blob: 5ffad09a827db589a12d34921d0c7cab031cc96c [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "perfetto/ftrace_reader/ftrace_controller.h"
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "perfetto/ftrace_reader/ftrace_config.h"
#include "perfetto/trace/ftrace/ftrace_event_bundle.pbzero.h"
#include "src/ftrace_reader/cpu_reader.h"
#include "src/ftrace_reader/ftrace_config_muxer.h"
#include "src/ftrace_reader/ftrace_procfs.h"
#include "src/ftrace_reader/proto_translation_table.h"
#include "gmock/gmock.h"
#include "gtest/gtest.h"
using testing::_;
using testing::AnyNumber;
using testing::ByMove;
using testing::Invoke;
using testing::NiceMock;
using testing::Return;
using testing::IsEmpty;
using testing::ElementsAre;
using testing::Pair;
using Table = perfetto::ProtoTranslationTable;
using FtraceEventBundle = perfetto::protos::pbzero::FtraceEventBundle;
namespace perfetto {
namespace {
constexpr char kFooEnablePath[] = "/root/events/group/foo/enable";
constexpr char kBarEnablePath[] = "/root/events/group/bar/enable";
class MockTaskRunner : public base::TaskRunner {
public:
MockTaskRunner() {
ON_CALL(*this, PostTask(_))
.WillByDefault(Invoke(this, &MockTaskRunner::OnPostTask));
ON_CALL(*this, PostDelayedTask(_, _))
.WillByDefault(Invoke(this, &MockTaskRunner::OnPostDelayedTask));
}
void OnPostTask(std::function<void()> task) {
std::unique_lock<std::mutex> lock(lock_);
EXPECT_FALSE(task_);
task_ = std::move(task);
}
void OnPostDelayedTask(std::function<void()> task, int /*delay*/) {
std::unique_lock<std::mutex> lock(lock_);
EXPECT_FALSE(task_);
task_ = std::move(task);
}
void RunLastTask() { TakeTask()(); }
std::function<void()> TakeTask() {
std::unique_lock<std::mutex> lock(lock_);
return std::move(task_);
}
MOCK_METHOD1(PostTask, void(std::function<void()>));
MOCK_METHOD2(PostDelayedTask, void(std::function<void()>, uint32_t delay_ms));
MOCK_METHOD2(AddFileDescriptorWatch, void(int fd, std::function<void()>));
MOCK_METHOD1(RemoveFileDescriptorWatch, void(int fd));
private:
std::mutex lock_;
std::function<void()> task_;
};
class MockDelegate : public perfetto::FtraceSink::Delegate {
public:
MOCK_METHOD1(GetBundleForCpu,
protozero::MessageHandle<FtraceEventBundle>(size_t));
MOCK_METHOD3(OnBundleComplete_,
void(size_t,
protozero::MessageHandle<FtraceEventBundle>&,
const FtraceMetadata& metadata));
void OnBundleComplete(size_t cpu,
protozero::MessageHandle<FtraceEventBundle> bundle,
const FtraceMetadata& metadata) override {
OnBundleComplete_(cpu, bundle, metadata);
}
};
std::unique_ptr<Table> FakeTable() {
std::vector<Field> common_fields;
std::vector<Event> events;
{
Event event;
event.name = "foo";
event.group = "group";
event.ftrace_event_id = 1;
events.push_back(event);
}
{
Event event;
event.name = "bar";
event.group = "group";
event.ftrace_event_id = 10;
events.push_back(event);
}
return std::unique_ptr<Table>(new Table(events, std::move(common_fields)));
}
std::unique_ptr<FtraceConfigMuxer> FakeModel(
FtraceProcfs* ftrace,
const ProtoTranslationTable* table) {
return std::unique_ptr<FtraceConfigMuxer>(
new FtraceConfigMuxer(ftrace, table));
}
class MockFtraceProcfs : public FtraceProcfs {
public:
explicit MockFtraceProcfs(size_t cpu_count = 1) : FtraceProcfs("/root/") {
ON_CALL(*this, NumberOfCpus()).WillByDefault(Return(cpu_count));
EXPECT_CALL(*this, NumberOfCpus()).Times(AnyNumber());
ON_CALL(*this, ReadFileIntoString("/root/trace_clock"))
.WillByDefault(Return("local global [boot]"));
EXPECT_CALL(*this, ReadFileIntoString("/root/trace_clock"))
