task_runner),
weak_ptr_factory_(this) {
state_ = State::kDisconnected;
if (adopt_state == State::kDisconnected) {
PERFETTO_DCHECK(!adopt_fd);
sock_raw_ = UnixSocketRaw::CreateMayFail(sock_family, sock_type);
if (!sock_raw_) {
last_error_ = errno;
return;
}
} else if (adopt_state == State::kConnected) {
PERFETTO_DCHECK(adopt_fd);
sock_raw_ = UnixSocketRaw(std::move(adopt_fd), sock_family, sock_type);
state_ = State::kConnected;
if (peer_cred_mode_ == SockPeerCredMode::kReadOnConnect)
ReadPeerCredentials();
} else if (adopt_state == State::kListening) {
// We get here from Listen().
// |adopt_fd| might genuinely be invalid if the bind() failed.
if (!adopt_fd) {
last_error_ = errno;
return;
}
sock_raw_ = UnixSocketRaw(std::move(adopt_fd), sock_family, sock_type);
if (!sock_raw_.Listen()) {
last_error_ = errno;
PERFETTO_DPLOG("listen()");
return;
}
state_ = State::kListening;
} else {
PERFETTO_FATAL("Unexpected adopt_state"); // Unfeasible.
}
PERFETTO_CHECK(sock_raw_);
last_error_ = 0;
sock_raw_.SetBlocking(false);
WeakPtr<UnixSocket> weak_ptr = weak_ptr_factory_.GetWeakPtr();
task_runner_->AddFileDescriptorWatch(sock_raw_.fd(), [weak_ptr] {
if (weak_ptr)
weak_ptr->OnEvent();
});
}
UnixSocket::~UnixSocket() {
// The implicit dtor of |weak_ptr_factory_| will no-op pending callbacks.
Shutdown(true);
}
UnixSocketRaw UnixSocket::ReleaseSocket() {
// This will invalidate any pending calls to OnEvent.
state_ = State::kDisconnected;
if (sock_raw_)
task_runner_->RemoveFileDescriptorWatch(sock_raw_.fd());
return std::move(sock_raw_);
}
// Called only by the Connect() static constructor.
void UnixSocket::DoConnect(const std::string& socket_name) {
PERFETTO_DCHECK(state_ == State::kDisconnected);
// This is the only thing that can gracefully fail in the ctor.
if (!sock_raw_)
return NotifyConnectionState(false);
if (!sock_raw_.Connect(socket_name)) {
last_error_ = errno;
return NotifyConnectionState(false);
}
// At this point either connect() succeeded or started asynchronously
// (errno = EINPROGRESS).
last_error_ = 0;
state_ = State::kConnecting;
// Even if the socket is non-blocking, connecting to a UNIX socket can be
// acknowledged straight away rather than returning EINPROGRESS.
// The decision here is to deal with the two cases uniformly, at the cost of
// delaying the straight-away-connect() case by one task, to avoid depending
// on implementation details of UNIX socket on the various OSes.
// Posting the OnEvent() below emulates a wakeup of the FD watch. OnEvent(),
// which knows how to deal with spurious wakeups, will poll the SO_ERROR and
// evolve, if necessary, the state into either kConnected or kDisconnected.
WeakPtr<UnixSocket> weak_ptr = weak_ptr_factory_.GetWeakPtr();
task_runner_->PostTask([weak_ptr] {
if (weak_ptr)
weak_ptr->OnEvent();
});
}
void UnixSocket::ReadPeerCredentials() {
// Peer credentials are supported only on AF_UNIX sockets.
if (sock_raw_.family() != SockFamily::kUnix)
return;
PERFETTO_CHECK(peer_cred_mode_ != SockPeerCredMode::kIgnore);
#if PERFETTO_BUILDFLAG(PERFETTO_OS_LINUX) || \
PERFETTO_BUILDFLAG(PERFETTO_OS_ANDROID)
struct ucred user_cred;
socklen_t len = sizeof(user_cred);
int fd = sock_raw_.fd();
int res = getsockopt(fd, SOL_SOCKET, SO_PEERCRED, &user_cred, &len);
PERFETTO_CHECK(res == 0);
peer_uid_ = user_cred.uid;
peer_pid_ = user_cred.pid;
#else
struct xucred user_cred;
socklen_t len = sizeof(user_cred);
int res = getsockopt(sock_raw_.fd(), 0, LOCAL_PEERCRED, &user_cred, &len);
PERFETTO_CHECK(res == 0 && user_cred.cr_version == XUCRED_VERSION);
peer_uid_ = static_cast<uid_t>(user_cred.cr_uid);
// There is no pid in the LOCAL_PEERCREDS for MacOS / FreeBSD.
