blob: db90da270ce885fd2b70f3c9b5688193a5793256 [file] [log] [blame]
/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/trace_processor/fuchsia_trace_tokenizer.h"
#include <inttypes.h>
#include <unordered_map>
#include "perfetto/base/logging.h"
#include "perfetto/base/string_view.h"
#include "src/trace_processor/ftrace_utils.h"
#include "src/trace_processor/fuchsia_provider_view.h"
#include "src/trace_processor/process_tracker.h"
#include "src/trace_processor/slice_tracker.h"
#include "src/trace_processor/trace_processor_context.h"
#include "src/trace_processor/trace_sorter.h"
namespace perfetto {
namespace trace_processor {
namespace {
// Record types
constexpr uint32_t kMetadata = 0;
constexpr uint32_t kInitialization = 1;
constexpr uint32_t kString = 2;
constexpr uint32_t kThread = 3;
constexpr uint32_t kEvent = 4;
constexpr uint32_t kKernelObject = 7;
constexpr uint32_t kContextSwitch = 8;
// Metadata types
constexpr uint32_t kProviderInfo = 1;
constexpr uint32_t kProviderSection = 2;
constexpr uint32_t kProviderEvent = 3;
// Thread states
constexpr uint32_t kThreadNew = 0;
constexpr uint32_t kThreadRunning = 1;
constexpr uint32_t kThreadSuspended = 2;
constexpr uint32_t kThreadBlocked = 3;
constexpr uint32_t kThreadDying = 4;
constexpr uint32_t kThreadDead = 5;
// Zircon object types
constexpr uint32_t kZxObjTypeProcess = 1;
constexpr uint32_t kZxObjTypeThread = 2;
// Argument types
constexpr uint32_t kArgKernelObject = 8;
} // namespace
FuchsiaTraceTokenizer::FuchsiaTraceTokenizer(TraceProcessorContext* context)
: context_(context) {
RegisterProvider(0, "");
}
FuchsiaTraceTokenizer::~FuchsiaTraceTokenizer() = default;
util::Status FuchsiaTraceTokenizer::Parse(std::unique_ptr<uint8_t[]> data,
size_t size) {
// The relevant internal state is |leftover_bytes_|. Each call to Parse should
// maintain the following properties, unless a fatal error occurs in which
// case it should return false and no assumptions should be made about the
// resulting internal state:
//
// 1) Every byte passed to |Parse| has either been passed to |ParseRecord| or
// is present in |leftover_bytes_|, but not both.
// 2) |leftover_bytes_| does not contain a complete record.
//
// Parse is responsible for creating the "full" |TraceBlobView|s, which own
// the underlying data. Generally, there will be one such view. However, if
// there is a record that started in an earlier call, then a new buffer is
// created here to make the bytes in that record contiguous.
//
// Because some of the bytes in |data| might belong to the record starting in
// |leftover_bytes_|, we track the offset at which the following record will
// start.
size_t byte_offset = 0;
// Look for a record starting with the leftover bytes.
if (leftover_bytes_.size() + size < 8) {
// Even with the new bytes, we can't even read the header of the next
// record, so just add the new bytes to |leftover_bytes_| and return.
leftover_bytes_.insert(leftover_bytes_.end(), data.get() + byte_offset,
data.get() + size);
return util::OkStatus();
}
if (leftover_bytes_.size() > 0) {
// There is a record starting from leftover bytes.
if (leftover_bytes_.size() < 8) {
// Header was previously incomplete, but we have enough now.
// Copy bytes into |leftover_bytes_| so that the whole header is present,
// and update |byte_offset| and |size| accordingly.
size_t needed_bytes = 8 - leftover_bytes_.size();
leftover_bytes_.insert(leftover_bytes_.end(), data.get() + byte_offset,
data.get() + needed_bytes);
byte_offset += needed_bytes;
size -= needed_bytes;
}
// Read the record length from the header.
uint64_t header =
*reinterpret_cast<const uint64_t*>(leftover_bytes_.data());
uint32_t record_len_words =
fuchsia_trace_utils::ReadField<uint32_t>(header, 4, 15);
uint32_t record_len_bytes = record_len_words * sizeof(uint64_t);
// From property (2) above, leftover_bytes_ must have had less than a full
// record to start with. We padded leftover_bytes_ out to read the header,
// so it may now be a full record (in the case that the record consists of
// only the header word), but it still cannot have any extra bytes.