.Times(AnyNumber());
ON_CALL(*this, WriteToFile(_, _)).WillByDefault(Return(true));
ON_CALL(*this, ClearFile(_)).WillByDefault(Return(true));
ON_CALL(*this, WriteToFile("/root/tracing_on", _))
.WillByDefault(Invoke(this, &MockFtraceProcfs::WriteTracingOn));
ON_CALL(*this, ReadOneCharFromFile("/root/tracing_on"))
.WillByDefault(Invoke(this, &MockFtraceProcfs::ReadTracingOn));
EXPECT_CALL(*this, ReadOneCharFromFile("/root/tracing_on"))
.Times(AnyNumber());
}
bool WriteTracingOn(const std::string& /*path*/, const std::string& value) {
PERFETTO_CHECK(value == "1" || value == "0");
tracing_on_ = value == "1";
return true;
}
char ReadTracingOn(const std::string& /*path*/) {
return tracing_on_ ? '1' : '0';
}
base::ScopedFile OpenPipeForCpu(size_t /*cpu*/) override {
return base::ScopedFile(open("/dev/null", O_RDONLY));
}
MOCK_METHOD2(WriteToFile,
bool(const std::string& path, const std::string& str));
MOCK_CONST_METHOD0(NumberOfCpus, size_t());
MOCK_METHOD1(ReadOneCharFromFile, char(const std::string& path));
MOCK_METHOD1(ClearFile, bool(const std::string& path));
MOCK_CONST_METHOD1(ReadFileIntoString, std::string(const std::string& path));
bool is_tracing_on() { return tracing_on_; }
private:
bool tracing_on_ = false;
};
} // namespace
class TestFtraceController : public FtraceController {
public:
TestFtraceController(std::unique_ptr<MockFtraceProcfs> ftrace_procfs,
std::unique_ptr<Table> table,
std::unique_ptr<FtraceConfigMuxer> model,
std::unique_ptr<MockTaskRunner> runner,
MockFtraceProcfs* raw_procfs)
: FtraceController(std::move(ftrace_procfs),
std::move(table),
std::move(model),
runner.get()),
runner_(std::move(runner)),
procfs_(raw_procfs) {}
MOCK_METHOD1(OnRawFtraceDataAvailable, void(size_t cpu));
MockTaskRunner* runner() { return runner_.get(); }
MockFtraceProcfs* procfs() { return procfs_; }
uint64_t NowMs() const override { return now_ms; }
uint32_t drain_period_ms() { return GetDrainPeriodMs(); }
std::function<void()> GetDataAvailableCallback(size_t cpu) {
base::WeakPtr<FtraceController> weak_this = weak_factory_.GetWeakPtr();
size_t generation = generation_;
return [this, weak_this, generation, cpu] {
OnDataAvailable(weak_this, generation, cpu, GetDrainPeriodMs());
};
}
void WaitForData(size_t cpu) {
while (true) {
{
std::unique_lock<std::mutex> lock(lock_);
if (cpus_to_drain_[cpu])
return;
}
usleep(5000);
}
}
uint64_t now_ms = 0;
private:
TestFtraceController(const TestFtraceController&) = delete;
TestFtraceController& operator=(const TestFtraceController&) = delete;
std::unique_ptr<MockTaskRunner> runner_;
MockFtraceProcfs* procfs_;
};
namespace {
std::unique_ptr<TestFtraceController> CreateTestController(
bool runner_is_nice_mock,
bool procfs_is_nice_mock,
size_t cpu_count = 1) {
std::unique_ptr<MockTaskRunner> runner;
if (runner_is_nice_mock) {
runner = std::unique_ptr<MockTaskRunner>(new NiceMock<MockTaskRunner>());
} else {
runner = std::unique_ptr<MockTaskRunner>(new MockTaskRunner());
}
auto table = FakeTable();
std::unique_ptr<MockFtraceProcfs> ftrace_procfs;
if (procfs_is_nice_mock) {
ftrace_procfs = std::unique_ptr<MockFtraceProcfs>(
new NiceMock<MockFtraceProcfs>(cpu_count));
} else {
ftrace_procfs =
std::unique_ptr<MockFtraceProcfs>(new MockFtraceProcfs(cpu_count));
}
auto model = FakeModel(ftrace_procfs.get(), table.get());
MockFtraceProcfs* raw_procfs = ftrace_procfs.get();
return std::unique_ptr<TestFtraceController>(new TestFtraceController(
std::move(ftrace_procfs), std::move(table), std::move(model),