#endif
}
void UnixSocket::OnEvent() {
if (state_ == State::kDisconnected)
return; // Some spurious event, typically queued just before Shutdown().
if (state_ == State::kConnected)
return event_listener_->OnDataAvailable(this);
if (state_ == State::kConnecting) {
PERFETTO_DCHECK(sock_raw_);
int sock_err = EINVAL;
socklen_t err_len = sizeof(sock_err);
int res =
getsockopt(sock_raw_.fd(), SOL_SOCKET, SO_ERROR, &sock_err, &err_len);
if (res == 0 && sock_err == EINPROGRESS)
return; // Not connected yet, just a spurious FD watch wakeup.
if (res == 0 && sock_err == 0) {
if (peer_cred_mode_ == SockPeerCredMode::kReadOnConnect)
ReadPeerCredentials();
state_ = State::kConnected;
return event_listener_->OnConnect(this, true /* connected */);
}
PERFETTO_DLOG("Connection error: %s", strerror(sock_err));
last_error_ = sock_err;
Shutdown(false);
return event_listener_->OnConnect(this, false /* connected */);
}
// New incoming connection.
if (state_ == State::kListening) {
// There could be more than one incoming connection behind each FD watch
// notification. Drain'em all.
for (;;) {
struct sockaddr_in cli_addr {};
socklen_t size = sizeof(cli_addr);
ScopedFile new_fd(PERFETTO_EINTR(accept(
sock_raw_.fd(), reinterpret_cast<sockaddr*>(&cli_addr), &size)));
if (!new_fd)
return;
std::unique_ptr<UnixSocket> new_sock(new UnixSocket(
event_listener_, task_runner_, std::move(new_fd), State::kConnected,
sock_raw_.family(), sock_raw_.type(), peer_cred_mode_));
event_listener_->OnNewIncomingConnection(this, std::move(new_sock));
}
}
}
bool UnixSocket::Send(const void* msg,
size_t len,
const int* send_fds,
size_t num_fds) {
if (state_ != State::kConnected) {
errno = last_error_ = ENOTCONN;
return false;
}
sock_raw_.SetBlocking(true);
const ssize_t sz = sock_raw_.Send(msg, len, send_fds, num_fds);
int saved_errno = errno;
sock_raw_.SetBlocking(false);
if (sz == static_cast<ssize_t>(len)) {
last_error_ = 0;
return true;
}
// If sendmsg() succeeds but the returned size is < |len| it means that the
// endpoint disconnected in the middle of the read, and we managed to send
// only a portion of the buffer. In this case we should just give up.
if (sz < 0 && (saved_errno == EAGAIN || saved_errno == EWOULDBLOCK)) {
// A genuine out-of-buffer. The client should retry or give up.
// Man pages specify that EAGAIN and EWOULDBLOCK have the same semantic here
// and clients should check for both.
last_error_ = EAGAIN;
return false;
}
// Either the other endpoint disconnected (ECONNRESET) or some other error
// happened.
last_error_ = saved_errno;
PERFETTO_DPLOG("sendmsg() failed");
Shutdown(true);
return false;
}
void UnixSocket::Shutdown(bool notify) {
WeakPtr<UnixSocket> weak_ptr = weak_ptr_factory_.GetWeakPtr();
if (notify) {
if (state_ == State::kConnected) {
task_runner_->PostTask([weak_ptr] {
if (weak_ptr)
weak_ptr->event_listener_->OnDisconnect(weak_ptr.get());
});
} else if (state_ == State::kConnecting) {
task_runner_->PostTask([weak_ptr] {
if (weak_ptr)
weak_ptr->event_listener_->OnConnect(weak_ptr.get(), false);
});
}
}
if (sock_raw_) {
task_runner_->RemoveFileDescriptorWatch(sock_raw_.fd());
sock_raw_.Shutdown();
}
state_ = State::kDisconnected;
}
size_t UnixSocket::Receive(void* msg,
size_t len,
ScopedFile* fd_vec,
size_t max_files) {
if (state_ != State::kConnected) {
last_error_ = ENOTCONN;
return 0;
}
const ssize_t sz = sock_raw_.Receive(msg, len, fd_vec, max_files);
if (sz < 0 && (errno == EAGAIN || errno == EWOULDBLOCK)) {
last_error_ = EAGAIN;
return 0;
}
if (sz <= 0) {
last_error_ = errno;
Shutdown(true);
return 0;
}
PERFETTO_CHECK(static_cast<size_t>(sz) <= len);
return static_cast<size_t>(sz);
}
std::string UnixSocket::ReceiveString(size_t max_length) {
std::unique_ptr<char[]> buf(new char[max_length + 1]);
size_t rsize = Receive(buf.get(), max_length);
PERFETTO_CHECK(static_cast<size_t>(rsize) <= max_length);
buf[static_cast<size_t>(rsize)] = '\0';
return std::string(buf.get());
}
void UnixSocket::NotifyConnectionState(bool success) {
if (!success)
Shutdown(false);
WeakPtr<UnixSocket> weak_ptr = weak_ptr_factory_.GetWeakPtr();
task_runner_->PostTask([weak_ptr, success] {
if (weak_ptr)
weak_ptr->event_listener_->OnConnect(weak_ptr.get(), success);
});
}
UnixSocket::EventListener::~EventListener() {}
void UnixSocket::EventListener::OnNewIncomingConnection(
UnixSocket*,
std::unique_ptr<UnixSocket>) {}
void UnixSocket::EventListener::OnConnect(UnixSocket*, bool) {}
void UnixSocket::EventListener::OnDisconnect(UnixSocket*) {}
void UnixSocket::EventListener::OnDataAvailable(UnixSocket*) {}
} // namespace base
} // namespace perfetto