PERFETTO_DCHECK(leftover_bytes_.size() <= record_len_bytes);
size_t missing_bytes = record_len_bytes - leftover_bytes_.size();
if (missing_bytes <= size) {
// We have enough bytes to complete the partial record. Create a new
// buffer for that record.
std::unique_ptr<uint8_t[]> buf(new uint8_t[record_len_bytes]);
memcpy(&buf[0], leftover_bytes_.data(), leftover_bytes_.size());
memcpy(&buf[leftover_bytes_.size()], &data[byte_offset], missing_bytes);
byte_offset += missing_bytes;
size -= missing_bytes;
leftover_bytes_.clear();
TraceBlobView leftover_record(std::move(buf), 0, record_len_bytes);
ParseRecord(std::move(leftover_record));
} else {
// There are not enough bytes for the full record. Add all the bytes we
// have to leftover_bytes_ and wait for more.
leftover_bytes_.insert(leftover_bytes_.end(), data.get() + byte_offset,
data.get() + byte_offset + size);
return util::OkStatus();
}
}
TraceBlobView full_view(std::move(data), byte_offset, size);
// |record_offset| is a number of bytes past |byte_offset| where the record
// under consideration starts. As a result, it must always be in the range [0,
// size-8]. Any larger offset means we don't have enough bytes for the header.
size_t record_offset = 0;
while (record_offset + 8 <= size) {
uint64_t header =
*reinterpret_cast<const uint64_t*>(full_view.data() + record_offset);
uint32_t record_len_bytes =
fuchsia_trace_utils::ReadField<uint32_t>(header, 4, 15) *
sizeof(uint64_t);
if (record_len_bytes == 0)
return util::ErrStatus("Unexpected record of size 0");
if (record_offset + record_len_bytes > size)
break;
TraceBlobView record =
full_view.slice(byte_offset + record_offset, record_len_bytes);
ParseRecord(std::move(record));
record_offset += record_len_bytes;
}
leftover_bytes_.insert(leftover_bytes_.end(),
full_view.data() + record_offset,
full_view.data() + size);
return util::OkStatus();
}
// Most record types are read and recorded in |TraceStorage| here directly.
// Event records are sorted by timestamp before processing, so instead of
// recording them in |TraceStorage| they are given to |TraceSorter|. In order to
// facilitate the parsing after sorting, a small view of the provider's string
// and thread tables is passed alongside the record. See |FuchsiaProviderView|.
void FuchsiaTraceTokenizer::ParseRecord(TraceBlobView tbv) {
TraceStorage* storage = context_->storage.get();
ProcessTracker* procs = context_->process_tracker.get();
TraceSorter* sorter = context_->sorter.get();
const uint64_t* record = reinterpret_cast<const uint64_t*>(tbv.data());
uint64_t header = *record;
uint32_t record_type = fuchsia_trace_utils::ReadField<uint32_t>(header, 0, 3);
switch (record_type) {
case kMetadata: {
uint32_t metadata_type =
fuchsia_trace_utils::ReadField<uint32_t>(header, 16, 19);
switch (metadata_type) {
case kProviderInfo: {
uint32_t provider_id =
fuchsia_trace_utils::ReadField<uint32_t>(header, 20, 51);
uint32_t name_len =
fuchsia_trace_utils::ReadField<uint32_t>(header, 52, 59);
std::string name(reinterpret_cast<const char*>(&record[1]), name_len);
RegisterProvider(provider_id, name);
break;
}
case kProviderSection: {
uint32_t provider_id =
fuchsia_trace_utils::ReadField<uint32_t>(header, 20, 51);
current_provider_ = providers_[provider_id].get();
break;
}
case kProviderEvent: {
// TODO(bhamrick): Handle buffer fill events
PERFETTO_DLOG(
"Ignoring provider event. Events may have been dropped");
break;
}
}
break;
}
case kInitialization: {
current_provider_->ticks_per_second = record[1];
break;
}
case kString: {
uint32_t index = fuchsia_trace_utils::ReadField<uint32_t>(header, 16, 30);
if (index != 0) {
uint32_t len = fuchsia_trace_utils::ReadField<uint32_t>(header, 32, 46);
base::StringView s(reinterpret_cast<const char*>(&record[1]), len);
StringId id = storage->InternString(s);
current_provider_->string_table[index] = id;
}
break;
}
case kThread: {
uint32_t index = fuchsia_trace_utils::ReadField<uint32_t>(header, 16, 23);
if (index != 0) {
fuchsia_trace_utils::ThreadInfo tinfo;
tinfo.pid = record[1];
tinfo.tid = record[2];
current_provider_->thread_table[index] = tinfo;
}
break;
}
case kEvent: {
uint32_t thread_ref =
fuchsia_trace_utils::ReadField<uint32_t>(header, 24, 31);
uint32_t cat_ref =
fuchsia_trace_utils::ReadField<uint32_t>(header, 32, 47);
uint32_t name_ref =
fuchsia_trace_utils::ReadField<uint32_t>(header, 48, 63);
// Build the minimal FuchsiaProviderView needed by
// the record. This means the thread information if not inline, and any
// non-inline strings (name, category for now, arg names and string values
// in the future.