std::move(runner), raw_procfs));
}
} // namespace
TEST(FtraceControllerTest, NonExistentEventsDontCrash) {
auto controller =
CreateTestController(true /* nice runner */, true /* nice procfs */);
MockDelegate delegate;
FtraceConfig config = CreateFtraceConfig({"not_an_event"});
std::unique_ptr<FtraceSink> sink = controller->CreateSink(config, &delegate);
}
TEST(FtraceControllerTest, RejectsBadEventNames) {
auto controller =
CreateTestController(true /* nice runner */, true /* nice procfs */);
MockDelegate delegate;
FtraceConfig config = CreateFtraceConfig({"../try/to/escape"});
EXPECT_FALSE(controller->CreateSink(config, &delegate));
EXPECT_FALSE(controller->procfs()->is_tracing_on());
}
TEST(FtraceControllerTest, OneSink) {
auto controller =
CreateTestController(true /* nice runner */, false /* nice procfs */);
MockDelegate delegate;
FtraceConfig config = CreateFtraceConfig({"foo"});
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/tracing_on", "1"));
EXPECT_CALL(*controller->procfs(), WriteToFile(kFooEnablePath, "1"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/buffer_size_kb", _));
std::unique_ptr<FtraceSink> sink = controller->CreateSink(config, &delegate);
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/buffer_size_kb", "0"));
EXPECT_CALL(*controller->procfs(), ClearFile("/root/trace"))
.WillOnce(Return(true));
EXPECT_CALL(*controller->procfs(), WriteToFile(kFooEnablePath, "0"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/tracing_on", "0"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/events/enable", "0"));
EXPECT_TRUE(controller->procfs()->is_tracing_on());
sink.reset();
EXPECT_FALSE(controller->procfs()->is_tracing_on());
}
TEST(FtraceControllerTest, MultipleSinks) {
auto controller =
CreateTestController(false /* nice runner */, false /* nice procfs */);
MockDelegate delegate;
FtraceConfig configA = CreateFtraceConfig({"foo"});
FtraceConfig configB = CreateFtraceConfig({"foo", "bar"});
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/tracing_on", "1"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/buffer_size_kb", _));
EXPECT_CALL(*controller->procfs(), WriteToFile(kFooEnablePath, "1"));
std::unique_ptr<FtraceSink> sinkA =
controller->CreateSink(configA, &delegate);
EXPECT_CALL(*controller->procfs(), WriteToFile(kBarEnablePath, "1"));
std::unique_ptr<FtraceSink> sinkB =
controller->CreateSink(configB, &delegate);
sinkA.reset();
EXPECT_CALL(*controller->procfs(), WriteToFile(kFooEnablePath, "0"));
EXPECT_CALL(*controller->procfs(), WriteToFile(kBarEnablePath, "0"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/buffer_size_kb", "0"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/tracing_on", "0"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/events/enable", "0"));
EXPECT_CALL(*controller->procfs(), ClearFile("/root/trace"));
sinkB.reset();
}
TEST(FtraceControllerTest, ControllerMayDieFirst) {
auto controller =
CreateTestController(false /* nice runner */, false /* nice procfs */);
MockDelegate delegate;
FtraceConfig config = CreateFtraceConfig({"foo"});
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/buffer_size_kb", _));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/tracing_on", "1"));
EXPECT_CALL(*controller->procfs(), WriteToFile(kFooEnablePath, "1"));
std::unique_ptr<FtraceSink> sink = controller->CreateSink(config, &delegate);
EXPECT_CALL(*controller->procfs(), WriteToFile(kFooEnablePath, "0"));
EXPECT_CALL(*controller->procfs(), ClearFile("/root/trace"))
.WillOnce(Return(true));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/tracing_on", "0"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/buffer_size_kb", "0"));
EXPECT_CALL(*controller->procfs(), WriteToFile("/root/events/enable", "0"));
controller.reset();
sink.reset();
}
TEST(FtraceControllerTest, TaskScheduling) {
auto controller = CreateTestController(
false /* nice runner */, false /* nice procfs */, 2 /* num cpus */);
// For this test we don't care about calls to WriteToFile/ClearFile.
EXPECT_CALL(*controller->procfs(), WriteToFile(_, _)).Times(AnyNumber());
EXPECT_CALL(*controller->procfs(), ClearFile(_)).Times(AnyNumber());
MockDelegate delegate;
FtraceConfig config = CreateFtraceConfig({"foo"});
std::unique_ptr<FtraceSink> sink = controller->CreateSink(config, &delegate);
// Only one call to drain should be scheduled for the next drain period.
EXPECT_CALL(*controller->runner(), PostDelayedTask(_, 100));
// However both CPUs should be drained.
EXPECT_CALL(*controller, OnRawFtraceDataAvailable(_)).Times(2);
// Finally, another task should be posted to unblock the workers.
EXPECT_CALL(*controller->runner(), PostTask(_));
// Simulate two worker threads reporting available data.
auto on_data_available0 = controller->GetDataAvailableCallback(0u);
std::thread worker0([on_data_available0] { on_data_available0(); });
auto on_data_available1 = controller->GetDataAvailableCallback(1u);
std::thread worker1([on_data_available1] { on_data_available1(); });
// Poll until both worker threads have reported available data.
controller->WaitForData(0u);
controller->WaitForData(1u);
// Run the task to drain all CPUs.
controller->runner()->RunLastTask();
// Run the task to unblock all workers.
controller->runner()->RunLastTask();
worker0.join();
worker1.join();
sink.reset();
}
// TODO(b/73452932): Fix and reenable this test.
TEST(FtraceControllerTest, DISABLED_DrainPeriodRespected) {
auto controller =
CreateTestController(false /* nice runner */, false /* nice procfs */);
// For this test we don't care about calls to WriteToFile/ClearFile.
EXPECT_CALL(*controller->procfs(), WriteToFile(_, _)).Times(AnyNumber());
EXPECT_CALL(*controller->procfs(), ClearFile(_)).Times(AnyNumber());
MockDelegate delegate;
FtraceConfig config = CreateFtraceConfig({"foo"});
// Test several cycles of a worker producing data and make sure the drain
// delay is consistent with the drain period.
std::unique_ptr<FtraceSink> sink = controller->CreateSink(config, &delegate);
const int kCycles = 50;
EXPECT_CALL(*controller->runner(),
PostDelayedTask(_, controller->drain_period_ms()))
.Times(kCycles);
EXPECT_CALL(*controller, OnRawFtraceDataAvailable(_)).Times(kCycles);
EXPECT_CALL(*controller->runner(), PostTask(_)).Times(kCycles);
// Simulate a worker thread continually reporting pages of available data.
auto on_data_available = controller->GetDataAvailableCallback(0u);
std::thread worker([on_data_available] {
for (int i = 0; i < kCycles; i++)
on_data_available();
});
for (int i = 0; i < kCycles; i++) {
controller->WaitForData(0u);
// Run two tasks: one to drain each CPU and another to unblock the worker.
controller->runner()->RunLastTask();
controller->runner()->RunLastTask();
controller->now_ms += controller->drain_period_ms();
}
worker.join();
sink.reset();
}
TEST(FtraceControllerTest, BackToBackEnableDisable) {
auto controller =
CreateTestController(false /* nice runner */, false /* nice procfs */);
// For this test we don't care about calls to WriteToFile/ClearFile.