const uint64_t* current = &record[1];
auto provider_view =
std::unique_ptr<FuchsiaProviderView>(new FuchsiaProviderView());
provider_view->set_ticks_per_second(current_provider_->ticks_per_second);
uint64_t ticks = *current++;
int64_t ts = fuchsia_trace_utils::TicksToNs(
ticks, current_provider_->ticks_per_second);
if (fuchsia_trace_utils::IsInlineThread(thread_ref)) {
// Skip over inline thread
fuchsia_trace_utils::ReadInlineThread(&current);
} else {
provider_view->InsertThread(
thread_ref, current_provider_->thread_table[thread_ref]);
}
if (fuchsia_trace_utils::IsInlineString(cat_ref)) {
// Skip over inline string
fuchsia_trace_utils::ReadInlineString(&current, cat_ref);
} else {
provider_view->InsertString(cat_ref,
current_provider_->string_table[cat_ref]);
}
if (fuchsia_trace_utils::IsInlineString(name_ref)) {
// Skip over inline string
fuchsia_trace_utils::ReadInlineString(&current, name_ref);
} else {
provider_view->InsertString(name_ref,
current_provider_->string_table[name_ref]);
}
sorter->PushFuchsiaRecord(ts, std::move(tbv), std::move(provider_view));
break;
}
case kKernelObject: {
uint32_t obj_type =
fuchsia_trace_utils::ReadField<uint32_t>(header, 16, 23);
uint32_t name_ref =
fuchsia_trace_utils::ReadField<uint32_t>(header, 24, 39);
const uint64_t* current = &record[1];
uint64_t obj_id = *current++;
StringId name = StringId();
if (fuchsia_trace_utils::IsInlineString(name_ref)) {
name = storage->InternString(
fuchsia_trace_utils::ReadInlineString(&current, name_ref));
} else {
name = current_provider_->string_table[name_ref];
}
switch (obj_type) {
case kZxObjTypeProcess: {
// Note: Fuchsia pid/tids are 64 bits but Perfetto's tables only
// support 32 bits. This is usually not an issue except for
// artificial koids which have the 2^63 bit set. This is used for
// things such as virtual threads.
procs->UpdateProcess(static_cast<uint32_t>(obj_id),
base::Optional<uint32_t>(),
base::StringView(storage->GetString(name)));
break;
}
case kZxObjTypeThread: {
uint32_t n_args =
fuchsia_trace_utils::ReadField<uint32_t>(header, 40, 43);
uint64_t pid = 0;
// Scan for a Kernel Object argument named "process"
for (uint32_t i = 0; i < n_args; i++) {
const uint64_t* arg_base = current;
uint64_t arg_header = *current++;
uint32_t arg_type =
fuchsia_trace_utils::ReadField<uint32_t>(arg_header, 0, 3);
uint32_t arg_size =
fuchsia_trace_utils::ReadField<uint32_t>(arg_header, 4, 15);
if (arg_type == kArgKernelObject) {
uint32_t arg_name_ref =
fuchsia_trace_utils::ReadField<uint32_t>(arg_header, 16, 31);
base::StringView arg_name;
if (fuchsia_trace_utils::IsInlineString(arg_name_ref)) {
arg_name = fuchsia_trace_utils::ReadInlineString(&current,
arg_name_ref);
} else {
arg_name = storage->GetString(
current_provider_->string_table[arg_name_ref]);
}
if (arg_name == "process") {
pid = *current++;
}
}
current = arg_base + arg_size;
}
pid_table_[obj_id] = pid;
UniqueTid utid = procs->UpdateThread(static_cast<uint32_t>(obj_id),
static_cast<uint32_t>(pid));
storage->GetMutableThread(utid)->name_id = name;
break;
}
default: {
PERFETTO_DLOG("Skipping Kernel Object record with type %d", obj_type);
break;
}
}
break;
}
case kContextSwitch: {
// Context switch records come in order, so they do not need to go through
// TraceSorter.