EXPECT_CALL(*controller->procfs(), WriteToFile(_, _)).Times(AnyNumber());
EXPECT_CALL(*controller->procfs(), ClearFile(_)).Times(AnyNumber());
EXPECT_CALL(*controller->procfs(), ReadOneCharFromFile("/root/tracing_on"))
.Times(AnyNumber());
MockDelegate delegate;
FtraceConfig config = CreateFtraceConfig({"foo"});
EXPECT_CALL(*controller->runner(), PostDelayedTask(_, 100)).Times(2);
std::unique_ptr<FtraceSink> sink_a =
controller->CreateSink(config, &delegate);
auto on_data_available = controller->GetDataAvailableCallback(0u);
std::thread worker([on_data_available] { on_data_available(); });
controller->WaitForData(0u);
// Disable the first sink and run the delayed task that it generated. It
// should be a no-op.
sink_a.reset();
controller->runner()->RunLastTask();
worker.join();
// Register another sink and wait for it to generate data.
std::unique_ptr<FtraceSink> sink_b =
controller->CreateSink(config, &delegate);
std::thread worker2([on_data_available] { on_data_available(); });
controller->WaitForData(0u);
// This drain should also be a no-op after the sink is unregistered.
sink_b.reset();
controller->runner()->RunLastTask();
worker2.join();
}
TEST(FtraceControllerTest, BufferSize) {
auto controller =
CreateTestController(true /* nice runner */, false /* nice procfs */);
// For this test we don't care about most calls to WriteToFile/ClearFile.
EXPECT_CALL(*controller->procfs(), WriteToFile(_, _)).Times(AnyNumber());
EXPECT_CALL(*controller->procfs(), ClearFile(_)).Times(AnyNumber());
MockDelegate delegate;
{
// No buffer size -> good default.
// 8192kb = 8mb
EXPECT_CALL(*controller->procfs(),
WriteToFile("/root/buffer_size_kb", "512"));
FtraceConfig config = CreateFtraceConfig({"foo"});
auto sink = controller->CreateSink(config, &delegate);
}
{
// Way too big buffer size -> good default.
EXPECT_CALL(*controller->procfs(),
WriteToFile("/root/buffer_size_kb", "512"));
FtraceConfig config = CreateFtraceConfig({"foo"});
config.set_buffer_size_kb(10 * 1024 * 1024);
auto sink = controller->CreateSink(config, &delegate);
}
{
// The limit is 8mb, 9mb is too much.
EXPECT_CALL(*controller->procfs(),
WriteToFile("/root/buffer_size_kb", "512"));
FtraceConfig config = CreateFtraceConfig({"foo"});
ON_CALL(*controller->procfs(), NumberOfCpus()).WillByDefault(Return(2));
config.set_buffer_size_kb(9 * 1024);
auto sink = controller->CreateSink(config, &delegate);
}
{
// Your size ends up with less than 1 page per cpu -> 1 page.
EXPECT_CALL(*controller->procfs(),
WriteToFile("/root/buffer_size_kb", "4"));
FtraceConfig config = CreateFtraceConfig({"foo"});
config.set_buffer_size_kb(1);
auto sink = controller->CreateSink(config, &delegate);
}
{
// You picked a good size -> your size rounded to nearest page.
EXPECT_CALL(*controller->procfs(),
WriteToFile("/root/buffer_size_kb", "40"));
FtraceConfig config = CreateFtraceConfig({"foo"});
config.set_buffer_size_kb(42);
auto sink = controller->CreateSink(config, &delegate);
}
{
// You picked a good size -> your size rounded to nearest page.
EXPECT_CALL(*controller->procfs(),
WriteToFile("/root/buffer_size_kb", "40"));
FtraceConfig config = CreateFtraceConfig({"foo"});
ON_CALL(*controller->procfs(), NumberOfCpus()).WillByDefault(Return(2));
config.set_buffer_size_kb(42);
auto sink = controller->CreateSink(config, &delegate);
}
}
TEST(FtraceControllerTest, PeriodicDrainConfig) {
auto controller =
CreateTestController(true /* nice runner */, false /* nice procfs */);
// For this test we don't care about calls to WriteToFile/ClearFile.
EXPECT_CALL(*controller->procfs(), WriteToFile(_, _)).Times(AnyNumber());
EXPECT_CALL(*controller->procfs(), ClearFile(_)).Times(AnyNumber());
MockDelegate delegate;
{
// No period -> good default.
FtraceConfig config = CreateFtraceConfig({"foo"});
auto sink = controller->CreateSink(config, &delegate);
EXPECT_EQ(100u, controller->drain_period_ms());
}
{
// Pick a tiny value -> good default.
FtraceConfig config = CreateFtraceConfig({"foo"});
config.set_drain_period_ms(0);
auto sink = controller->CreateSink(config, &delegate);
EXPECT_EQ(100u, controller->drain_period_ms());
}
{
// Pick a huge value -> good default.
FtraceConfig config = CreateFtraceConfig({"foo"});
config.set_drain_period_ms(1000 * 60 * 60);
auto sink = controller->CreateSink(config, &delegate);
EXPECT_EQ(100u, controller->drain_period_ms());
}
{
// Pick a resonable value -> get that value.
FtraceConfig config = CreateFtraceConfig({"foo"});
config.set_drain_period_ms(200);
auto sink = controller->CreateSink(config, &delegate);
EXPECT_EQ(200u, controller->drain_period_ms());
}
}
TEST(FtraceMetadataTest, Clear) {
FtraceMetadata metadata;
metadata.inode_and_device.push_back(std::make_pair(1, 1));
metadata.pids.push_back(2);
metadata.overwrite_count = 3;
metadata.last_seen_device_id = 100;
metadata.Clear();
EXPECT_THAT(metadata.inode_and_device, IsEmpty());
EXPECT_THAT(metadata.pids, IsEmpty());
EXPECT_EQ(0u, metadata.overwrite_count);
EXPECT_EQ(BlockDeviceID(0), metadata.last_seen_device_id);
}
TEST(FtraceMetadataTest, AddDevice) {
FtraceMetadata metadata;
metadata.AddDevice(1);
EXPECT_EQ(BlockDeviceID(1), metadata.last_seen_device_id);
metadata.AddDevice(3);
EXPECT_EQ(BlockDeviceID(3), metadata.last_seen_device_id);
}
TEST(FtraceMetadataTest, AddInode) {
FtraceMetadata metadata;
metadata.AddCommonPid(getpid() + 1);
metadata.AddDevice(3);
metadata.AddInode(2);
metadata.AddInode(1);
metadata.AddCommonPid(getpid() + 1);
metadata.AddDevice(4);
metadata.AddInode(3);
// Check activity from ourselves is excluded.
metadata.AddCommonPid(getpid());
metadata.AddDevice(5);
metadata.AddInode(5);
EXPECT_THAT(metadata.inode_and_device,
ElementsAre(Pair(2, 3), Pair(1, 3), Pair(3, 4)));
}
TEST(FtraceMetadataTest, AddPid) {
FtraceMetadata metadata;
metadata.AddPid(1);
metadata.AddPid(2);
metadata.AddPid(2);
metadata.AddPid(3);
EXPECT_THAT(metadata.pids, ElementsAre(1, 2, 3));
}
} // namespace perfetto