uint32_t cpu = fuchsia_trace_utils::ReadField<uint32_t>(header, 16, 23);
uint32_t outgoing_state =
fuchsia_trace_utils::ReadField<uint32_t>(header, 24, 27);
uint32_t outgoing_thread_ref =
fuchsia_trace_utils::ReadField<uint32_t>(header, 28, 35);
uint32_t incoming_thread_ref =
fuchsia_trace_utils::ReadField<uint32_t>(header, 36, 43);
int32_t outgoing_priority =
fuchsia_trace_utils::ReadField<int32_t>(header, 44, 51);
uint64_t ticks = record[1];
int64_t ts = fuchsia_trace_utils::TicksToNs(
ticks, current_provider_->ticks_per_second);
const uint64_t* current = &record[2];
fuchsia_trace_utils::ThreadInfo outgoing_thread;
if (fuchsia_trace_utils::IsInlineThread(outgoing_thread_ref)) {
outgoing_thread = fuchsia_trace_utils::ReadInlineThread(&current);
} else {
outgoing_thread = current_provider_->thread_table[outgoing_thread_ref];
}
fuchsia_trace_utils::ThreadInfo incoming_thread;
if (fuchsia_trace_utils::IsInlineThread(incoming_thread_ref)) {
incoming_thread = fuchsia_trace_utils::ReadInlineThread(&current);
} else {
incoming_thread = current_provider_->thread_table[incoming_thread_ref];
}
// A thread with priority 0 represents an idle CPU
if (cpu_threads_.count(cpu) != 0 && outgoing_priority != 0) {
// TODO(bhamrick): Some early events will fail to associate with their
// pid because the kernel object info event hasn't been processed yet.
if (pid_table_.count(outgoing_thread.tid) > 0) {
outgoing_thread.pid = pid_table_[outgoing_thread.tid];
}
UniqueTid utid =
procs->UpdateThread(static_cast<uint32_t>(outgoing_thread.tid),
static_cast<uint32_t>(outgoing_thread.pid));
RunningThread previous_thread = cpu_threads_[cpu];
ftrace_utils::TaskState end_state;
switch (outgoing_state) {
case kThreadNew:
case kThreadRunning: {
end_state =
ftrace_utils::TaskState(ftrace_utils::TaskState::kRunnable);
break;
}
case kThreadBlocked: {
end_state = ftrace_utils::TaskState(
ftrace_utils::TaskState::kInterruptibleSleep);
break;
}
case kThreadSuspended: {
end_state =
ftrace_utils::TaskState(ftrace_utils::TaskState::kStopped);
break;
}
case kThreadDying: {
end_state =
ftrace_utils::TaskState(ftrace_utils::TaskState::kExitZombie);
break;
}
case kThreadDead: {
end_state =
ftrace_utils::TaskState(ftrace_utils::TaskState::kExitDead);
break;
}
default: { break; }
}
storage->mutable_slices()->AddSlice(cpu, previous_thread.start_ts,
ts - previous_thread.start_ts, utid,
end_state, outgoing_priority);
}
RunningThread new_running;
new_running.info = incoming_thread;
new_running.start_ts = ts;
cpu_threads_[cpu] = new_running;
break;
}
default: {
PERFETTO_DLOG("Skipping record of unknown type %d", record_type);
break;
}
}
}
void FuchsiaTraceTokenizer::RegisterProvider(uint32_t provider_id,
std::string name) {
std::unique_ptr<ProviderInfo> provider(new ProviderInfo());
provider->name = name;
current_provider_ = provider.get();
providers_[provider_id] = std::move(provider);
}
} // namespace trace_processor
} // namespace perfetto